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I review the origin and properties of electromagnetic fields produced in heavy-ion collisions.The field strength immediately after a
collision is proportional to the collision energy and reaches ∼𝑚

2

𝜋
at RHIC and ∼10𝑚

2

𝜋
at LHC. I demonstrate by explicit analytical

calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and
lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks
spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I
examine viscosity of QGP and show thatmagnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric
geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss
and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/𝜓
dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in
QGP are affected by strong electromagnetic field and call for experimental investigation.

1. Origin and Properties of
Electromagnetic Field

1.1. Origin of Magnetic Field. We can understand the origin
of magnetic field in heavy-ion collisions by considering
collision of two ions of radius 𝑅 with electric charge 𝑍𝑒 (𝑒
is the magnitude of electron charge) at impact parameter b.
According to the Biot and Savart law they create magnetic
field that in the center-of-mass frame has magnitude

𝐵 ∼ 𝛾𝑍𝑒

𝑏

𝑅

3
(1)

and points in the direction perpendicular to the reaction
plane (span by the momenta of ions). Here 𝛾 =

√
𝑠

𝑁𝑁
/2𝑚

𝑁

is the Lorentz factor. At RHIC heavy ions are collided at
200GeV per nucleon, hence 𝛾 = 100. Using 𝑍 = 79 for
gold and 𝑏 ∼ 𝑅

𝐴
≈ 7 fm we estimate 𝑒𝐵 ≈ 𝑚

2

𝜋
∼ 10

18 G.
To appreciate how strong is this field, compare it with the
following numbers: the strongest magnetic field created on
earth in a form of electromagnetic shock wave is ∼107 G [1],

and magnetic field of a neutron star is estimated to be 1010–
1013 G, that of a magnetar up to 10

15 G [2]. It is perhaps the
strongest magnetic field that has ever existed in nature.

It has been known for a long time that classical electrody-
namics breaks down at the critical (Schwinger) field strength
𝐹 = 𝑚

2

𝑒
/𝑒 [3]. In cgs units the corresponding magnetic

field is 10

13 G. Because 𝑚

𝜋
/𝑚

𝑒
= 280, electromagnetic fields

created at RHIC and LHC are well above the critical value.
This offers a unique opportunity to study the super-strong
electromagnetic fields in laboratory. The main challenge is to
identify experimental observables that are sensitive to such
fields. The problem is that nearly all observables studied
in heavy-ion collisions are strongly affected both by the
strong color forces acting in quark-gluon plasma (QGP)
and by electromagnetic fields often producing qualitatively
similar effects. An outstanding experimental problem thus
is to separate the two effects. In Sections 2–7 I examine
several processes strongly affected by intense magnetic fields
and discuss their phenomenological significance. But first,
in this section, let me derive a quantitative estimate of
electromagnetic field.
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Throughout this paper, the heavy-ion collision axis is
denoted by 𝑧. Average magnetic field then points in the 𝑦-
direction; see Figures 1 and 7. Plane 𝑥𝑧 is the reaction plane,
and 𝑏 is the impact parameter.

1.2. Magnetic Field in Vacuum

1.2.1. Time Dependence. To obtain a quantitative estimate
of magnetic field we need to take into account a realistic
distribution of protons in a nucleus. This has been first done
in [5] (in the case of high-energy 𝑝𝑝 collisions, magnetic field
was first estimated in [9] who also pointed out a possibility of
formation of 𝑊-condensate [9, 10]). Magnetic field at point r
created by two heavy ions moving in the positive or negative
𝑧-direction can be calculated using the Liénard-Wiechert
potentials as follows:

𝑒E (𝑡, r) = 𝛼em∑

𝑎

(1 − V2
𝑎
)R

𝑎

𝑅

3

𝑎
[1 − (R

𝑎
× k

𝑎
)

2

/𝑅

2

𝑎
]

3/2
, (2)

𝑒B (𝑡, r) = 𝛼em∑

𝑎

(1 − V2
𝑎
) (k

𝑎
× R

𝑎
)

𝑅

3

𝑎
[1 − (R

𝑎
× k

𝑎
)

2

/𝑅

2

𝑎
]

3/2
, (3)

withR
𝑎

= r−r
𝑎
(𝑡), where sums run over all𝑍 protons in each

nucleus, their positions and velocities being r
𝑎
and k

𝑎
. The

magnitude of velocity V
𝑎
is determined by the collision energy

√
𝑠

𝑁𝑁
and the proton mass 𝑚

𝑝
, V2

𝑎
= 1 − (2𝑚

𝑝
/
√

𝑠

𝑁𝑁
)

2.
These formulas are derived in the eikonal approximation,
assuming that protons travel on straight lines before and after
the scattering. This is a good approximation, since baryon
stopping is a small effect at high energies. Positions of protons
in heavy ions can be determined by one of the standard
models of the nuclear charge density 𝜌(r

𝑎
). Reference [5]

employed the “hard sphere” model, while [4] used a bit more
realistic Woods-Saxon distribution.

Numerical integration in (3) including small contribution
from baryon stopping yields for magnetic field the result
shown in Figure 2 as a function of the proper time 𝜏 = (𝑡

2
−

𝑧

2
)

1/2. Evidently, magnetic field rapidly decreases as a power
of time, so that after first 3 fm it drops by more than three
orders of magnitude.

1.2.2. Event-by-Event Fluctuations in Proton Positions.
Nuclear charge density 𝜌 provides only event-averaged
distribution of protons. The actual distribution in a given
event is different form 𝜌 implying that in a single event
there is not only magnetic field along the 𝑦-direction, but
also other components of electric and magnetic fields. This
leads to event-by-event fluctuations of electromagnetic
field [4]. Shown in Figure 3 are electric and magnetic field
components at 𝑡 = 0 at the origin (denoted by a black dot in
Figure 1) in AuAu collisions at

√
𝑠

𝑁𝑁
= 200GeV.

Figure 3 clearly shows that although on average the only
nonvanishing component of the field is 𝐵

𝑦
, which is also clear

𝑥

𝑦

𝑏/2

Figure 1: Heavy-ion collision geometry as seen along the collision
axis 𝑧. Adapted from [4].

from the symmetry considerations, other components are
finite in each event and are of the same order of magnitude
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To appreciate the magnitude of electric field produced in
heavy-ion collisions note that 𝐸 ∼ 𝑚

2

𝜋
= 10

21 V/cm. The
corresponding intensity is 10

39 W/cm2 which is instructive
to compare with the power generated by the most powerful
state-of-the-art lasers: 10

23 W/cm2.
Electromagnetic fields created in heavy-ion collisions

were also examined inmore elaborated approaches in [11–13].
They yielded qualitatively similar results on electromagnetic
field strength and its relaxation time.

1.3. Magnetic Field in Quark-Gluon Plasma

1.3.1. Liénard-Wiechert Potentials in Static Medium. In
the previous section, I discussed electromagnetic field in
vacuum. A more realistic estimate must include medium
effects. Indeed, the state-of-the-art phenomenology of
quark-gluon plasma (QGP) indicates that strongly
interacting medium is formed at as early as 0.5 fm/c.
Even before this time, strongly interacting medium exists
in a form of Glasma [14, 15]. Therefore, a calculation
of magnetic field must involve response of medium
determined by its electrical conductivity. It has been found
in the lattice calculations that the gluon contribution to
electrical conductivity of static quark-gluon plasma is
[16]

𝜎 = (5.8 ± 2.9)

𝑇

𝑇

𝑐

MeV, (5)

where 𝑇 is plasma temperature and 𝑇

𝑐
it critical temper-

ature. This agrees with [17] but is at odds with an ear-
lier calculation [18]. It is not clear whether (5) adequately
describes the electromagnetic response of realistic quark-
gluon plasma because it neglects quark contribution and
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Figure 2: Magnetic field B = 𝐵ŷ (multiplied by 𝑒) at the origin r = 0 produced in collision of two gold ions at beam energies (a)
√

𝑠

𝑁𝑁
=

62GeV and (b)
√

𝑠

𝑁𝑁
= 200GeV. Adapted from [5]. Note that 𝑒𝐵 is the same in Gauss and Lorentz-Heaviside units in contrast to 𝐵.
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Figure 3: The mean absolute value of (a) magnetic field and (b) electric field at 𝑡 = 0 and r = 0 as a function of impact parameter 𝑏 for AuAu
collision at

√
𝑠

𝑁𝑁
= 200GeV.

assumes that medium is static. Theoretical calculations are
of little help at the temperatures of interest, since the per-
turbation theory is not applicable. In absence of a sensible
alternative I will use (5) as a best estimate of electrical
conductivity. If medium is static then 𝑇 is constant as a

function of time 𝑡. The static case is considered in this
section, while in the next section I consider expanding
medium.

In medium, magnetic field created by a charge 𝑒 moving
in 𝑧-direction with velocity V is a solution of the following
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equations:

∇ ⋅ B = 0, ∇ × E = −

𝜕B
𝜕𝑡

, (6)

∇ ⋅ E = 𝑒𝛿 (𝑧 − V𝑡) 𝛿 (b) ,

∇ × B =

𝜕E
𝜕𝑡

+ 𝜎E + 𝑒Vẑ𝛿 (𝑧 − V𝑡) 𝛿 (b) ,

(7)

where we used the Ohm’s law j = 𝜎E to describe currents
induced in the medium. Position of the observation point is
specified by the longitudinal and transverse coordinates 𝑧 and
b, r = 𝑧ẑ + b. Taking curl of the second equation in (7) and
substituting (6) we get

∇

2B =

𝜕

2B
𝜕𝑡

2
+ 𝜎

𝜕B
𝜕𝑡

− 𝑒V∇ × [ẑ𝛿 (𝑧 − V𝑡) 𝛿 (b)] .
(8)

The particular solution reads

B (𝑧, b, 𝑡)=∫

𝑡

0

𝑑𝑡

󸀠
∫

∞

−∞

𝑑𝑧 ∫ 𝑑

2b 𝐺 (𝑧−𝑧

󸀠
, b−b󸀠, 𝑡−𝑡

󸀠
) 𝑒V

× ∇
󸀠
[ẑ𝛿 (𝑧

󸀠
− V𝑡

󸀠
) 𝛿 (b󸀠)] ,

(9)

where Green’s function 𝐺(𝑧 − 𝑧

󸀠
, b − b󸀠, 𝑡 − 𝑡

󸀠
) satisfies the

following equation:

∇

2
𝐺 −

𝜕

2
𝐺

𝜕𝑡

2
− 𝜎

𝜕𝐺

𝜕𝑡

= −𝛿 (𝑧 − 𝑧

󸀠
) 𝛿 (b − b󸀠) 𝛿 (𝑡 − 𝑡

󸀠
) ,

(10)

which is solved by

𝐺 (𝑧 − 𝑧

󸀠
, b − b󸀠, 𝑡 − 𝑡

󸀠
)

= ∫

𝑑

2
𝑘

⊥

(2𝜋)

2
𝑒

𝑖(b−b󸀠)⋅k
⊥

∫

∞

−∞

𝑑𝑘

𝑧

2𝜋

𝑒

𝑖𝑘
𝑧
(𝑧−𝑧
󸀠
)

× ∫

∞

−∞

𝑑𝜔

2𝜋

𝑒

−𝑖𝜔(𝑡−𝑡
󸀠
) 1

𝑘

2

𝑧
+ 𝑘

2

⊥
− 𝜔

2
− 𝑖𝜔𝜎

,

(11)

where k = 𝑘

𝑧
ẑ+k

⊥
. Plugging this into (9) and substituting for

the expression in the square brackets in (9) its Fourier image,
we obtain

B (𝑧, b, 𝑡) = 2𝜋𝑒V∫

𝑑

2
𝑘

⊥

(2𝜋)

2
𝑒

𝑖b⋅k
⊥

∫

∞

−∞

𝑑𝑘

𝑧

2𝜋

𝑒

𝑖𝑘
𝑧
𝑧

× ∫

∞

−∞

𝑑𝜔

2𝜋

𝑒

−𝑖𝜔𝑡 𝑖k × ẑ
𝑘

2

𝑧
+ 𝑘

2

⊥
− 𝜔

2
− 𝑖𝜔𝜎

× 𝛿 (𝜔 − 𝑘

𝑧
V)

(12)

= 𝑒 ∫

𝑑

2
𝑘

⊥

(2𝜋)

2
𝑒

𝑖b⋅k
⊥

× ∫

∞

−∞

𝑑𝜔

2𝜋

𝑒

−𝑖𝜔𝑡
𝑒

𝑖𝜔𝑧/V

×

𝑖k
⊥

× ẑ
𝜔

2
/V2 + 𝑘

2

⊥
− 𝜔

2
− 𝑖𝜔𝜎

.

(13)

We are interested in the𝑦-component of the field. Noting that
(k

⊥
× ẑ) ⋅ ŷ = −𝑘

⊥
cos𝜙, where 𝜙 is the azimuthal angle in the

transverse plane, and integrating over 𝑑

2
𝑘

⊥
we derive

𝑒𝐵

𝑦
=

𝛼em
𝜋

∫

∞

−∞

𝑠 (𝜔) 𝐾

1
(𝑠 (𝜔) 𝑏) 𝑒

𝑖𝜔(𝑧/V−𝑡)
𝑑𝜔, (14)

where 𝛼em = 𝑒

2
/4𝜋, and we introduced notation

𝑠 (𝜔) = 𝜔
√

1

V2
− 𝜖 (𝜔),

(15)

where 𝜖(𝜔) is the dielectric constant of the plasma with the
following frequency dependence:

𝜖 (𝜔) = 1 +

𝑖𝜎

𝜔

. (16)

Equation (14) is actually valid for any functional form
of 𝜖(𝜔) [19], which can be easily verified by using electric
displacement D instead of E in (7). In this case (16) can be
viewed as a low frequency expansion of 𝜖(𝜔). Magnetic field
in this approximation is quasistatic.Therefore, we could have
neglected the second time derivative in (8), and then keeping
only the leading powers of 𝜔 we would have derived (14) with
𝑠

2
= 𝑖𝜔𝜎. After integration over 𝜔 this gives (21). Let us take

notice of the fact that neglecting the second time derivative
in (8) yields diffusion equation for magnetic field in plasma.

It is instructive to compare time dependence of magnetic
field created by moving charges in vacuum and in plasma. In
vacuum, setting 𝜎 = 0 in (13) and integrating first over 𝜔 and
then over k

⊥
give

𝑒B = ŷ𝛼em
𝑏𝛾

(𝑏

2
+ 𝛾

2
(𝑡 − 𝑧)

2
)

3/2
, (17)

where we used V ≈ 1. This coincides with (3) for a single
proton when we take R

𝑎
= b + (𝑧 − V𝑡)ẑ. Consider field

strength (17) at the origin 𝑧 = 0. At times 𝑡 < 𝑏/𝛾 the field is
constant, while at 𝑡 ≫ 𝑏/𝛾 it decreases as 𝐵

∞
∝ 1/𝑡

3. At the
time 𝑡 ≈ 𝑏 the ratio between these two is

𝐵

0

𝐵

∞

=

1

𝛾

3
≪ 1, (18)

which is a very small number (∼10−6 at RHIC).
In matter 𝜎 > 0. Let me write the modified Bessel

function appearing in (14) as follows:

𝑠𝐾

1
(𝑠𝑏) = ∫

∞

0

𝐽

1
(𝑥𝑏) 𝑥

2
𝑑𝑥

𝑥

2
+ 𝑠

2
.

(19)

Substituting (19) into (14) and using (16), we have (V = 1)

𝑒B =

𝛼em
𝜋

ŷ∫

∞

0

𝑑𝑥 ∫

∞

−∞

𝑑𝜔

𝐽

1
(𝑥𝑏) 𝑥

2

𝑥

2
− 𝑖𝜔𝜎

𝑒

𝑖𝜔(𝑧−𝑡)
.

(20)

Closing the contour in the lower half-plane of complex 𝜔

picks a pole at 𝜔 = −𝑖𝑥

2
/𝜎. We have

𝑒B =

2𝛼em
𝜎

ŷ∫

∞

0

𝑑𝑥𝑥

2
𝐽

1
(𝑥𝑏) 𝑒

−(𝑥
2
/𝜎)(𝑡−𝑧)

= ŷ 𝛼em𝑏𝜎

2(𝑡 − 𝑧)

2
𝑒

−𝑏
2
𝜎/4(𝑡−𝑧)

.

(21)
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At 𝑧 = 0 this function vanishes at 𝑡 = 0 and 𝑡 → ∞ and has
maximum at the time instant 𝑡 = 𝑏

2
𝜎/8 which is much larger

than 𝑏/𝛾. The value of the magnetic field at this time is

𝑒𝐵max =

32𝑒

−2
𝛼em

𝑏

3
𝜎

.
(22)

(Here 𝑒 is the base of natural logarithm.) This is smaller than
the maximum field in vacuum

𝐵max
𝐵

0

=

32𝑒

−2

𝜎𝑏𝛾

(23)

but is still a huge field. We compare the two solutions (17)
and (21) in Figure 4. We see that in a conducting medium
magnetic field stays for a long time.

One essential component is still missing in our
arguments—time dependence of plasma properties due
to its expansion. Let us now turn to this problem.

1.3.2. Magnetic Field in Expanding Medium. So far I treated
quark-gluon plasma as a static medium. Expanding medium
temperature and hence conductivity are functions of time. In
Bjorken scenario [20], expansion is isentropic, that is, 𝑛𝑉 =

const, where 𝑛 is the particle number density and 𝑉 is plasma
volume. Since 𝑛 ∼ 𝑇

3 and at early times expansion is one-
dimensional 𝑉 ∼ 𝑡 it follows that 𝑇 ∝ 𝑡

−1/3. (Eventually,
we will consider the midrapidity region 𝑧 = 0, therefore
distinction between the proper time and 𝑡 is not essential.)
Equation (5) implies that 𝜎 ∼ 𝑡

−1/3. I will parameterize
conductivity as follows:

𝜎 (𝑡) = 𝜎

0
(

𝑡

0

𝑡

0
+ 𝑡

)

1/3

,
(24)

where I took 𝑡

0
≈ 0.5 fm to be the initial time (or longitudinal

size) of plasma evolution. Suppose that plasma lives for
10 fm/c and then undergoes phase transition to hadronic gas
at 𝑇

𝑐
. Then employing (5) we estimate 𝜎

0
≈ 16MeV. Let me

define another parameter that I will need in the forthcoming
calculation:

𝛽 =

4𝜎

0

3𝑡

0

≈ 43

MeV
fm

. (25)

Magnetic field in expanding medium is still governed
by (8). As was explained in the preceding subsection, time
evolution of magnetic field is quasi-static, which allows me
to neglect the second time derivative. Let me introduce a new
“time” variable 𝜌 as follows:

𝜌 = (

1 + 𝑡

𝑡

0

)

4/3

− 1.
(26)

Field B(𝑧, b, 𝜌) satisfies equation

∇

2B = 𝛽

𝜕B
𝜕𝜌

− 𝑒V∇ × {ẑ𝛿 [𝑧 − V𝑡 (𝜌)] 𝛿 (b)} , (27)

where

𝑡 (𝜌) = 𝑡

0
[(𝜌 + 1)

3/4

− 1] . (28)
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−
2
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Figure 4: Relaxation of magnetic field at 𝑧 = 0 in vacuum (blue), in
static conducting medium at 𝜎 = 5.8MeV (red) and at 𝜎 = 16MeV
(brown), and in the expandingmedium (green). Units of 𝐵 is fm−2

≈

2𝑚

2

𝜋
. 𝑏 = 7 fm, 𝑍 = 79 (gold nucleus), 𝛾 = 100 (RHIC).

Its solution can be written as

B (𝑧, b, 𝜌) = ∫

𝜌

0

𝑑𝜌

󸀠
∫

∞

−∞

𝑑𝑧

× ∫ 𝑑

2bG (𝑧 − 𝑧

󸀠
, b − b󸀠, 𝜌 − 𝜌

󸀠
) 𝑒V

× ∇ {ẑ𝛿 [𝑧 − V𝑡 (𝜌)] 𝛿 (b)} ,

(29)

in terms of Green’s functionG(z− 𝑧

󸀠
, b−b󸀠, 𝜌 − 𝜌

󸀠
) satisfying

∇

2
G − 𝛽

𝜕G

𝜕𝜌

= −𝛿 (𝑧 − 𝑧

󸀠
) 𝛿 (b − b󸀠) 𝛿 (𝜌 − 𝜌

󸀠
) . (30)

To solve this equation we represent G as three-dimensional
Fourier integral with respect to the space coordinates and
Laplace transform with respect to the “time” coordinate:

G (𝑧, b, 𝜌) = ∫

𝑑

3
𝑘

(2𝜋)

3
𝑒

𝑖(k
⊥
⋅b+𝑘
𝑧
𝑧)

∫

𝐶

𝑑𝜆

2𝜋𝑖

𝑒

𝜆𝜌 1

𝑘

2

⊥
+ 𝑘

2

𝑧
+ 𝛽𝜆

,

(31)

with the contour 𝐶 running parallel to the imaginary axis
to the right of all integrand singularities. Now I would like
to write the expression in the curly brackets in (29) also as
Fourier-Laplace expansion. To this end we calculate

𝑓k,𝜆 = ∫ 𝑑

2b∫

∞

−∞

𝑑𝑧

× ∫

∞

0

𝑑𝜌𝑒

−𝑖(k
⊥
⋅b+𝑘
𝑧
𝑧)

𝑒

−𝜆𝜌
𝛿 (𝑧 − V𝑡 (𝜌)) 𝛿 (b)

(32)

= ∫

∞

0

𝑑𝜌𝑒

−𝑖𝑘
𝑧
V𝑡
0
[(𝜌+1)

3/4
−1]

𝑒

−𝜆𝜌
. (33)
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Therefore,

𝑒V∇ × {ẑ𝛿 [𝑧 − V𝑡 (𝜌)] 𝛿 (b)}

= 𝑒V∫

𝑑

3
𝑘

(2𝜋)

3
𝑒

𝑖(k
⊥
⋅b+𝑘
𝑧
𝑧)

× ∫

C

𝑑𝜆

2𝜋𝑖

𝑒

𝜆𝜌
𝑖k
⊥

× ẑ𝑓k,𝜆.

(34)

Substituting (31) and (34) into (29) we obtain upon integra-
tion over the volume and time as follows:

B (𝑧, b, 𝜌) = ∫

𝑑

3
𝑘

(2𝜋)

3
𝑒

𝑖(k
⊥
⋅b+𝑘
𝑧
𝑧)

× ∫

𝐶

𝑑𝜆

2𝜋𝑖

𝑒

𝜆𝜌 𝑒V𝑖k
⊥

× ẑ
𝑘

2

⊥
+ 𝑘

2

𝑧
+ 𝛽𝜆

𝑓k,𝜆𝜃 (𝜌) ,

(35)

where 𝜃 is the step function. Taking consequent integrals over
𝜆 and 𝑘

𝑧
gives

B (0, b, 𝜌) =

𝑒V

𝛽

∫

𝑑

2
𝑘

⊥

(2𝜋)

2
𝑒

𝑖k
⊥
⋅b

∫

∞

−∞

𝑑𝑘

𝑧

2𝜋

𝑖k
⊥

× ẑ∫

𝜌

0

𝑑𝜌

󸀠
𝑒

−𝑖𝑘
𝑧
V𝑡
0
[(𝜌
󸀠
+1)
3/4

−1]

× 𝑒

−((𝑘
2

⊥
+𝑘
2

𝑧
)/𝛽)(𝜌−𝜌

󸀠
)

=

𝑒V

𝛽

∫

𝑑

2
𝑘

⊥

(2𝜋)

2
𝑒

𝑖k
⊥
⋅b 1

2𝜋

𝑖k
⊥

× ẑ∫

𝜌

0

𝑑𝜌

󸀠
𝑒

−(𝑘
2

⊥
/𝛽)(𝜌−𝜌

󸀠
)

×

√𝜋𝛽

√𝜌 − 𝜌

󸀠

𝑒

−V2𝑡2
0
𝛽[(𝜌
󸀠
+1)
3/4

−1]

2

/4(𝜌−𝜌
󸀠
)
.

(36)

Consider now 𝐵

𝑦
. Integrating over azimuthal angle 𝜙 and

then over 𝑘

⊥
as in (13), (14) yields

𝑒𝐵

𝑦
(0, b, 𝜌)

=

𝛼emV𝑏𝛽

3/2

2√𝜋

∫

𝜌

0

𝑑𝜁𝜁

−5/2

× 𝑒

−b2𝛽/4𝜁
𝑒

−V2𝑡2
0
𝛽[(𝜌−𝜁+1)

3/4
−1]
2

/4𝜁
,

(37)

where 𝜁 = 𝜌 − 𝜌

󸀠.
The results of a numerical calculation of (37) are shown

in Figure 4.We see that expansion of plasma tends to increase
the relaxation time, although this effect is rather modest. We
conclude that due to finite electrical conductivity of QGP,
magnetic field essentially freezes in the plasma for as long
as plasma exists. Similar phenomenon, known as skin effect,
exists in good conductors placed in time-varying magnetic
field: conductors expel time dependent magnetic fields from
conductor volume confining them into a thin layer of width
𝛿 ∼ 𝜔

−1/2 on the surface.

1.3.3. Diffusion of Magnetic Field in QGP. The dynamics
of magnetic field relaxation in conducting plasma can be
understood in a simple model [21]. Suppose at some initial
time 𝑡 = 0 magnetic field B(0, r) permits the plasma. The
problem is to find the time dependence of the field at 𝑡 > 0.
In this model, the field sources turn off at 𝑡 = 0 and do not
at all contribute to the field at 𝑡 > 0. Electromagnetic field is
governed by the following equations:

∇ × B = j, j = 𝜎E,

∇ × E = −

𝜕B
𝜕𝑡

, ∇ ⋅ B = 0,

(38)

that lead to the diffusion equation for B, after we neglect the
second-time derivative as discussed previously as follows:

∇

2B = 𝜎

𝜕B
𝜕𝑡

. (39)

For simplicity we treat electrical conductivity 𝜎 as constant.
Initial condition at 𝑡 = 0 reads

B (0, r) = B
0
𝑒

−b2/𝑅2
,

(40)

where theGaussian profile is chosen for illustration purposes,
and𝑅 is the nuclear radius. Solution to the problem (39), (40)
is

B (𝑡, r) = ∫ 𝑑𝑉

󸀠B (0, r󸀠)G (𝑡, r − r󸀠) , (41)

where Green’s function is

𝐺 (𝑡, r) =

1

(4𝜋𝑡/𝜎)

3/2
exp[−

r2

4𝑡/𝜎

] . (42)

Integrating over the entire volume we derive

B (𝑡, r) = B
0

𝑅

2

𝑅

2
+ 4𝑡/𝜎

exp[−

b2

𝑅

2
+ 4𝑡/𝜎

] . (43)

It follows from (43) that as long as 𝑡 ≪ 𝑡relax, where 𝑡relax is
a characteristic time 𝑡relax = 𝑅

2
𝜎/4 and magnetic field B is

approximately time independent.This estimate is the same as
the one we arrived at after (21).

In summary, magnetic field in quark-gluon plasma
appears to be extremely strong and slowly varying function
of time for most of the plasma lifetime. At RHIC it decreases
from 𝑒𝐵 ≈ (2.5𝑚

𝜋
)

2 right after the collision to 𝑒𝐵 ≈ (𝑚

𝜋
/4)

2

at 𝑡 ≈ 5 fm see Figure 4.This has a profound impact on all the
processes occurring in QGP.

1.3.4. Schwinger Mechanism. Schwinger mechanism of pair
production [3] is operative if electric field exceeds the critical
value of 𝑚

2
/𝑒, where 𝑚 is mass of lightest electrically charged

particle. Indeed, in order to excite a fermion out of the
Dirac sea, electric force 𝑒E must do work along the path 𝑑ℓ

satisfying

∫

ℓ

0

𝑒E ⋅ 𝑑ℓ
󸀠

> 2𝑚.
(44)
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If E = const, then 𝐸 ≳ 𝑚/ℓ𝑒. The maximal value of ℓ is the
fermion Compton’s wavelength ℓ ∼ 𝜆 = 1/𝑚 implying that
the minimum (or critical) value of electric field is

𝐸

𝑐
=

𝑚

2

𝑒

.
(45)

Notice that in stronger fields ℓ ∼ 𝑚/𝑒𝐸 < 𝜆. Figure 3
indicates that electron-positron pairs are certainly produced
at RHIC. An important question then is the role of these pairs
in the electromagnetic field relaxation in plasma. There are
two associated effects: (i) before 𝑒

−
𝑒

+ pairs thermalize, they
contribute to the Foucault currents; (ii) after they thermalize,
their density contributes to the polarization of plasma in
electric field and hence to its conductivity.

Since space dimensions of QGP are much less than 𝜆

𝑒
=

380 fm, it may seem inevitable that space dependence of
electric field (in addition to its time dependence) has a
significant impact on the Schwinger process in heavy-ion
collisions. However, this conclusion is premature. Indeed,
suppose that electric field is a slow function of coordinates.
Then E(r) ≈ E(0) + r ⋅ ∇E(0). Work done by electric field is

∫

ℓ

0

𝑒E (0) ⋅ 𝑑ℓ
󸀠
+ ∫

ℓ

0

(r ⋅ ∇) 𝑒E (0) ⋅ 𝑑ℓ
󸀠

∼ 𝑒𝐸ℓ +

𝑒ℓ

2
𝐸 (0)

𝜆

,

(46)

where 𝜆 is length scale describing space variation of electric
field. In order that contribution of space variation to work be
negligible, the second term in the r.h.s. of (46) must satisfy
𝑒ℓ

2
𝐸(0)/𝜆 ≪ 𝑚. Employing the estimate ℓ ∼ 𝑚/𝑒𝐸(0) that

we obtained after (45) implies 𝑚/𝑒𝐸(0)𝜆 ≪ 1. Following [22]
I define the inhomogeneity parameter

𝛾 =

𝑚

𝜆𝑒𝐸

(47)

that describes the effect of spatial variation of electric field on
the pair production rate. For electrons 𝑚 = 0.5MeV in QGP
𝜆 ∼ 0.5 fm at 𝑒𝐸 ∼ 𝑚

2

𝜋
we have 𝛾 ∼ 0.01.Therefore, somewhat

counter intuitively, electric field can be considered as spatially
homogeneous. The same conclusion can be derived from
results of [23]. Schwinger mechanism in spatially dependent
electric fields was also discussed in [24, 25].

In view of smallness of 𝛾 one can employ the extensive
literature on Schwinger effect in time-dependent spatially-
homogeneous electric fields. As far as heavy-ion physics is
concerned, the most comprehensive study has been done in
[6, 26, 27] who developed an approach to include the effect
of backreaction. They argued that time evolution of electric
field can be studied in adiabatic approximation and used the
kinetic approach to study the time evolution. Their results
are exhibited in Figure 5. Similar results were obtained in
[28]. We observe that response time of the current density
of Schwinger pairs ∼104 fm/c is much larger than the plasma
lifetime ∼10 fm/c, and therefore no sizable electric current is
generated.

In summary, strong electric field is generated in heavy-ion
collisions in every event but averages to zero in a large event
ensemble. This field exceeds the critical value for electrons
and light 𝑢, 𝑑 quarks. However, during the plasma lifetime no
significant current of Schwinger pairs is generated.

2. Flow of Quark-Gluon Plasma in
Strong Magnetic Field

2.1. Azimuthal Asymmetry. Magnetic field is known to have
a profound influence on kinetic properties of plasmas. Once
the spherical symmetry is broken, distribution of particles
in plasma is only axially symmetric with respect to the
magnetic field direction. This symmetry, however, is not
manifest in the plane span by magnetic field and the impact
parameter vectors, namely, 𝑥𝑦-plane in Figure 1. Charged
particles moving along the magnetic field direction 𝑦 are
not influenced by the magnetic Lorentz force, while those
moving the 𝑥𝑧-plane (i.e., the reaction plane) are affected
the most. The result is azimuthally anisotropic flow of
expanding plasma in the 𝑥𝑦-plane even when initial plasma
geometry is completely spherically symmetric. The effect of
weak magnetic field on quark-gluon plasma flow was first
considered in [29] who argued that magnetic field is able to
enhance the azimuthal anisotropy of produced particles up
to 30%.This conclusion was reached by utilizing a solution of
themagnetohydrodynamic equations in weakmagnetic field.

A characteristic feature of the viscous pressure tensor in
magnetic field is its azimuthal anisotropy. This anisotropy
is the result of suppression of the momentum transfer in
QGP in the direction perpendicular to the magnetic field.
Its macroscopic manifestation is decrease of the viscous
pressure tensor components in the plane perpendicular to
themagnetic field, which coincides with the reaction plane in
the heavy-ion phenomenology. Since Lorentz force vanishes
in the direction parallel to the field, viscosity along that
direction is not affected at all. In fact, the viscous pressure
tensor component in the reaction plane is twice as small as
the one in the field direction. As the result, transverse flow
of QGP develops azimuthal anisotropy in presence of the
magnetic field. Clearly, this anisotropy is completely different
from the one generated by the anisotropic pressure gradients
and exists even if the later is absent. In fact, because spherical
symmetry in magnetic field is broken, viscous effects in
plasma cannot be described by only two parameters: shear
𝜂 and bulk viscosity 𝜁. Rather the viscous pressure tensor
of magnetoactive plasma is characterized by seven viscosity
coefficients, among which five are shear viscosities and two
are bulk ones.

2.2. Viscous Pressure in Strong Magnetic Field

2.2.1. Viscosities fromKinetic Equation. Generally, calculation
of the viscosities requires knowledge of the strong interaction
dynamics of the QGP components. However, in strong
magnetic field these interactions can be considered as a
perturbation, and viscosities can be analytically calculated
using the kinetic equation [30–33]. To apply this approach to
QGP in strong magnetic field we start with kinetic equation
for the distribution function 𝑓 of a quark flavor of charge 𝑧𝑒

as follows:

𝑝

𝜇
𝜕

𝜇
𝑓 = 𝑧𝑒𝐵

𝜇] 𝜕𝑓

𝜕𝑢

𝜇
𝑢] + C [𝑓, . . .] ,

(48)
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Figure 5: Time dependence of electric field due to the Schwinger mechanism back reaction and the corresponding electric current density
of Schwinger pairs. Dimensionless time variable is defined as 𝜏 = 𝑡/𝜆. For electrons 𝜆 = 380 fm. Plasma undergoes phase transition at about
𝜏 = 1/38. Adapted from [6].

where C is the collision integral and 𝐵

𝜇] is the electromag-
netic tensor, which contains only magnetic field components
in the laboratory frame. Ellipsis in the argument of C
indicates the distribution functions of other quark flavors and
gluons (I will omit them in the following). The equilibrium
distribution reads

𝑓

0
=

𝜌

4𝜋𝑚

3
𝑇𝐾

2
(𝛽𝑚)

𝑒

−𝛽𝑝⋅𝑈(𝑥)
, (49)

where 𝑈(𝑥) is the macroscopic velocity of the fluid, 𝑝

𝜇
=

𝑚𝑢

𝜇 is particle momentum, 𝛽 = 1/𝑇, and 𝜌 is the mass
density. Since (𝜕𝑓

0
/𝜕𝑢

𝜇
) ∝ 𝑢

𝜇
, the first term on the r.h.s. of

(48) as well as the collision integral vanishes in equilibrium.
Therefore, we can write the kinetic equation as an equation
for 𝛿𝑓:

𝑝

𝜇
𝜕

𝜇
𝑓

0
= 𝑧𝑒𝐵

𝜇] 𝜕 (𝛿𝑓)

𝜕𝑢

𝜇
𝑢] + C [𝛿𝑓] ,

(50)

where 𝛿𝑓 is a deviation from equilibrium.Differentiating (49)
we find

𝜕

𝜇
𝑓

0
= −𝑓

0

1

𝑇

𝑝

𝜆
𝜕

𝜇
𝑈

𝜆
(𝑥) . (51)

Since𝑈

𝜆
= (𝛾

𝑉
, 𝛾

𝑉
V) and𝑝

𝜆
= (𝜀, p) = (𝛾V𝑚, 𝛾V𝑚k) it follows

that

𝑝 ⋅ 𝑈 =

𝑚

√
1 − V2√1 − 𝑉

2
(1 − k ⋅ V) . (52)

Thus, in the comoving frame

𝜕

𝜇
𝑓

0

󵄨

󵄨

󵄨

󵄨

󵄨V=0 = 𝑓

0

1

𝑇

𝑝]𝜕𝜇𝑉

]
. (53)

Substituting (53) in (50) yields

−

𝑓

0

𝑇

𝑝

𝜇
𝑝

]
𝑉

𝜇] = 𝑧𝑒𝐵

𝜇] 𝜕 (𝛿𝑓)

𝜕𝑢

𝜇
𝑢] + C [𝛿𝑓] ,

(54)

where I defined

𝑉

𝜇] =

1

2

(𝜕

𝜇
𝑉] + 𝜕]𝑉𝜇) . (55)

and used 𝑢

𝜇
𝑢

]
𝜕

𝜇
𝑉] = 𝑢

𝜇
𝑢

]
𝑉

𝜇].
Since the time derivative of 𝑓

0
is irrelevant for the

calculation of the viscosity I will drop it from the kinetic
equation. All indices thus become the usual three-vector
ones. To avoid confusion we will label them by the Greek
letters from the beginning of the alphabet. Introducing 𝑏

𝛼𝛽
=

𝐵

−1
𝜀

𝛼𝛽𝛾
𝐵

𝛾
, we cast (54) in the form

1

𝑇

𝑝

𝛼
𝑢

𝛽
𝑉

𝛼𝛽
𝑓

0
= −𝑧𝑒𝐵𝑏

𝛼𝛽
V
𝛽

𝜕 (𝛿𝑓)

𝜕V
𝛼

1

𝜀

− C [𝛿𝑓] . (56)

The viscous pressure generated by a deviation from
equilibrium is given by the tensor

−Π

𝛼𝛽
= ∫ 𝑝

𝛼
𝑝

𝛽
𝛿𝑓

𝑑

3
𝑝

𝜀

.
(57)

Effectively it can be parameterized in terms of the viscosity
coefficients as follows (we neglect the bulk viscosities):

Π

𝛼𝛽
=

4

∑

𝑛=0

𝜂

𝑛
𝑉

(𝑛)

𝛼𝛽
, (58)
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where the linearly independent tensors 𝑉

(𝑛)

𝛼𝛽
are given by

𝑉

(0)

𝛼𝛽
= (3𝑏

𝛼
𝑏

𝛽
− 𝛿

𝛼𝛽
) (𝑏

𝛾
𝑏

𝛿
𝑉

𝛾𝛿
−

1

3

∇ ⋅ V) , (59a)

𝑉

(1)

𝛼𝛽
= 2𝑉

𝛼𝛽
+ 𝛿

𝛼𝛽
𝑉

𝛾𝛿
𝑏

𝛾
𝑏

𝛿
− 2𝑉

𝛼𝛾
𝑏

𝛾
𝑏

𝛽
− 2𝑉

𝛽𝛾
𝑏

𝛾
𝑏

𝛼

+ (𝑏

𝛼
𝑏

𝛽
− 𝛿

𝛼𝛽
) ∇ ⋅ V + 𝑏

𝛼
𝑏

𝛽
𝑉

𝛾𝛿
𝑏

𝛾
𝑏

𝛿
,

(59b)

𝑉

(2)

𝛼𝛽
= 2 (𝑉

𝛼𝛾
𝑏

𝛽𝛾
+ 𝑉

𝛽𝛾
𝑏

𝛼𝛾
− 𝑉

𝛾𝛿
𝑏

𝛼𝛾
𝑏

𝛽
𝑏

𝛿
) , (59c)

𝑉

(3)

𝛼𝛽
= 𝑉

𝛼𝛾
𝑏

𝛽𝛾
+ 𝑉

𝛽𝛾
𝑏

𝛼𝛾
− 𝑉

𝛾𝛿
𝑏

𝛼𝛿
𝑏

𝛼𝛾
𝑏

𝛽
𝑏

𝛿
− 𝑉

𝛾𝛿
𝑏

𝛽𝛾
𝑏

𝛼
𝑏

𝛿
,

(59d)

𝑉

(4)

𝛼𝛽
= 2 (𝑉

𝛾𝛿
𝑏

𝛼𝛿
𝑏

𝛼𝛾
𝑏

𝛽
𝑏

𝛿
+ 𝑉

𝛾𝛿
𝑏

𝛽𝛾
𝑏

𝛼
𝑏

𝛿
) . (59e)

Here 𝑏

𝛼
is a unit vector in the direction of magnetic field. For

the calculation of the shear viscosities 𝜂

𝑛
, 𝑛 = 0, . . . , 4 we can

set ∇ ⋅ V = 0 and 𝑉

𝛼𝛽
𝑏

𝛼
𝑏

𝛽
= 0.

Let us expand 𝛿𝑓 to the second order in velocities in terms
of the tensors 𝑉

(𝑛)

𝛼𝛽
as follows:

𝛿𝑓 =

4

∑

𝑛=0

𝑔

𝑛
𝑉

(𝑛)

𝛼𝛽
V
𝛼
V
𝛽
. (60)

Then, substituting (60) into (58) and requiring consistency of
(57) and (58) yield

𝜂

𝑛
= −

2

15

∫ 𝜀V
4
𝑔

𝑛
𝑑

3
𝑝. (61)

This gives the viscosities in the magnetic field in terms of
the deviation of the distribution function from equilibrium.
Transition to the nonrelativistic limit in (61) is achieved by
the replacement 𝜀 → 𝑚 [30].

2.2.2. Collisionless Plasma. In strong magnetic field we can
determine 𝑔

𝑛
by the method of consecutive approximations.

Writing 𝛿𝑓 = 𝛿𝑓

(1)
+ 𝛿𝑓

(2) and substituting into (56), we find

1

𝑇

𝑝

𝛼
V
𝛽
𝑉

𝛼𝛽
𝑓

0
= −𝑧𝑒𝐵𝑏

𝛼𝛽
V
𝛽

𝜕 (𝛿𝑓

(1)
+ 𝛿𝑓

(2)
)

𝜕V
𝛼

1

𝜀

+ C [𝛿𝑓

(1)
] .

(62)

Here I assumed that the deviation from equilibrium due to
the strong magnetic field is much larger than due to the
particle collisions. The explicit form of C is determined by
the strong interaction dynamicsbut drops off the equation
in the leading oder. The first correction to the equilibrium
distribution obeys the equation

1

𝑇

𝑝

𝛼
V
𝛽
𝑉

𝛼𝛽
𝑓

0
= −𝑧𝑒𝐵𝑏

𝛼𝛽
V
𝛽

𝜕𝛿𝑓

(1)

𝜕V
𝛼

1

𝜀

.
(63)

Using (60), we get

𝑏

𝛼𝛽
V
𝛽

𝜕𝛿𝑓

(1)

𝜕V
𝛼

= 2𝑏

𝛼𝛽
V
𝛽

4

∑

𝑛=0

𝑔

𝑛
𝑉

(𝑛)

𝛼𝛾
V
𝛾
. (64)

Substituting (64) into (63) and using (59a), (59b), (59c),
(59d), and (59e) yield

𝜀

𝑇𝑧𝑒𝐵

𝑝

𝛼
V
𝛽
𝑉

𝛼𝛽
𝑓

0
= − 2𝑏

𝛽]V𝛼V]

× [𝑔

1
(2𝑉

𝛼𝛽
− 2𝑉

𝛽𝛾
𝑏

𝛾
𝑏

𝛼
) + 2𝑔

2
𝑉

𝛽𝛾
𝑏

𝛾
𝑏

𝛼

+ 𝑔

3
(𝑉

𝛼𝛾
𝑏

𝛽𝛾
+ 𝑉

𝛽𝛾
𝑏

𝛼𝛾
− 𝑉

𝛾𝛿
𝑏

𝛼
𝑏

𝛿
)

+2𝑔

4
𝑉

𝛾𝛿
𝑏

𝛽𝛾
𝑏

𝛼
𝑏

𝛿
] ,

(65)

where I used the following identities 𝑏

𝛼𝛽
𝑏

𝛼
= 𝑏

𝛼𝛽
𝑏

𝛽
=

𝑏

𝛼𝛽
V
𝛼
V
𝛽

= 0. Clearly, (65) is satisfied only if 𝑔

1
= 𝑔

2
= 0.

Concerning the other two coefficients, we use the identities

𝑏

𝛼𝛽
𝑏

𝛽𝛾
= 𝑏

𝛾
𝑏

𝛼
− 𝛿

𝛼𝛾
𝑏

2
, (66a)

𝜀

𝛼𝛽𝛾
𝜀

𝛿𝜖𝜁
= 𝛿

𝛼𝛿
(𝛿

𝛽𝜖
𝛿

𝛾𝜁
− 𝛿

𝛽𝜁
𝛿

𝛾𝜖
) − 𝛿

𝛼𝜖
(𝛿

𝛽𝛿
𝛿

𝛾𝜁
− 𝛿

𝛽𝜁
𝛿

𝛾𝛿
)

+ 𝛿

𝛼𝜁
(𝛿

𝛽𝛿
𝛿

𝛾𝜖
− 𝛿

𝛽𝜁
𝛿

𝛾𝛿
)

(66b)

that we substitute into (65) to derive

−

𝜀

2𝑇𝑧𝑒𝐵

𝑝

𝛼
V
𝛽
𝑉

𝛼𝛽
𝑓

0
= 𝑔

3
[2𝑉

𝛼𝛽
𝑏

𝛼
𝑏

𝛽
− 4𝑉

𝛼𝛽
V
𝛼
𝑏

𝛽
(b ⋅ k)]

+ 2𝑔

4
𝑉

𝛼𝛽
V
𝛼
𝑏

𝛽
(b ⋅ k) .

(67)

Since 𝑝

𝛼
= 𝜀V

𝛼
, we obtain

𝑔

3
=

𝑔

4

2

= −

𝜀

2
𝑓

0

4𝑇𝑧𝑒𝐵

.
(68)

Using (49), (68) in (61) in the comoving frame (of course 𝜂

𝑛
s

do not depend on the frame choice) and integrating using
3.547.9 of [34], we derive [35]

𝜂

3
=

𝐾

3
(𝛽𝑚)

𝐾

2
(𝛽𝑚)

𝜌𝑇

2𝑧𝑒𝐵

. (69)

The nonrelativistic limit corresponds to 𝑚 ≫ 𝑇 in which case
we get

𝜂

NR
3

=

𝜌𝑇

2𝑧𝑒𝐵

. (70)

In the opposite ultrarelativistic case 𝑚 ≪ 𝑇 (high-
temperature plasma)

𝜂

UR
3

=

2𝑛𝑇

2

𝑧𝑒𝐵

,
(71)

where 𝑛 = 𝜌/𝑚 is the number density.

2.2.3. Contribution of Collisions. In the relaxation-time
approximation we can write the collision integral as

C [𝛿𝑓] = −]𝛿𝑓, (72)



10 Advances in High Energy Physics

where ] is an effective collision rate. Strong field limit means
that

𝜔

𝐵
≫ ], (73)

where 𝜔

𝐵
= 𝑧𝑒𝐵/𝜀 is the synchrotron frequency. Whether ]

itself is function of the field depends on the relation between
the Larmor radius 𝑟

𝐵
= V

𝑇
/𝜔

𝐵
, where V

𝑇
is the particle

velocity in the plane orthogonal to B and the Debye radius
𝑟

𝐷
. If

𝑟

𝐵
≫ 𝑟

𝐷
, (74)

then the effect of the field on the collision rate ] can be
neglected [30]. Assuming that (74) is satisfied, the collision
rate reads

] = 𝑛V𝜎
𝑡
, (75)

where 𝜎

𝑡
is the transport cross-section, which is a function

of the saturation momentum 𝑄

𝑠
[36, 37]. We estimate 𝜎

𝑡
∼

𝛼

2

𝑠
/𝑄

2

𝑠
, with 𝑄

𝑠
∼ 1GeV and 𝑛 = 𝑃/𝑇 with pressure

𝛼

2

𝑠
𝑃 ∼ 1GeV/fm3; we get ] ∼ 40MeV. Inequality (73) is

well satisfied since 𝑒𝐵 ≃ 𝑚

2

𝜋
[5, 11], and 𝑚 is in the range

between the current and the constituent quarkmasses.On the
other hand, applicability of the condition (74) ismarginal and
is very sensitive to the interaction details. In this section we
assume that (74) holds in order to obtain the analytic solution.
Additionally, the general condition for the applicability of
the hydrodynamic approach ℓ = 1/] ≪ 𝐿, where ℓ is the
mean free path and 𝐿 is the plasma size is assumed to hold.
Altogether we have 𝑟

𝐷
≪ 𝑟

𝐵
≪ ℓ ≪ 𝐿.

Equation for the second correction to the equilibrium
distribution 𝛿𝑓

(2) follows from (62) after substitution (72)

𝑧𝑒𝐵

𝜀

𝑏

𝛼𝛽
V
𝛽

𝜕𝛿𝑓

(2)

𝜕V
𝛼

= −]𝛿𝑓

(1)
.

(76)

Now, plugging

𝛿𝑓

(1)
= [𝑔

3
𝑉

(3)

𝛼𝛽
+ 𝑔

4
𝑉

(4)

𝛼𝛽
] V

𝛼
V
𝛽
, (77a)

𝛿𝑓

(2)
= [𝑔

1
𝑉

(1)

𝛼𝛽
+ 𝑔

2
𝑉

(2)

𝛼𝛽
] V

𝛼
V
𝛽
, (77b)

into (76) yields

2𝑧𝑒𝐵

𝜀

{𝑔

1
[2𝑉

𝛽𝛼
𝑏

𝛼𝛾
V
𝛽
V
𝛾

− 2𝑉

𝛽𝛼
𝑏

𝛼𝛾
V
𝛽
V
𝛾

(k ⋅ b)]

+2𝑔

2
𝑉

𝛽𝛼
𝑏

𝛼𝛾
V
𝛽
V
𝛾

(k ⋅ b)}

= −]𝑔

3
{−2𝑉

𝛽𝛼
𝑏

𝛼𝛾
V
𝛽
V
𝛾

− 6𝑉

𝛽𝛼
𝑏

𝛼𝛾
V
𝛽
V
𝛾

(k ⋅ b)} ,

(78)

where I used 𝑔

4
= 2𝑔

3
. It follows that

𝑔

1
=

𝑔

2

4

=

]𝛾V𝑔3

2𝜔

𝐵

. (79)

With the help of (80), (49), and (65) we obtain [35]

𝜂

1
=

𝜂

2

4

=

8

5
√

2𝜋

𝜌

2
𝜎

𝑡
𝑇

3/2

(𝑧𝑒𝐵)

2
𝑚

1/2

𝐾

7/2
(𝛽𝑚)

𝐾

2
(𝛽𝑚)

. (80)

2.3. Azimuthal Asymmetry of Transverse Flow: A Simple
Model. To illustrate the effect of the magnetic field on the
viscous flow of the electrically charged component of the
quark-gluon plasma I will assume that the flow is non-
relativistic and use the Navier-Stokes equations that read

𝜌 (

𝜕𝑉

𝛼

𝜕𝑡

+ 𝑉

𝛽

𝜕𝑉

𝛼

𝜕𝑥

𝛽

) = −

𝜕𝑃

𝜕𝑥

𝛼

+

𝜕Π

𝛼𝛽

𝜕𝑥

𝛽

, (81)

where Π

𝛼𝛽
is the viscous pressure tensor, 𝜌 = 𝑚𝑛 is mass

density, and 𝑃 is pressure. I will additionally assume that the
flow is nonturbulent and that the plasma is non-compressible.
The former assumption amounts to dropping the terms non-
linear in velocity, while the later implies vanishing divergence
of velocity

∇ ⋅ V = 0. (82)

Because of the approximate boost invariance of the heavy-
ion collisions, we can restrict our attention to the two dimen-
sional flow in the 𝑥𝑦-plane corresponding to the central
rapidity region.

The viscous pressure tensor in vanishing magnetic field is
isotropic in the 𝑥𝑦-plane and is given by

Π

0

𝛼𝛽
= 𝜂 (

𝜕𝑉

𝛼

𝜕𝑥

𝛽

+

𝜕𝑉

𝛽

𝜕𝑥

𝛼

) = 2𝜂 (

𝑉

𝑥𝑥
𝑉

𝑥𝑦

𝑉

𝑦𝑥
𝑉

𝑦𝑦

) , (83)

where the superscript 0 indicates absence of the magnetic
field. In the opposite case of very strong magnetic field the
viscous pressure tensor has a different form (58). Neglecting
all 𝜂

𝑛
with 𝑛 ≥ 1, we can write

Π

∞

𝛼𝛽
= 𝜂

0
(

−𝑉

𝑦𝑦
0

0 2𝑉

𝑦𝑦

) = 2𝜂

0
(

1

2

𝑉

𝑥𝑥
0

0 𝑉

𝑦𝑦

) , (84)

where we also used (82). Notice that Π

∞

𝑥𝑥
= (1/2)Π

∞

𝑦𝑦
=

(1/2)Π

0

𝑥𝑥
indicating that the plasma flows in the direction

perpendicular to the magnetic field with twice as small
viscosity as in the direction of the field. The later is not
affected by the field at all, because the Lorentz force vanishes
in the field direction. Substituting (84) into (81) we derive the
following two equations characterizing the plasma velocity in
the strong magnetic field [35]:

𝜌

𝜕𝑉

𝑥

𝜕𝑡

= −

𝜕𝑃

𝜕𝑥

+ 𝜂

0

𝜕

2
𝑉

𝑥

𝜕𝑥

2
, 𝜌

𝜕𝑉

𝑦

𝜕𝑡

= −

𝜕𝑃

𝜕𝑦

+ 2𝜂

0

𝜕

2
𝑉

𝑦

𝜕𝑦

2
.

(85)

Additionally, we need to set the initial conditions

𝑉

𝑥

󵄨

󵄨

󵄨

󵄨𝑡=0
= 𝜑

1
(𝑥, 𝑦) , 𝑉

𝑦

󵄨

󵄨

󵄨

󵄨

󵄨𝑡=0
= 𝜑

2
(𝑥, 𝑦) . (86)



Advances in High Energy Physics 11

The solution to the the problem (85), (86) is

𝑉

𝑥
(𝑥, 𝑦, 𝑡)

= ∫

∞

−∞

𝑑𝑥

󸀠
𝜑

1
(𝑥

󸀠
, 𝑦) 𝐺

1/2
(𝑥 − 𝑥

󸀠
, 𝑡)

−

1

𝜌

∫

𝑡

0

𝑑𝑡

󸀠
∫

∞

−∞

𝑑𝑥

󸀠
𝐺

1/2
(𝑥 − 𝑥

󸀠
, 𝑡 − 𝑡

󸀠
)

𝜕𝑃 (𝑥

󸀠
, 𝑦, 𝑡

󸀠
)

𝜕𝑥

󸀠
,

(87a)

𝑉

𝑦
(𝑥, 𝑦, 𝑡)

= ∫

∞

−∞

𝑑𝑦

󸀠
𝜑

2
(x, 𝑦

󸀠
) 𝐺

1
(𝑦 − 𝑦

󸀠
, 𝑡)

−

1

𝜌

∫

𝑡

0

𝑑𝑡

󸀠
∫

∞

−∞

𝑑𝑦

󸀠
𝐺

1
(𝑦 − 𝑦

󸀠
, 𝑡 − 𝑡

󸀠
)

𝜕𝑃 (𝑥, 𝑦

󸀠
, 𝑡

󸀠
)

𝜕𝑦

󸀠
.

(87b)

Here Green’s function is given by

𝐺

𝑘
(𝑦, 𝑡) =

1

√
4𝜋𝑎

2
𝑘𝑡

𝑒

−𝑦
2
/4𝑎
2
𝑘𝑡 (88)

and the diffusion coefficient by

𝑎

2
=

2𝜂

0

𝜌

. (89)

Suppose that the pressure is isotropic; that is, it depends
on the coordinates 𝑥,𝑦 only via the radial coordinate 𝑟 =

√𝑥

2
+ 𝑦

2; accordingly we pass from the integration variables
𝑥

󸀠 and 𝑦

󸀠 to 𝑟

󸀠 in (87a) and (87b) correspondingly. At later
times we can expand Green’s function (88) in inverse powers
of 𝑡. The first terms in the r.h.s. of (87a) and (87b) are
subleading, and we obtain

𝑉

𝑥
(𝑥, 𝑦, 𝑡)

≈ −

1

𝜌

∫

𝑡

0

𝑑𝑠 ∫

∞

−∞

𝑑𝑟

1

√
2𝜋𝑎

2
𝑠

𝜕𝑃 (𝑟, 𝑡 − 𝑠)

𝜕𝑟

= −

1

𝜌

∫

𝑡

0

𝑑𝑠

1

√
2𝜋𝑎

2
𝑠

[𝑃 (𝑅 (𝑠) , 𝑡 − 𝑠) − 𝑃 (0, 𝑡 − 𝑠)] ,

(90a)

and by the same token

𝑉

𝑦
(𝑥, 𝑦, 𝑡)

≈ −

1

𝜌

∫

𝑡

0

𝑑𝑠

1

√
4𝜋𝑎

2
𝑠

[𝑃 (𝑅 (𝑠) , 𝑡 − 𝑠) − 𝑃 (0, 𝑡 − 𝑠)] ,

(90b)

where 𝑅(𝑡) denotes the boundary beyond which the density
of the plasma is below the critical value. We observe that
𝑉

𝑥
/𝑉y =

√
2. Consequently, the azimuthal anisotropy of the

hydrodynamic flow is [35]

𝑉

2

𝑥
− 𝑉

2

𝑦

𝑉

2

𝑥
+ 𝑉

2

𝑦

=

1 − (1/2)

1 + (1/2)

=

1

3

. (91)

Since I assumed that the initial conditions and the pressure
are isotropic, the azimuthal asymmetry (91) is generated
exclusively by the magnetic field.

We see that at later times after the heavy-ion collision,
flow velocity is proportional to 𝜂

−1/2

0
, where 𝜂

0
is the finite

shear viscosity coefficient; see (87a) and (87b). If the system is
such that in absence of the magnetic field it were azimuthally
symmetric, then the magnetic field induces azimuthal asym-
metry of 1/3; see (91).The effect of themagnetic field on flow is
strong and must be taken into account in phenomenological
applications. Neglect of the contribution by themagnetic field
leads to underestimation of the phenomenological value of
viscosity extracted from the data [38–40]. In other words,
the more viscous QGP in magnetic field produces the same
azimuthal anisotropy as a less viscous QGP in vacuum.

A model that I considered in this section to illustrate
the effect of the magnetic field on the azimuthal anisotropy
of a viscous fluid flow does not take into account many
important features of a realistic heavy-ion collision. To be
sure, a comprehensive approach must involve numerical
solution of the relativistic magnetohydrodynamic equations
with a realistic geometry. A potentially important effect that I
have not considered here is plasma instabilities [41, 42], which
warrant further investigation.

The structure of the viscous stress tensor in very strong
magnetic field (84) is general, model independent. However,
as explained, the precise amount of the azimuthal anisotropy
that it generates cannot be determined without taking into
account many important effects. Even so, I draw the reader’s
attention to the fact that analysis of [29] using quite different
arguments arrived at similar conclusion. Although a more
quantitive numerical calculation is certainly required before
a final conclusion can be made, it looks very plausible that
the QGP viscosity is significantly higher than the presently
accepted value extracted without taking into account the
magnetic field effect [38–40] and is perhaps closer to the value
calculated using the perturbative theory [43, 44].

3. Energy Loss and Polarization due to
Synchrotron Radiation

3.1. Radiation of Fast Quark in Magnetic Field. General
problem of charged fermion radiation in external magnetic
field was solved in [45–47]. It has important applications
in collider physics; see, for example, [48, 49]. In heavy-ion
phenomenology, synchrotron radiation provides one of the
mechanisms of energy loss in quark-gluon plasma, which is
an important probe of QGP [50, 51] (synchrotron radiation
in chromo-magnetic fields was discussed in [52–54]).

A typical diagram contributing to the synchrotron radia-
tion, that is, radiation in external magnetic field, by a quark
is shown in Figure 6 [21]. This diagram is proportional to
(𝑒𝐵)

𝑛, where 𝑛 is the number of external field lines. In strong
field, powers of 𝑒𝐵 must be summed up, which may be
accomplished by exactly solving the Dirac equation for the
relativistic fermion and then calculating the matrix element
for the transition 𝑞 → 𝑞 + 𝑔. Such calculation has been done
in QED for some special cases including the homogeneous
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𝑔

𝑞

· · ·

𝛾

B

Figure 6: A typical diagram contributing to the synchrotron
radiation by a quark.

constant field and can be readily generalized for gluon
radiation. Intensity of the radiation can be expressed via the
invariant parameter 𝜒 defined as

𝜒

2
= −

𝛼em𝑍

2

𝑞
ℎ

3

𝑚

6
(𝐹

𝜇]𝑝
]
)

2

=

𝛼em𝑍

2

𝑞
ℎ

3

𝑚

6
(p × B)

2
,

(92)

where the initial quark 4-momentum is 𝑝

𝜇
= (𝜀, p) and 𝑍

𝑞
is

the quark charge in units of the absolute value of the electron
charge 𝑒. At high energies,

𝜒 ≈

𝑍

𝑞
𝐵𝜀

𝐵

𝑐
𝑚

. (93)

The regime of weak fields corresponds to 𝜒 ≪ 1, while in
strong fields 𝜒 ≫ 1. In our case, 𝑒𝐵/𝑒𝐵

𝑐
≈ (𝑚

𝜋
/𝑚

𝑢
)

2
≫ 1

(at RHIC), and therefore 𝜒 ≫ 1. In terms of 𝜒, spectrum of
radiated gluons of frequency 𝜔 can be written as [45]

𝑑𝐼

𝑑𝜔

= − 𝛼

𝑠
𝐶

𝐹

𝑚

2
𝜔

𝜀

2

× {∫

∞

𝑥

Ai (𝜉) 𝑑𝜉 + (

2

𝑥

+

𝜔

𝜀

𝜒 𝑥

1/2
)Ai󸀠 (𝑥)} ,

(94)

where 𝐼 is the intensity

𝑥 = (

ℎ𝜔

𝜀

󸀠
𝜒

)

2/3

, (95)

and 𝜀

󸀠 is quark’s energy in the final state. Ai is the Ayri
function. Equation (94) is valid under the assumption that
the initial quark remains ultrarelativistic, which implies that
the energy loss due to the synchrotron radiationΔ𝜀 should be
small compared to the quark energy itself Δ𝜀 ≪ 𝜀.

Energy loss by a relativistic quark per unit length is given
by [48]

𝑑𝜀

𝑑𝑙

= − ∫

∞

0

𝑑𝜔

𝑑𝐼

𝑑𝜔

= 𝛼

𝑠
𝐶

𝐹

𝑚

2
𝜒

2

2

∫

∞

0

4 + 5𝜒𝑥

3/2
+ 4𝜒

2
𝑥

3

(1 + 𝜒𝑥

3/2
)

4
Ai󸀠 (𝑥) 𝑥 𝑑𝑥.

(96)
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𝐴
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𝑦
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𝜃
𝜑

𝜂
=
0

𝐵

p p⊥

b

Figure 7: Geometry of a heavy-ion collision. p denotes momentum
of a fast quark. Two orthogonal planes are the reaction plane span by
the initial heavy-ion momenta and the mid rapidity plane 𝜃 = 𝜋/2,
which is labeled as 𝜂 = 0.

In two interesting limits, energy loss behaves quite differently.
At 𝜂 = 𝜑 = 0 we have [48]

𝑑𝜀

𝑑𝑙

= −

2𝛼

𝑠
ℎ𝐶

𝐹
(𝑍

𝑞
𝑒𝐵)

2

𝜀

2

3𝑚

4
, 𝜒 ≪ 1,

(97a)

𝑑𝜀

𝑑𝑙

= −0.37𝛼

𝑠
ℎ

−1/3
𝐶

𝐹
(𝑍

𝑞
𝑒𝐵 𝜀)

2/3

, 𝜒 ≫ 1. (97b)

In the strong field limit energy loss is independent of the
quark mass, whereas in the weak field case it decreases as
𝑚

−4. Since 𝜒 ∝ ℎ, limit of 𝜒 ≪ 1 corresponds to the classical
energy loss.

To apply this result to heavy-ion collisions we need to
write down the invariant 𝜒 in a suitable kinematic variables.
The geometry of a heavy-ion collision is depicted in Figure 7.
Magnetic field B is orthogonal to the reaction plane span by
the impact parameter vector b and the collision axis (𝑧-axis).
For a quark of momentum p we define the polar angle 𝜃 with
respect to the 𝑧-axis and azimuthal angle 𝜑 with respect to
the reaction plane. In this notation, B = 𝐵ŷ and p = 𝑝

𝑧
ẑ +

𝑝

⊥
(x̂ cos𝜑 + ŷ sin𝜑), where 𝑝

⊥
= |p| sin 𝜃 ≈ 𝜀 sin 𝜃. Thus,

(B × p)

2
= 𝐵

2
(𝑝

2

𝑧
+ 𝑝

2

⊥
cos2𝜑). Conventionally, one expresses

the longitudinal momentum and energy using the rapidity 𝜂

as 𝜀 = 𝑚

⊥
cosh 𝜂 and 𝑝

𝑧
= 𝑚

⊥
sinh 𝜂, where 𝑚

2

⊥
= 𝑚

2
+ 𝑝

2

⊥
.

We have

𝜒

2
=

ℎ

2
(𝑒𝐵)

2

𝑚

6
𝑝

2

⊥
(sinh2𝜂 + cos2𝜑) .

(98)

In Figure 8 a numerical calculation of the energy loss per
unit length in a constant magnetic field using (96) and (98)
is shown [21]. We see that energy loss of a 𝑢 quark with
𝑝

⊥
= 10GeV is about 0.2GeV/fm at RHIC and 1.3 GeV/fm at

LHC.This corresponds to the loss of 10% and 65% of its initial
energy after traveling 5 fm at RHIC and LHC, respectively.
Therefore, energy loss due to the synchrotron radiation at
LHC gives a phenomenologically important contribution to
the total energy loss.
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Figure 8: Energy loss per unit length by quarks moving in constant external magnetic field as a function of (a) 𝑝

𝑇
at RHIC at 𝜂 = 𝜑 = 0, (b)

𝑝

𝑇
at LHC at 𝜂 = 𝜑 = 0, (c) azimuthal angle 𝜑 with respect to the reaction plane for 𝑝

𝑇
= 5GeV and 𝜂 = 0, 1, and (d) fractional energy loss

versus rapidity 𝜂 at 𝑝

𝑇
= 5GeV and 𝜑 = 0, 𝜋/4.

Energy loss due to the synchrotron radiation has a
very nontrivial azimuthal angle and rapidity dependence
that comes from the corresponding dependence of the 𝜒-
parameter (98). As can be seen in Figure 8(c), energy loss
has a minimum at 𝜑 = 𝜋/2 that corresponds to quark’s
transverse momentum p

⊥
being parallel (or antiparallel) to

the field direction. It has a maximum at 𝜑 = 0, 𝜋 when p
⊥

is perpendicular to the field direction and thus lying in the
reaction plane. It is obvious from (98) that at midrapidity
𝜂 = 0 the azimuthal angle dependence is much stronger
pronounced than in the forward/backward direction. Let me
emphasize that the energy loss (96) divided by 𝑚

2, that is,
𝑑𝜀/(𝑑𝑙 𝑚

2
) scales with 𝜒. In turn, 𝜒 is a function of magnetic

field, quark mass, rapidity, and azimuthal angle. Therefore,
all the features seen in Figure 8 follow from this scaling
behavior.

3.2. Azimuthal Asymmetry of Gluon Spectrum. In magnetic
field gluon spectrum is azimuthally asymmetric. It is cus-
tomary to describe this asymmetry by Fourier coefficients of
intensity defined as

𝐼 (𝜑) = 𝐼 (1 + 2

∞

∑

𝑛=1

V
𝑛
cos (𝑛𝜑)) ,

V
𝑛

=

1

2𝜋𝐼

∫

𝜋

−𝜋

𝐼 (𝜑) cos (𝑛𝜑) 𝑑𝜑.

(99)

Azimuthal averaged intensity is 𝐼 = ∫

𝜋

−𝜋
𝐼(𝜑)𝑑𝜑/2𝜋. In strong

fields 𝜒 ≫ 1, and we can write

𝐼 (𝜑) = 0.37𝛼

𝑠
𝐶

𝐹
𝑚

2
𝜒

2/3

= 0.37𝛼

𝑠
𝐶

𝐹
(𝑒𝐵𝑝

⊥
)

2/3

(sinh2𝜂 + cos2𝜑)

1/3

.

(100)

We have

V
𝑛

=

∫

𝜋

−𝜋
𝐼 (𝜑) cos (𝑛𝜑) 𝑑𝜑

∫

𝜋

−𝜋
𝐼 (𝜑) 𝑑𝜑

=

∫

𝜋

−𝜋
(sinh2𝜂 + cos2𝜑)

1/3

cos (𝑛𝜑) 𝑑𝜑

∫

𝜋

−𝜋
(sinh2𝜂 + cos2𝜑)

1/3

𝑑𝜑

.

(101)
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At 𝜂 = 0 the Fourier coefficients 𝑤

𝑛
can be calculated

analytically using formula 3.631.9 of [34] as follows:

V
𝑛

=

𝐵 (4/3, 4/3)

𝐵 ((4/3) + (𝑛/2) , (4/3) − (𝑛/2))

, if 𝑛 ∈ even;

V
𝑛

= 0, if 𝑛 ∈ odd,

(102)

where 𝐵 is Euler’s beta function. The corresponding numer-
ically values of the lowest harmonics are V

2
= 0.25, V

4
=

−0.071, V
6

= 0.036, V
8

= −0.022, and V
10

= 0.015.

3.3. Polarization of LightQuarks. Synchrotron radiation leads
to polarization of electrically charged fermions, this is known
as the Sokolov-Ternov effect [46]. It was applied to heavy-
ion collisions in [21]. Unlike energy loss that I discussed
so far, this is a purely quantum effect. It arises because
the probability of the spin-flip transition depends on the
orientation of the quark spin with respect to the direction of
themagnetic field and on the sign of fermion’s electric charge.
The spin-flip probability per unit time reads [46]

𝑤 =

5
√

3𝛼

𝑠
𝐶

𝐹

16

ℎ

2

𝑚

2
(

𝜀

𝑚

)

5

(

𝑍

𝑞
𝑒 |k × B|

𝜀

)

3

× (1 −

2

9

(𝜁 ⋅ k)

2
−

8
√

3

15

sign (𝑒

𝑞
) (𝜁 ⋅ ẑ)) ,

(103)

where 𝜁 is a unit axial vector that coincides with the direction
of quark spin in its rest frame and k = p/𝜀 is the initial
fermion velocity.

The nature of this spin-flip transition is transparent in
the nonrelativistic case, where it is induced by the interaction
Hamiltonian [49] as follows:

H = −𝜇 ⋅ B = − (

𝑔𝑒𝑍

𝑞
ℎ

2𝑚

) s ⋅ B. (104)

It is seen that negatively charged quarks and antiquarks (e.g.,
𝑢 and 𝑑) tend to align against the field, while the positively
charged ones (e.g., 𝑢 and 𝑑) align parallel to the field.

Let 𝑛

↑(↓)
be the number of fermions or antifermions with

given momentum and spin direction parallel (antiparallel) to
the field produced in a given event. At initial time 𝑡 = 𝑡

0
the

spinasymmetry defined as

𝐴 =

𝑛

↑
− 𝑛

↓

𝑛

↑
+ 𝑛

↓

(105)

vanishes. Equation (103) implies that at later times, a beam of
nonpolarized fermions develops a finite asymmetry given by
[46]

𝐴 =

8
√

3

15

(1 − 𝑒

−(𝑡−𝑡
0
)/𝜏

) ,
(106)

where

𝜏 =

8

5
√

3𝑚𝛼

𝑠
𝐶

𝐹

(

𝑚

𝜀

)

2

(

𝑚

2

𝑍

𝑞
𝑒|k × B|

)

3

(107)

is the characteristic time over which the maximal possible
asymmetry is achieved. This time is extremely small on the
scale of 𝑡

0
. For example, it takes only 𝜏 = 6 ⋅ 10

−8 fm
for a 𝑑 quark of momentum 𝑝

⊥
= 1GeV at 𝜂 = 𝜑 =

0 at RHIC to achieve the maximal asymmetry of 𝐴

𝑚
=

8/5
√

3 = 92%.Therefore, quarks and antiquarks are polarized
almost instantaneously after being released from their wave
functions. However, subsequent interaction with QGP and
fragmentation washes out the polarization of quarks.

A more sensitive probe are leptons weakly interacting
withQGP andnot undergoing a fragmentation process.Thus,
their polarization can present a direct experimental evidence
for the existence and strength of magnetic field. In case of
muons we can estimate 𝜏 by replacing 𝛼

𝑠
𝐶

𝐹
→ 𝛼em. For

muons we get 𝜏 = 0.3 fm/c, which is still much smaller
than magnetic field life-time. Observation of such a lepton
polarization asymmetry is perhaps the most definitive proof
of existence of the strong magnetic field at early times after a
heavy-ion collision regardless of its later time-dependence.

In summary, energy loss per unit length for a light quark
with 𝑝

𝑇
= 15GeV is about 0.27GeV/fm at RHIC and

1.7 GeV/fm at LHC, which is comparable to the losses due to
interaction with the plasma. Thus, the synchrotron radiation
alone is able to account for quenching of jets at LHC with 𝑝

⊥

as large as 20GeV. Synchrotron radiation is definetely one of
missing pieces in the puzzle of the jet energy loss in heavy-
ion collisions. Quarks and leptons are expected to be strongly
polarized in plasma in the direction parallel or anti-parallel
to the magnetic field depending on the sign of their electric
charge.

4. Photon Decay

In this section I consider pair production by photon in
external magnetic field [55], which is a cross-channel of
synchrotron radiation discussed in the previous section.
Specifically, we are interested to determine photon decay rate
𝑤 in the process 𝛾𝐵 → 𝑓𝑓𝐵, where 𝑓 stands for a charged
fermion, as a function of photon’s transverse momentum 𝑘

𝑇
,

rapidity 𝜂, and azimuthal angle 𝜑. Origin of these photons in
heavy-ion collisionswill not be of interest to us in this section.

Characteristic frequency of a fermion of species 𝑎 of mass
𝑚

𝑎
and charge 𝑧

𝑎
𝑒 (𝑒 is the absolute value of electron charge)

moving in externalmagnetic field𝐵 (in a plane perpendicular
to the field direction) is

ℎ𝜔

𝐵
=

𝑧

𝑎
𝑒𝐵

𝜀

, (108)

where 𝜀 is the fermion energy. Here—in the spirit of the
adiabatic approximation—𝐵 is a slow function of time. Calcu-
lation of the photon decay probability significantly simplifies
if motion of electron is quasiclassical; that is, quantization of
fermion motion in the magnetic field can be neglected. This
condition is fulfilled if ℎ𝜔

𝐵
≪ 𝜀. This implies that

𝜀 ≫
√

𝑧𝑒𝐵. (109)

For RHIC it is equivalent to 𝜀 ≫ 𝑚

𝜋
, for LHC 𝜀 ≫ 4𝑚

𝜋
.
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Photon decay rate was calculated in [45] and, using the
quasi-classical method, in [56]. It reads

𝑤 = −∑

𝑎

𝛼em𝑧

3

𝑎
𝑒𝐵

𝑚

𝑎
𝜘

𝑎

∫

∞

(
4/𝜘
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2/3

2 (𝑥

3/2
+ 1/𝜘

𝑎
)Ai󸀠 (𝑥)

𝑥

11/4
(𝑥

3/2
− 4/𝜘

𝑎
)

3/2
, (110)

where summation is over fermion species and the invariant
parameter 𝜘 is defined as

𝜘

2

𝑎
= −

𝛼em𝑧

2

𝑎
ℎ

3

𝑚

6

𝑎

(𝐹

𝜇]𝑘
]
)

2

=

𝛼em𝑧

2

𝑎
ℎ

3

𝑚

6

𝑎

(k × B)

2
, (111)

with the initial photon 4-momentum 𝑘

𝜇
= (ℎ𝜔, k). With

notations of Figure 7, k = 𝑘

𝑧
ẑ + 𝑘

⊥
(x̂ cos𝜑 + ŷ sin𝜑), where

𝑘

⊥
= |k| sin 𝜃 = ℎ𝜔 sin 𝜃. Thus, (B × k)

2
= 𝐵

2
(𝑘

2

𝑧
+ 𝑘

2

⊥
cos2𝜑).

Employing ℎ𝜔 = 𝑘

⊥
cosh 𝜂 and 𝑘

𝑧
= 𝑘

⊥
sinh 𝜂, we write

𝜘

𝑎
=

ℎ (𝑧

𝑎
𝑒𝐵)

𝑚

3

𝑎

𝑘

⊥
√sinh2𝜂 + cos2𝜑. (112)

Plotted in Figure 9 is the photon decay rate (110) for RHIC
and LHC. The survival probability of photons in magnetic
field is 𝑃 = 1 − 𝑤Δ𝑡, where Δ𝑡 is the time spent by a photon
in plasma. Estimating Δ𝑡 = 10 fm we determine that photon
survives with probability 𝑃RHIC ≈ 97% at RHIC, while only
𝑃LHC ≈ 80% at LHC. Such strong depletion can certainly be
observed in heavy-ion collisions at LHC.

Azimuthal distribution of the decay rate of photons at
LHC is azimuthally asymmetric as can be seen in Figure 10
[55]. The strongest suppression is in the 𝐵 field direction,
that is, in the direction orthogonal to the reaction plane. At
𝜂 ≳ 1 the 𝜑 dependence of 𝜘

𝑎
is very weak which is reflected

in nearly symmetric azimuthal shape of the dashed line in
Figure 10.

To quantify the azimuthal asymmetry it is customary to
expand the decay rate in Fourier series with respect to the
azimuthal angle. Noting that 𝑤 is an even function of 𝜑, we
have

𝑤 (𝜑) =

1

2

𝑤

0
+

∞

∑

𝑛=1

𝑤

𝑛
cos (𝑛𝜑) ,

𝑤

𝑛
=

1

𝜋

∫

𝜋

−𝜋

𝑤 (𝜑) cos (𝑛𝜑) 𝑑𝜑.

(113)

In strong fields 𝜘

𝑎
≫ 1. For example, for 𝛾 → 𝜇

+
𝜇

− at RHIC
at 𝜑 = 𝜂 = 0 and 𝑘

𝑇
= 1GeV we get 𝜘

𝜇
= 19. Therefore, we

can expand the rate (110) at large 𝜘

𝑎
as [45]

𝑤 ≈

3

1/6
5Γ

2
(2/3)

2

4/3
7𝜋

1/2
Γ (7/6)

∑

𝑎
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3

𝑎

𝑚
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1/3

𝑎

≡

𝐴

(sinh2𝜂 + cos2𝜑)

1/6
, 𝜘

𝑎
≫ 1.

(114)

At 𝜂 = 0 the Fourier coefficients 𝑤

𝑛
can be calculated

analytically using formula 3.631.9 of [34]

𝑤

2𝑘
=

3 2

1/3
𝐴

𝐵 ((5/6) + 𝑘, (5/6) − 𝑘)

,

𝑤

2𝑘+1
= 0, 𝑘 = 0, 1, 2, . . . ,

(115)

where 𝐵 is the Euler’s beta function and 𝐴 is defined in (114),
Substituting these expressions into (113) we find

𝑤 =

1

2

𝑤

0
[1 −

∞

∑

𝑘=1

√𝜋Γ (−1/6)

2

2/3
𝐵 ((5/6) + 𝑘, (5/6) − 𝑘)

cos (2𝑘𝜑)] .

(116)

The first few terms in this expansion read

𝑤 =

1

2

𝑤

0
(1 −

2

5

cos (2𝜙) +

14

55

cos (4𝜙) − ⋅ ⋅ ⋅ ) , (117)

What is measured experimentally is not the decay rate,
but rather the photon spectrum. This spectrum is modified
by the survival probability 𝑃 which is obviously azimuthally
asymmetric. To quantify this asymmetry, we write using (113)

𝑃 = 𝑃 (1 +

∞

∑

𝑘=1

V
2𝑘
cos (2𝜑𝑘)) ,

V
2𝑘

= −

1 − 𝑃

𝑃

2𝑤

2𝑘

𝑤

0

,

(118)

where 𝑃 = ⟨1 − 𝑤Δ𝑡⟩

𝜑
= 1 − 𝑤

0
Δ𝑡 is the survival probability

averaged over the azimuthal angle. Since 𝑤

0
Δ𝑡 ≪ 1, as can be

seen in Figure 9, we can estimate using (114) and (115)

V
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5 6
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(𝑘

𝑇
)

1/3
.

(119)

In particular, the “elliptic flow” coefficient is [55]

V
2

= Δ𝑡

2 6

2/3
Γ (2/3)

7𝜋

∑

𝑎

𝛼em(𝑒𝐵)

2/3
𝑧

8/3

𝑎

(𝑘

𝑇
)

1/3
. (120)

For example, at 𝑘

𝑇
= 1GeV and Δ𝑡 ∼ 10 fm/c one expects

V
2

≃ 2% at RHIC and V
2

≃ 14% at LHC only due to the
presence of magnetic field. We see that decay of photons in
externalmagnetic field significantly contributes to the photon
asymmetry in heavy-ion collisions along with other possible
effects.

In summary, I calculated photon pair-production rate
in external magnetic field created in off-central heavy-ion
collisions. Photon decay leads to depletion of the photon
yield by a few percent at RHIC and by as much as 20%
at the LHC. The decay rate depends on the rapidity and
azimuthal angle. At midrapidity the azimuthal asymmetry of
the decay rate translates into asymmetric photon yield and
contributes to the “elliptic flow.” Let me also quote a known
result that photons polarized parallel to the field are 3/2
times more likely to decay than those polarized transversely
[45]. Therefore, polarization of the final photon spectrum
perpendicular to the field is a signature of existence of strong
magnetic field. Finally, photon decay necessarily leads to
enhancement of dilepton yield.
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Figure 9: Decay rate of photons moving in reaction plane in magnetic field as a function of transverse momentum 𝑘

𝑇
: (a) at RHIC, (b) at

LHC. Broken lines from bottom to top give contributions of 𝛾 → 𝑑𝑑, 𝛾 → 𝑢𝑢, 𝛾 → 𝜇

+
𝜇

−, and 𝛾 → 𝑒

+
𝑒

− channels. Upper solid line is the
total rate.

Reaction plane

𝜂 = 1

𝜂 = 0

B

Figure 10: Azimuthal distribution of the decay rate of photons at
different rapidities at LHC. Only contribution of the 𝛾 → 𝑒

+
𝑒

−

channel is shown.Note that the rate𝑤 vanishes at 𝜂 = 0 and𝜑 = 𝜋/2,
that is, in the direction of B. However, it happens at so small values
of |𝜑 − 𝜋/2| that it is beyond the experimental resolution and is not
shown in the figure.

5. Quarkonium Dissociation in Magnetic Field

5.1. Effects of Magnetic Field on Quarkonium. Strong mag-
netic field created in heavy-ion collisions generates a number
of remarkable effects on quarkonium production, some of
which I will describe in this section. Magnetic field can be
treated as static if the distance 𝜆 over which it significantly

varies is much larger than the quarkonium radius. If Δ𝑡 is
magnetic field life-time, then 𝜆 ∼ 𝑐Δ𝑡. For a quarkonium
with binding energy 𝜀

𝑏
and radius 𝛼

𝑠
/𝜀

𝑏
, the quasi-static

approximation applies when 𝜀

𝑏
𝜆/𝛼

𝑠
≫ 1. Estimating con-

servatively 𝜆 ∼ 2 fm we get for 𝐽/𝜓: 𝜀

𝑏
𝜆/𝛼

𝑠
≈ 23, which is

comfortably large to justify the quasi-static approximation,
where I assumed that 𝜀

𝑏
is given by its vacuum value. As

temperature 𝑇 increases 𝜀

𝑏
drops. Temperature dependence

of 𝜀

𝑏
is model dependent; however, it is certain that eventually

it vanishes at some finite temperature 𝑇

0
. Therefore, only in

the close vicinity of 𝑇

0
, that is, at very small binding energies,

the quasi-static approximation is not applicable. I thus rely on
the quasi-static approximation to calculate 𝐽/𝜓 dissociation
[57, 58].

Magnetic field has a three-fold effect on quarkonium.
(1) Lorentz ionization. Consider quarkonium traveling

with constant velocity in magnetic field in the labo-
ratory frame. Boosting to the quarkonium comoving
frame, we find mutually orthogonal electric and
magnetic fields given by (121a), (121b), and (122).
In the presence of an electric field quark and anti-
quark have a finite probability to tunnel through
the potential barrier thereby causing quarkonium
dissociation. In atomic physics such a process is
referred to as Lorentz ionization. In the nonrelativistic
approximation, the tunneling probability is of order
unity when the electric field 𝐸 in the comoving frame
satisfies 𝑒𝐸 ≳ 𝑚

1/2
𝜀

3/2

𝑏
(for weakly bound states),

where 𝑚 is quark mass; see (144). This effect causes a
significant increase in quarkonium dissociation rate;
numerical calculation for 𝐽/𝜓 is shown in Figure 13.

(2) Zeeman effect. Energy of a quarkonium state depends
on spin 𝑆, orbital angular momentum 𝐿, and total
angular momentum 𝐽. In a magnetic field these states
split; the splitting energy in a weak field is Δ𝑀 =

(𝑒𝐵

0
/2𝑚)𝑔𝐽

𝑧
, where 𝐽

𝑧
= −𝐽, −𝐽+1, . . . , 𝐽 is projection

of the total angular momentum on the direction of
magnetic field, 𝑚 is quark mass, and 𝑔 is Landé factor
depending on 𝐽, 𝐿, and 𝑆 in a well-knownway; see, for
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example, [59]. For example, 𝐽/𝜓 with 𝑆 = 1, 𝐿 = 0,
and 𝐽 = 1 (𝑔 ≈ 2) splits into three states with 𝐽

𝑧
=

±1, 0 andwithmass differenceΔ𝑀 = 0.15GeV, where
we used 𝑒𝐵

0
= 15𝑚

2

𝜋
.Thus, the Zeeman effect leads to

the emergence of new quarkonium states in plasma.

(3) Distortion of the quarkonium potential in magnetic
field. This effect arises in higher-order perturbation
theory and becomes important at field strengths of
order 𝐵 ∼ 3𝜋𝑚

2
/𝑒

3 [60]. This is 3𝜋/𝛼 times stronger
than the critical Schwinger’s field. Therefore, this
effect can be neglected at the present collider energies.

Some of the notational definitions used in this section:
V and P, are velocity and momentum of quarkonium in the
lab frame; 𝑀 is its mass; p is the momentum of quark or anti-
quark in the comoving frame;𝑚 is itsmass;B

0
is themagnetic

field in the lab frame, E and B are electric and magnetic
fields in the comoving frame; 𝛾

𝐿
is the quarkonium Lorentz

factor; and 𝛾 is a parameter defined in (139). I use Gauss units
throughout the section; note that expressions 𝑒𝐵, 𝑒𝐸, and 𝑒𝐵

0

are the same in Gauss and Lorentz-Heaviside units.

5.2. Lorentz Ionization: Physical Picture. In this section I
focus on Lorentz ionization, which is an important mech-
anism of 𝐽/𝜓 suppression in heavy-ion collisions [57, 58].
Before we proceed to analytical calculations it is worthwhile
to discuss the physics picture in more detail in two reference
frames: the quarkonium proper frame and the lab frame. In
the quarkonium proper frame the potential energy of, say,
antiquark (with 𝑒 < 0) is a sum of its potential energy in
the binding potential and its energy in the electric field −𝑒𝐸𝑥,
where𝑥 is the electric field direction; see Figure 11. Since |𝑒|𝐸𝑥

becomes large and negative at large and negative 𝑥 (far away
from the bound state) and because the quarkonium potential
has finite radius, this region opens up for the motion of the
antiquark. Thus there is a quantum mechanical probability
to tunnel through the potential barrier formed on one side
by the vanishing quarkonium potential and on the other by
increasing absolute value of the antiquark energy in electric
field.Of course the total energy of the antiquark (not counting
its mass) is negative after tunneling. However, its kinetic
energy grows proportionally to 𝑒𝐸𝑥 as it goes away. By picking
up a light quark out of vacuum it can hadronize into a 𝐷-
meson.

If we now go to the reference frame where 𝐸 = 0 and
there is only magnetic field 𝐵 (we can always do so since 𝐸 <

𝐵), then the entire process looks quite different. An energetic
quarkonium travels in externalmagnetic field and decays into
quark-antiquark pair that can later hadronize into𝐷-mesons.
This happens in spite of the fact that 𝐽/𝜓 mass is smaller than
masses of two 𝐷-mesons due to additional momentum 𝑒A
supplied by the magnetic field. Similarly a photon can decay
into electron-positron pair in external magnetic field.

5.3. Quarkonium Ionization Rate

5.3.1. Comoving Frame. Consider a quarkonium traveling
with velocity V in constant magnetic field B

0
. Let B and E
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Figure 11: Effective potential 𝑈(𝑥) =
√

𝑚

2
+ (𝑝

𝑧
+ 𝑒𝐵𝑥)

2
+ 𝑝

2

𝑥
−

𝑒𝐸𝑥 − √𝑚

2
+ 𝑝

2

𝑥
+ 𝑝

2

𝑥
for 𝑝

𝑥
= 0, 𝑝

𝑧
= 𝑚/6, and 𝐵 = 𝑚 (except the

blue line where 𝐵 = 0). The width of the potential barrier decreases
with 𝐸 and increases with 𝐵. 1 − 𝜖

0
corresponds to the binding

energy in units of 𝑚.

be magnetic and electric fields in the comoving frame, and
let subscripts ‖ and ⊥ denote field components parallel and
perpendicular to V correspondingly. Then,

𝐸

‖
= 0, E

⊥
= 𝛾

𝐿
V × B

0
, (121a)

𝐵

‖
=

B
0

⋅ V
𝑉

, B
⊥

= 𝛾

𝐿

(V × B
0
) × V

𝑉

2
,

(121b)

where 𝛾

𝐿
= (1 − 𝑉

2
)

−1/2. Clearly, in the comoving frame B ⋅

E = 0. If quarkonium travels at angle 𝜙 with respect to the
magnetic field in the laboratory frame, then

𝐵 = 𝐵

0
√cos2𝜙 (1 − 𝛾

2

𝐿
) + 𝛾

2

𝐿
, 𝐸 = 𝐵

0
𝛾

𝐿
𝑉 sin𝜙.

(122)

We choose 𝑦 and 𝑥 axes of the comoving frame such that
B = 𝐵ŷ and E = 𝐸x̂. A convenient gauge choice is A = −𝐵𝑥ẑ
and 𝜑 = −𝐸𝑥. For a future reference we also define a useful
dimensionless parameter 𝜌 [61]:

𝜌 =

𝐸

𝐵

=

𝛾

𝐿
𝑉 sin𝜙

√cos2𝜙 (1 − 𝛾

2

𝐿
) + 𝛾

2

𝐿

. (123)

Note that (i) 0 ≤ 𝜌 ≤ 1 because𝐵

2
−𝐸

2
= 𝐵

2

0
≥ 0 and (ii) when

quarkoniummoves perpendicularly to the magnetic field B
0
,

𝜌 = 𝑉.

5.3.2. WKB Method. I assume that the force binding 𝑞 and 𝑞

into quarkonium as a short-range one, that is, (𝑀𝜀

𝑏
)

1/2
𝑅 ≪ 1,

where 𝜀

𝑏
and𝑀 are binding energy andmass of quarkonium,

respectively, and 𝑅 is the radius of the nuclear force given by
𝑅 ≈ (𝛼

𝑠
/𝜎)

1/2, where 𝜎 = 1GeV/fm is the string tension.
For example, the binding energy of 𝑐 and 𝑐 in 𝐽/𝜓 in vacuum
is 𝜀

𝑏
= 0.64GeV ≪ 𝑀/𝑅

2
= 𝑀𝜎/𝛼

𝑠
≈ 3GeV. This

approximation is even better at finite temperature on account
of 𝜀

𝑏
decrease. Regarding 𝐽/𝜓 as being bound by a short-

range force enables us to calculate the dissociation probability
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𝑤 with exponential accuracy 𝑤 ≈ 𝑒

−𝑓, independently of
the precise form of the quarkonium wave function. This is
especially important, since solutions of the relativistic two-
body problem for quarkonium are not readily available.

It is natural to study quarkonium ionization in the
comoving frame [57]. As explained in the Introduction,
ionization is quantum tunneling through the potential barrier
caused by the electric field E. In this subsection I employ the
quasiclassical WKB approximation to calculate the quarko-
nium decay probability 𝑤. For the gauge choice specified in
Section 5.3.1, quark energy 𝜀

0
(𝜀

0
< 𝑚) in electromagnetic

field can be written as

𝜀

0
=

√
𝑚

2
+ (p − 𝑒A)

2
+ 𝑒𝜑

=
√

𝑚

2
+ (𝑝

𝑧
+ 𝑒𝐵𝑥)

2

+ 𝑝

2

𝑥
+ 𝑝

2

𝑦
− 𝑒𝐸𝑥.

(124)

In terms of 𝜀

0
, quarkonium binding energy is 𝜀

𝑏
= 𝑚 − 𝜀

0
.

To simplify notations, we will set 𝑝

𝑥
= 0, because the quark

moves constant momentum along the direction of magnetic
field.

The effective potential 𝑈(𝑥) = 𝜀

0
(𝑥) − √𝑚

2
+ p2

corresponding to (124) is plotted in Figure 11. We can see that
the tunneling probability is finite only if 𝐸 > 0. It is largest
when 𝐵 = 0. It has been already noted before in [61–63] that
the effect of the magnetic field is to stabilize the bound state.
In spite of the linearly rising potential (at 𝐵 > 𝐸) tunneling
probability is finite as the result of rearrangement of the QED
vacuum in electric field.

Ionization probability of quarkonium equals its tunneling
probability through the potential barrier.The later is given by
the transmission coefficient

𝑤 = 𝑒

−2∫
𝑦1

0
√−𝑝
2

𝑦
𝑑𝑦

≡ 𝑒

−𝑓
.

(125)

In the nonrelativistic approximation one can also calculate
the preexponential factor, which appears due to the devi-
ation of the quark wave function from the quasi-classical
approximation. This is discussed later in Section 5.5.2. We
now proceed with the calculation of function 𝑓. Since 𝐵 > 𝐸

(125) can be written as [57]

𝑝

2

𝑥
= −𝑒

2
(𝐵

2
− 𝐸

2
) (𝑥 − 𝑥

1
) (𝑥 − 𝑥

2
) , (126)

where

𝑥

1,2
=

𝜀

0
𝐸 − 𝑝

𝑧
𝐵 ∓

√
(𝜀

0
𝐸 − 𝑝

𝑧
𝐵)

2

− (𝐵

2
− 𝐸

2
) (−𝜀

2

0
+ 𝑚

2
+ 𝑝

2

𝑧
)

𝑒 (𝐵

2
− 𝐸

2
)

.

(127)

Define dimensionless variables 𝜖

0
= 𝜀

0
/𝑚 and 𝑞 = 𝑝

𝑧
/𝑚.

Integration in (74) gives

𝑓

𝑚

2
=

√−𝜖

2

0
+ 1 + 𝑞

2
(𝜖

0
𝐸 − 𝑞𝐵)

𝑒 (𝐵

2
− 𝐸

2
)

−

(𝜖

0
𝐸 − 𝑞𝐵)

2

− (𝐵

2
− 𝐸

2
) (−𝜖

2

0
+ 1 + 𝑞

2
)

𝑒(𝐵

2
− 𝐸

2
)

3/2

× ln
{

{

{

{

{

𝜖

0
𝐸 − 𝑞𝐵 + √(𝐵

2
− 𝐸

2
) (−𝜖

2

0
+ 1 + 𝑞

2
)

√
(𝜖

0
𝐸 − 𝑞𝐵)

2

− (𝐵

2
− 𝐸

2
) (𝜖

2

0
+ 1 + 𝑞

2
)

}

}

}

}

}

.

(128)

𝑤 = 𝑒

𝑓 gives the corresponding ionization probabilities, at
a given 𝑞. The largest probability corresponds to smallest 𝑓,
which occurs at momentum 𝑞

𝑚
determined by [62]

𝜕𝑓 (𝑞

𝑚
)

𝜕𝑞

𝑚

= 0. (129)

Using (128) and parameter 𝜌 defined in (123), we find [57]

𝜌 (𝜖

0
− 𝜌𝑞

𝑚
)

1 − 𝜌

2
ln

{

{

{

{

{

𝜖

0
𝜌 − 𝑞

𝑚
+ √1 − 𝜌

2
√−𝜖

2

0
+ 1 + 𝑞

2

𝑚

√
(𝜖

0
− 𝜌𝑞

𝑚
)

2

− 1 + 𝜌

2

}

}

}

}

}

=

√−𝜖

2

0
+ 1 + 𝑞

2

𝑚

√1 − 𝜌

2

.

(130)

This is an implicit equation for the extremalmomentum 𝑞

𝑚
=

𝑞

𝑚
(𝜖

0
, 𝜌). Substituting 𝑞

𝑚
into (128) one obtains 𝑓 = 𝑓(𝜖

0
, 𝜌),

which by means of (125) yields the ionization probability.
The quasi-classical approximation that we employed in this
section is valid in as much as 𝑓(𝑞

𝑚
) ≫ 1.

In order to compare with the results obtained in [62]
using the imaginary time method, we can rewrite (130) in
terms of an auxiliary parameter 𝜏

0
as

𝜏

0
=

√1 − 𝜌

2
√−𝜖

2

0
+ 1 + 𝑞

2

𝑚

𝜌 (𝜖

0
− 𝜌𝑞

𝑚
)

,

(131a)

tanh 𝜏

0

𝜏

0

= 𝜌

𝜖

0
− 𝜌𝑞

𝑚

𝜖

0
𝜌 − 𝑞

𝑚

. (131b)

Taking advantage of these equations, (128) can be cast into a
more compact form as follows

𝑓

𝑚
=

𝑚

2
𝜏

0
𝜌

𝑒𝐸√1 − 𝜌

2

[1 − 𝜖

0
(𝜖

0
− 𝑞

𝑚
𝜌)] , (132)

where we denoted 𝑓

𝑚
= 𝑓(𝑞

𝑚
). This agrees with results of

[62].
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5.3.3. Special Case: Crossed Fields. An important limiting case
is crossed fields 𝐸 = 𝐵. Since also E ⊥ B (see Section 5.3.1),
both field invariants vanish. Nevertheless, quarkonium ion-
ization probability is finite [62]. This limit is obtained by
taking 𝜌 → 1 in the equations from the previous section.
Employing (131a) and (131b) we get the following condition
for extremum:

𝜖

2

0
− 1 + 2𝑞

2

𝑚
− 3𝜖

0
𝑞

𝑚
= 0, (133)

with the solution

𝑞

𝑚
=

1

4

(3𝜖

0
−

√
𝜖

2

0
+ 8) . (134)

Substituting into (132) produces

𝑓

𝑚
=

2

3

𝑚

2

𝑒𝐸

(−𝜖

2

0
+ 1 + 𝑞

2

𝑚
)

3/2

𝜖

0
− 𝑞

𝑚

.

(135)

5.4. Nonrelativistic Approximation. Avery useful approxima-
tion of the relativistic formulas derived in the previous section
is the nonrelativistic limit because (i) it provides a very good
numerical estimate (see Figure 12), and (ii) it allows us to
eliminate the parametric dependence in (128), (130) andwrite
𝑓(𝑞

𝑚
) explicitly in terms of 𝜌 and 𝜖

0
, and (iii) spin effects can

be accounted for [57, 58].

5.4.1. Arbitrary Binding. Motion of a particle can be treated
non-relativistically if its momentum is much less than its
mass. In such a case 𝜀

0
≈ 𝑚 or 𝜀

𝑏
= 𝑚 − 𝜀

0
≪ 𝑚.

Additionally, motion of a charged particle in electromagnetic
field is non-relativistic if 𝐸 ≪ 𝐵. Indeed, the average velocity
of a nonrelativistic particle is of order V ∼ 𝐸/𝐵 = 𝜌. Thus,
the non-relativistic limit is obtained by taking the limits 𝜖

𝑏
=

𝜀

𝑏
/𝑚 ≪ 1 and𝜌 ≪ 1. In these limits the extremumconditions

(131a), (131b) reduce to

𝜏

0
=

√2𝜖

𝑏
+ 𝑞

2

𝑚

𝜌

,

(136a)

tanh 𝜏

0

𝜏

0

=

𝜌

𝜌 − 𝑞

𝑚

. (136b)

Out of two solution to (136a) we pick the following one:

𝑞

𝑚
= −

√
𝜏

2

0
𝜌

2
− 2𝜖

𝑏
.

(137)

The sign of 𝑞

𝑚
is fixed using (136b) by noticing that

tanh 𝜏

0
/𝜏

0
< 1. Eliminating 𝑞

𝑚
gives

𝜏

2

0
− (𝜏

0
coth 𝜏

0
− 1)

2

= 𝛾

2
,

(138)

where

𝛾 =

√2𝜖

𝑏

𝜌

, (139)
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Figure 12: Dimensionless function 𝑓

𝑚
𝑒𝐸/𝑚

2 versus 𝜖

𝑏
for different

values of 𝜌. The solid line is the full relativistic calculation, the
dashed line is the nonrelativistic approximation. 𝐽/𝜓 binding energy
in vacuum corresponds to 𝜖

𝑏
= 0.68.

where 𝛾 is analogous to the adiabaticity parameter of Keldysh
[64]. Taking the non-relativistic limit of (132) and using (137)
yields

𝑓

𝑚
=

2𝑚

2
(2𝜖

𝑏
)

3/2

3𝑒𝐸

𝑔 (𝛾) ,

(140)

where 𝑔(𝛾) is the Keldysh function [64]

𝑔 (𝛾) =

3𝜏

0

2𝛾

[

[

1 −

1

𝛾

(

𝜏

2

0

𝛾

2
− 1)

1/2

]

]

. (141)

In Figure 12 we show the dimensionless ratio 𝑓

𝑚
𝑒𝐸/𝑚

2

as a function of the binding energy 𝜖

𝑏
(in units of 𝑚)

for several values of 𝜌. The vacuum binding energy of
𝐽/𝜓 corresponds to 𝜖

𝑏
= 0.68. We observe an excellent

agreement between the full relativistic calculation and the
non-relativistic approximation. At 𝜌 = 0.9 and 𝜖

𝑏
= 0.68 the

difference between the two lines is 10% and can be further
improved by considering higher order corrections to𝑓

𝑚
[63].

5.4.2. Weak Binding. Of special interest is the limit of weak
binding 𝛾 ≪ 1; that is, √2𝜖

𝑏
≪ 𝜌. Expanding (138) at small 𝛾

and 𝜏

0
yields

𝜏

0
= 𝛾 (1 +

1

18

𝛾

2
) , (142)

and substituting into (141) and subsequently into (140) yields

𝑓

𝑚
=

2

3

𝑚

2

𝑒𝐸

(2𝜖

𝑏
)

3/2

.
(143)

Hence, the quarkonium dissociation probability reads [65]

𝑤 = exp{−

2

3

(2𝜖

𝑏
𝑚)

3/2

𝑚𝑒𝐸

} . (144)



20 Advances in High Energy Physics

0 1 2 3 4
0

0.5

1

1.5

2
𝑤

(1
/fm

)

𝑝⊥ (GeV)

𝐸0 = 0

𝐸0 = 0.1𝐵0
𝐸0 = 0.2𝐵0

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
𝜀𝑏 (GeV)

0

0.5

1

1.5

2

𝑤
(1

/fm
)

𝐸0 = 0.1𝐵0
𝐸0 = 0.2𝐵0

𝐸0 = 0

(b)

Figure 13: Dissociation rate of 𝐽/𝜓 at 𝑒𝐵

0
= 15𝑚

2

𝜋
, 𝜙 = 𝜋/2 (in the reaction plane), and 𝜂 = 0 (midrapidity) as a function of (a) 𝑃

⊥
at

𝜀

𝑏
= 0.16GeV and (b) 𝜀

𝑏
at 𝑃

⊥
= 1GeV.

Since the quasi-classical approximation employed in this
paper is valid if 𝑓(𝑞

𝑚
) ≫ 1, it follows that the binding energy

must satisfy

(𝑒𝐸)

2/3

𝑚

1/3
≪ 𝜀

𝑏
≪ 𝜌

2
𝑚.

(145)

Note also that we work in the approximation of the short-
range binding potential meaning that √2𝜖

𝑏
≪ 1/(𝑚𝑅); see

Section 5.1.

5.4.3. Strong Binding. In the limit 𝛾 ≫ 1, (138) and (141) imply
that

𝜏

0
=

𝛾

2

2

, 𝑔 (𝛾) =

3𝛾

8

.
(146)

Substituting (146) into (140), we derive

𝑓

𝑚
=

𝜀

2

𝑏

𝑒𝐸

𝐵

𝐸

.

(147)

Thus, quarkonium dissociation probability in the case of
strong binding is

𝑤 = exp{−

𝜀

2

𝑏

𝑒𝐸

𝐵

𝐸

} . (148)

This formula is valid when

𝜌

2
𝑚, √𝑒𝐸𝜌 ≪ 𝜀

𝑏
≪

1

𝑅

. (149)

5.4.4. Contribution of Quark Spin. So far I have neglected the
contribution of quark spin. In order to take into account the
effect of spin interaction with the external field, we can use
squared Dirac equation for a bispinor 𝜓 as follows:

[(𝜀 − 𝑒𝜑)

2

− (p − 𝑒A)

2
− 𝑚

2
+ 𝑒Σ ⋅ B − 𝑖𝑒𝛼 ⋅ E] 𝜓 = 0,

(150)

where

Σ = (

𝜎 0

0 𝜎
) , 𝛼 = (

𝜎 0

0 −𝜎
) . (151)

Operators Σ

𝑦
and 𝛼

𝑥
do not commute. Therefore, in order

to apply the WKB method for calculation of the ionization
probability one actually needs to square (150), which leads
to a differential equation of the fourth order in derivatives.
The problem becomes more tractable in the non-relativistic
case and for crossed fields. Spin effects in crossed fields were
discussed in [66].

With quark spin taken into account, the non-relativistic
version of (124) becomes

1

2𝑚

[(𝑝

𝑧
+ 𝑒𝐵𝑥)

2

+ 𝑝

2

𝑥
] − 𝑒𝐸𝑥 −

𝜇

𝑠

s ⋅ B = −𝜀

𝑏
, (152)

and hence

𝑝

2

𝑥
= 2𝑚 (−𝜀

𝑏
+

𝜇

𝑠

s ⋅ B + 𝑒𝐸𝑥) − (𝑝

𝑧
+ 𝑒𝐵𝑥)

2

, (153)

where 𝜇 is the quarkmagneticmoment and 𝑠 is the projection
of spin in the direction of the magnetic field. For a point
quark, 𝜇 = 𝜇

𝐵
= 𝑒ℎ/2𝑚𝑐. The effect of quark spin

on quarkonium dissociation probability can be taken into
account by replacing 𝜀

𝑏
→ 𝜀

󸀠

𝑏
= 𝜀

𝑏
− (𝜇/𝑠)s ⋅ B in formulas

for 𝑓

𝑚
. With this replacement, all results of this section apply

to a particle with spin. Note that effective binding energy 𝜀

󸀠

𝑏

decreases if spin is parallel to themagnetic field and increases
if it is antiparallel. In particular, in the case of weak binding

𝑤 = ∑

𝑠=±1/2

exp{−

2

3

(2𝜀

𝑏
𝑚 + 2𝑠𝑒𝐵)

3/2

𝑚𝑒𝐸

} . (154)

Since the non-relativistic limit provides a good approxima-
tion of the full relativistic formulas, we will implement the
quark spin dependence using the non-relativistic prescription
[57, 58].
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5.5. Effect of Electric Field Produced in the Lab Frame

5.5.1. Origin of Electric Field in the Lab Frame. So far I have
entirely neglected possible existence of electric field in the lab
frame. This field, which we will be denoted by E

0
, can have

two origins: (i) asymmetry of nucleon distributions in the
colliding heavy ions (see Figure 3(b)) and (ii) chiral magnetic
effect (CME) [5, 67–72], which has recently attracted a lot
of attention. In a nutshell, if a metastable 𝑃- and 𝐶𝑃-odd
bubble is induced by axial anomaly in the hot nuclear matter,
then in the presence of external magnetic field B

0
the bubble

generates an electric field which is parallel to the magnetic
one. According to [68] the value of the electric field E

0
in the

bubble is

E
0

= −𝑁

𝑐
∑

𝑓

𝑒

2

𝑓

4𝜋

2

Θ

𝑁

𝑓

B
0

= −

2

3

𝛼Θ

𝜋

B
0
, (155)

where the sum runs over quark flavors 𝑓 and it is assumed
that only three lightest flavors contribute. The value of
the Θ-angle fluctuates from event to event. CME refers to
the macroscopic manifestation of this effect—separation of
electric charges with respect to the reaction plane. This effect
is a possible explanation of experimentally observed charge
asymmetry fluctuations [73–75].

No matter what is the origin of electric field in the lab
frame, it averages to zero over an ensemble of events. We
are interested to know the effect of this field on quarkonium
dissociation—this is the problem we are turning to now [58].

5.5.2. Quarkonium Dissociation Rate. Ionization probability
of quarkonium equals its tunneling probability through the
potential barrier. In the WKB approximation the later is
given by the transmission coefficient and was calculated
in Section 5.3. In this method contribution of the quark
spin can be easily taken into account. Another method of
calculating the ionization probability, the imaginary time
method [76–78], was employed in [61–63]. It also yielded in
the non-relativistic approximation the preexponential factor
that appears due to the deviation of the quark wave function
from the quasi-classical approximation. Such a calculation
requires matching quark wave function inside and outside
the potential barrier [65]. Extension of this approach to the
relativistic case is challenging due to analytical difficulties
of the relativistic two-body problem. Fortunately, it was
argued in Section 5.3, that the non-relativistic approximation
provides a very good accuracy in the 𝜀

𝑏
≪ 𝑚 region, which is

relevant in the quarkiononium dissociation problem [57, 62].
Given the electromagnetic field in the laboratory frame

B
0
, E

0
, the electromagnetic field B, E in the comoving frame

moving with velocity V is given by

E = 𝐸

0
{𝛾

𝐿
(b

0
+ 𝜌

−1

0
V × b

0
) − (𝛾

𝐿
− 1)VV ⋅ b

0

𝑉

2
} , (156a)

B = 𝐵

0
{𝛾

𝐿
(b

0
− 𝜌

0
V × b

0
) − (𝛾

𝐿
− 1)VV ⋅ b

0

𝑉

2
} , (156b)

where b
0

= B
0
/𝐵

0
is a unit vector in the magnetic field

direction, 𝜌

0
= 𝐸

0
/𝐵

0
= 2𝛼|Θ|/3𝜋 (see (155)) and 𝛾

𝐿
=

1/
√

1 − 𝑉

2. It follows from (156a) and (156b) that

𝐸 = 𝐸

0
√

1 + 𝛾

2

𝐿
(b

0
× V)

2

(1 + 𝜌

−2

0
),

(157a)

𝐵 = 𝐵

0
√

1 + 𝛾

2

𝐿
(b

0
× V)

2

(1 + 𝜌

2

0
).

(157b)

Using (157a) and (157b), we find that the angle 𝜃 between the
electric and magnetic field in the comoving frame is

cos 𝜃 =

E ⋅ B
𝐸𝐵

=

1

√
[1 + 𝛾

2

𝐿
(b

0
× V)

2

(1 + 𝜌

−2

0
)] [1 + 𝛾

2

𝐿
(b

0
× V)

2

(1 + 𝜌

2

0
)]

,

(158)

where we used the relativistic invariance of E ⋅ B.
It is useful to introduce dimensionless parameters 𝛾, 𝜖 and

𝜌 as [62]

𝛾 =

1

𝜌

√

2𝜀

𝑏

𝑚

, 𝜌 =

𝐸

𝐵

, 𝜖 =

𝑒𝐸

𝑚

2
(

𝑚

2𝜀

𝑏

)

3/2

,
(159)

where 𝑚 is quark mass and 𝜀

𝑏
is quarkonium binding

energy. I will treat the quarkonium binding potential in the
non-relativistic approximation, which provides a very good
accuracy to the dissociation rate [57, 62]. The quarkonium
dissociation rate in the comoving frame in the non-relativistic
approximation is given by [61]

𝑤 =

8𝜀

𝑏

𝜖

𝑃 (𝛾, 𝜃) 𝐶

2
(𝛾, 𝜃) 𝑒

−(2/3𝜖)𝑔(𝛾,𝜃)
, (160)

where function 𝑔 reads

𝑔 =

3𝜏

0

2𝛾

[

[

1 −

1

𝛾

(

𝜏

2

0

𝛾

2
− 1)

1/2

sin 𝜃 −

𝜏

2

0

3𝛾

2
cos2𝜃]

]

. (161)

and functions 𝑃 and 𝐶 are given in the following formulas:

𝑃 =

𝛾

2

𝜏

0

[(𝜏

0
coth 𝜏

0
+

sinh 𝜏

0
cosh 𝜏

0

𝜏

0

− 2) sin2𝜃

+sinh2𝜏
0
cos2𝜃]

−1/2

,

𝐶 = exp [ln
𝜏

0

2𝛾

+ ∫

𝜏
0

0

𝑑𝜏 (

𝛾

𝜉 (𝜏)

−

1

𝜏

0
− 𝜏

)] ,

𝜉 (𝜏) = {

1

4

(𝜏

2

0
− 𝜏

2
)

2

cos2𝜃

+ 𝜏

2

0
[(

cosh 𝜏

0
− cos 𝜏

sinh 𝜏

0

)

2

−(

sinh 𝜏

sinh 𝜏

0

−

𝜏

𝜏

0

)

2

] sin2𝜃}

1/2

.

(162)
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The contribution of quark spin is taken into account by
replacing 𝜀

𝑏
→ 𝜀

󸀠

𝑏
= 𝜀

𝑏
− (𝑒/𝑚)s ⋅ B [57]. Function 𝑔

represents the leading quasi-classical exponent, 𝑃 is the pre-
factor for the 𝑆-wave state of quarkonium, and 𝐶 accounts
for the Coulomb interaction between the valence quarks.
Parameter 𝜏

0
satisfies the following equation:

𝜏

2

0
− sin2𝜃(𝜏

0
coth 𝜏

0
− 1)

2

= 𝛾

2 (163)

which establishes its dependence on 𝜃 and 𝛾. Note that in
the limit 𝐸 → 0 the dissociation rate (160) exponentially
vanishes. This is because pure magnetic field cannot force a
charge to tunnel through a potential barrier.

In the case that mechanism (i) is responsible for gener-
ation of electric field, E

0
is the field permitting the entire

plasma in a single event. Event average is then obtained by
averaging (160) over an ensemble of events. In the case that
mechanism (ii) is operative, averaging is more complicated.
Equation (160) gives the quarkonium dissociation rate in a
bubble with a given value of Θ. Its derivation assumes that
the dissociation process happens entirely inside a bubble and
that Θ is constant inside the bubble. Since in a relativistic
heavy-ion collision many bubbles can be produced with a
certain distribution of Θs (with average ⟨Θ⟩ = 0) more than
one bubble can affect the dissociation process.This will result
in a distractive interference leading to reduction of the 𝐶𝑃-
odd effect on quarkonium dissociation. However, if a typical
bubble size 𝑅

0
is much larger than the size of quarkonium

𝑅

𝐽
, then the dissociation is affected by one bubble at a time

independently of others, and hence the interference effect
can be neglected. In this case (74) provides, upon a proper
average, a reasonable estimate of quarkonium dissociation in
a heavyion collision. We can estimate the bubble size as the
size of the sphaleron, which is of the order of the chromo-
magnetic screening length ∼1/𝑔

2
𝑇, whereas the quarkonium

size is of the order 𝛼

𝑠
/𝜀

𝑏
. Consequently, at small coupling

and below the zero-field dissociation temperature (i.e., when
𝜀

𝑏
is not too small) 𝑅

0
is parametrically much larger than

𝑅

𝐽
. A more quantitative estimate of the sphaleron size is

𝑅

0
≃ 1.2/𝛼

𝑠
𝑁

𝑐
𝑇 ≃ 0.4 fm [79]; whereas 𝑅

𝐽
≃ 𝛼

𝑠
/𝜀

𝑏
≃

0.1–0.2 fm. Thus, based on this estimate bubble interference
can be neglected in the first approximation. However, since
the ratio 𝑅

𝐽
/𝑅

0
is actually not so small this effect nevertheless

warrants further investigation.
To obtain the experimentally observed 𝐽/𝜓 dissociation

rate we need to average (74) over the bubbles produced in
a given event and then over all events. To this end it is
important to note that because the dissociation rate depends
only on 𝜌

2

0
it is insensitive to the sign of the E

0
field, or,

in other words, it depends only on absolute value of Θ but
not on its sign. Therefore, it stands to reason that although
the precise distribution of Θs is not known, (74) gives an
approximate event average with parameter Θ representing a
characteristic absolute value of the theta angle.

5.5.3. Limiting Cases. Before I proceed with the numerical
calculations, let us consider for illustration several limiting
cases. If quarkonium moves with non-relativistic velocity,
then in the comoving frame electric and magnetic fields are

approximately parallel 𝜃 ≈ 0, whereas in the ultrarelativistic
case they are orthogonal 𝜃 ≈ 𝜋/2; see (158). In the later
case the electromagnetic field in the comoving frame does
not depend on 𝐸

0
as seen in (157a) and (157b) and therefore

the dissociation rate becomes insensitive to the CME. In our
estimates I will assume that 𝜌

0
< 1 which is the relevant

phenomenological situation. Indeed, it was proposed in [68]
that 𝜌

0
∼ 𝛼 ≪ 1 produces charge fluctuations with

respect to the reaction plane of themagnitude consistent with
experimental data.

(1) 𝜃 ≳ 0; that is, electric and magnetic fields are approxi-
mately parallel. This situation is realized in the following two
cases. (i) Non-relativistic quarkonium velocities: 𝑉 ≪ 𝜌

0
or

(ii) motion of quarkonium at small angle 𝜙 to the direction of
the magnetic field b

0
: 𝜙 ≪ 𝜌

0
/𝛾

𝐿
𝑉. In both cases 𝐸 ≈ 𝐸

0
and

𝐵 ≈ 𝐵

0
. This is precisely the case where the dissociation rate

exhibits its strongest sensitivity to the strength of the electric
field E

0
generated by the local parity violating QCD effects.

Depending on the value of the 𝛾 parameter defined in (159)
we can distinguish the case of strong electric field 𝛾 ≫ 1 and
weak electric field 𝛾 ≪ 1 [63]. In the former case, 𝑔 = (3/8)𝛾,
𝑃 = (8/𝑒)

1/2
𝛾𝑒

−𝛾
2
/2, and 𝐶 = 𝑒

𝜋𝛾/2
/𝛾. Substituting into (74)

the dissociation rate reads

𝑤 =

8𝜀

𝑏

𝜖𝛾

√

8

𝑒

𝑒

−𝛾
2
/2

𝑒

−𝛾/4𝜖

=

16𝜀

2

𝑏
𝑚

𝑒𝐵

0

√

8

𝑒

𝑒

−𝜀
𝑏
/𝜌
2

0
𝑚

𝑒

−𝜀
2

𝑏
/𝜌
0
𝑒𝐸
0
, 𝛾 ≫ 1.

(164)

In the later case, 𝑔 = 𝑃 = 𝐶 = 1 and

𝑤 =

8𝜀

𝑏

𝜖

𝑒

−2/3𝜖

=

8𝜀

𝑏
𝑚

2

𝑒𝐸

0

(

2𝜀

𝑏

𝑚

)

3/2

𝑒

−(2𝑚
2
/3𝑒𝐸
0
)(2𝜀
𝑏
/𝑚)
3/2

, 𝛾 ≪ 1,

(165)

where the electromagnetic field in the comoving frame equals
one in the laboratory frame as was mentioned previously.

(2) 𝜃 ∼ 𝜋/2; that is, electric and magnetic fields are
approximately orthogonal (note that the limit 𝛾 ≫ 1 is
different in 𝜃 = 𝜋/2 and 𝜃 < (𝜋/2) cases [61]). This occurs
for an ultra-relativistic motion of quarkonium 𝑉 → 1. In
this case

𝐵 = 𝐸 = 𝐵

0
𝛾

𝐿

󵄨

󵄨

󵄨

󵄨

b
0

× V󵄨

󵄨

󵄨

󵄨

√
1 + 𝜌

2

0
.

(166)

This case was discussed in detail in our previous paper [57].
In particular for 𝛾 ≪ 1, we get

𝑤 =

8𝜀

𝑏
𝑚

2

𝑒𝐸

(

2𝜀

𝑏

𝑚

)

3/2

𝑒

−(2𝑚
2
/3𝑒𝐸)(2𝜀

𝑏
/𝑚)
3/2

.
(167)

Due to (164) and (167) dependence of 𝑤 on 𝐸

0
is weak unless

𝜌

0
≫ 1.

5.6. Dissociation Rate of 𝐽/𝜓. One of the most interesting
applications of this formalism is calculation of the dissoci-
ation rate of 𝐽/𝜓 which is considered a litmus test of the
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quark-gluon plasma [80]. Let 𝑧 be the heavy ions collision
axis; heavy-ion collision geometry implies that b

0
⋅ ẑ = 0. The

plane containing 𝑧-axis and perpendicular to the magnetic
field direction is the reaction plane. We have

(b
0

× V)

2

= 𝑉

2

𝑧
+ 𝑉

2

⊥
sin2𝜙,

(168)

where 𝜙 is the angle between the directions of B
0
and

V
⊥
, and I denoted vector components in the 𝑥𝑦-plane by

the subscript ⊥. We can express the components of the
quarkonium velocity V in terms of the rapidity 𝜂 as 𝑉

𝑧
=

tanh 𝜂, 𝑉

⊥
= 𝑃

⊥
/(𝑀

⊥
cosh 𝜂), where P and 𝑀 are the

quarkonium momentum and mass and 𝑀

2

⊥
= 𝑀

2
+ 𝑃

2

⊥
.

Results of numerical calculations are exhibited in Figures
13–15 [58]. In Figure 13 I show the dissociation rate of 𝐽/𝜓

for several values of the electric field E
0
induced by the

Chiral Magnetic Effect. Note that the typical size of the
medium traversed by a quarkonium in magnetic field can
be estimated very conservatively as a few fm. Therefore,
𝑤 ∼ 0.3–0.5 fm−1 corresponds to complete destruction
of 𝐽/𝜓s. This means that in the magnetic field of strength
𝑒𝐵

0
∼ 15𝑚

2

𝜋
all 𝐽/𝜓s with 𝑃

⊥
≳ 0.5GeV are destroyed

independently of the strength of 𝐸

0
. Since magnetic field

strength decreases towards the QGP periphery, most of 𝐽/𝜓

surviving at later times originate from that region. Effect of
electric field E

0
is strongest at low 𝑃

⊥
, which is consistent

with our discussion in the previous section. The dissociation
rate at low 𝑃

⊥
exponentially decreases with decrease of 𝐸

0
.

Probability of quarkonium ionization by the fields below𝐸

0
≲

0.1𝐵

0
(i.e., 𝜌

0
≲ 0.1) is exponentially small. This is an order

of magnitude higher than the estimate 𝜌

0
∼ 𝛼 of electric field

due to CME effect as proposed in [68].
As the plasma temperature varies, so is the binding energy

of quarkonium, although the precise form of the function
𝜀

𝑏
(𝑇) is model dependent.The dissociation rate picks at some

𝜀

0

𝑏
< 𝜀

vac
𝑏

(see Figure 13(b)), where 𝜀

vac
𝑏

is the binding energy
in vacuum, indicating that 𝐽/𝜓 breaks down even before 𝜀

𝑏

drops to zero, which is the case at B
0

= 0. This 𝜀

0

𝑏
is a strong

function of 𝐸

0
as can be seen in Figure 14. It satisfies the

equation 𝜕𝑤/𝜕𝜀

𝑏
= 0. In the case 𝛾 ≪ 1 (165) and (167) imply

that

𝜀

0

𝑏
=

𝑚

2

(

5𝑒𝐸

2𝑚

2
)

2/3

, 𝛾 ≪ 1.
(169)

At 𝛾 ≫ 1 and 𝜃 = 𝜋/2we employ (164) to derive the condition
(𝜀

0

𝑏
)

2
+ 𝑒𝐵𝜀

0

𝑏
/2𝑚 − 𝑒𝐸

2
/𝐵 = 0. In view of (166) 𝐸 ≈ 𝐵, and we

obtain

𝜀

0

𝑏
=

𝑒𝐵

4𝑚

(

√

16𝑚

2

𝑒𝐵

+ 1 − 1) ≈
√

𝑒𝐵, 𝛾 ≫ 1,
(170)

where in the last step I used that 𝑒𝐵 ≪ 𝑚

2. For a
given function 𝜀

𝑏
(𝑇) one can convert 𝜀

0

𝑏
into the dissocia-

tion temperature, which is an important phenomenological
parameter.

In the absence of electric fied E
0
, the dissociation proba-

bility peaks in the direction perpendicular to the direction of
magnetic field b

0
, that is, in the reaction plane. Dissociation

0.5
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Figure 14: Contour plot of the dissociation rate of 𝐽/𝜓 as a function
of 𝜀

𝑏
and 𝑒𝐸

0
at 𝑒𝐵

0
= 15𝑚

2

𝜋
, 𝜙 = 𝜋/2 (in the reaction plane), 𝜂 = 0

(midrapidity), and 𝑃

⊥
= 0.1GeV. Numbers inside boxes indicate the

values of 𝑤 in 1/fm.

rate vanishes in the b
0
direction. Indeed, for V ⋅ b

0
= 0

(157a) and (157b) imply that 𝐸 = 0. This feature is seen in
Figure 15(a). At finite E

0
the dissociation probability is finite

in the b
0
direction making the azimuthal distribution more

symmetric. The shape of the azimuthal distribution strongly
depends on quarkonium velocity, while at low𝑉 the strongest
dissociation is in the direction of the reaction plane, at higher
𝑉 the maximum shifts towards small angles around the b

0

direction. Extrema of the azimuthal distribution are roots of
the equation 𝜕𝑤/𝜕𝜙 = 0. At 𝛾 ≪ 1 it yields minimum at
𝜙

0
= 0, maximum at 𝜙

0
= 𝜋/2 and another maximum that

satisfies the condition (neglecting the spin-dependence of 𝜀

𝑏
)

𝑒𝐸

0
√

1 + 𝛾

2

𝐿
(𝑉

2

𝑧
+ 𝑉

2

⊥
sin2𝜙

0
) (1 + 𝜌

−2

0
) =

2𝑚

2

3

(

2𝜀

𝑏

𝑚

)

3/2

.

(171)

In order to satisfy (171) 𝜙

0
must decrease when 𝑉 increases

and vise versa. This features are seen in Figure 15(a).
Spectrum of quarkonia surviving in the electromagnetic

field is proportional to the survival probability 𝑃 = 1 −

𝑤𝑡, where 𝑡 is the time spent by the quarkonium in the
field. Consider 𝑃 as a function of the angle 𝜒 between the
quarkonium velocity and the reaction plane 𝜒 = 𝜋/2 − 𝜙.
Fourier expansion of 𝑃 in 𝜒 reads

𝑃 (𝜒) =

1

2

𝑃

0
+

∞

∑

𝑛=1

𝑃

𝑛
cos (𝑛𝜒) ,

𝑃

𝑛
=

1

𝜋

∫

𝜋

−𝜋

𝑃 (𝜒) cos (𝑛𝜒) 𝑑𝜒.

(172)
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Figure 15: (a) Angular distribution of 𝐽/𝜓 dissociation rate at 𝑒𝐵

0
= 15𝑚

2

𝜋
, 𝜂 = 0 at different 𝐸

0
and 𝑃

⊥
(in GeV’s). Magnetic field B

0
points in

the positive vertical direction. Reaction plane coincides with the horizontal plane. (b) Rescaled second Fourier-harmonic V
2
of the azimuthal

distribution as a function of 𝑃

⊥
. ⟨𝑃⟩ is the azimuthal average of the survival probability, and 𝑡 is the time spent by 𝐽/𝜓 in the 𝑃-odd bubble.

Ellipticity of the distribution is characterized by the “elliptic
flow” coefficient V

2
defined as

V
2

=

𝑃

2

(1/2) 𝑃

0

=

∫

𝜋

−𝜋
(1 − 𝑤𝑡) cos 2𝜒 𝑑𝜒

𝜋 ⟨𝑃⟩

= −

𝑡

𝜋 ⟨𝑃⟩

∫

𝜋

−𝜋

𝑤 cos 2𝜒 𝑑𝜒,

(173)

where ⟨𝑃⟩ denotes average of 𝑃 over the azimuthal angle.
These formulas are applicable only as long as 𝑤𝑡 < 1 because
otherwise there are no surviving quarkonia. In Figure 15(b)
[58] I show V

2
⟨𝑃⟩/𝑡, which is independent of 𝑡, as a function

of 𝑃

⊥
. As expected, in the absence of the CME, V

2
is negative

at low 𝑃

⊥
and positive at high 𝑃

⊥
. V

2
changes sign at 𝑃

⊥

that depends on the strength of the electric field. It decreases
as 𝐸

0
increases until at 𝐸

0
≃ 𝐵

0
it becomes positive at

all 𝑃

⊥
. Figure 15(b) provides the low bound for V

2
because

⟨𝑃⟩ < 1 and 𝑡 ≳ 1 fm. We thus expect that magnetic field
strongly modifies the azimuthal distribution of the produced
𝐽/𝜓s. Role of the magnetic field in generation of azimuthal
anisotropies in heavy-ion collisions has been pointed out
before in [29, 55].

In summary, we observed that 𝐽/𝜓 dissociation energy
increases with magnetic field strength and quarkonium
momentum. As a consequence, quarkonia dissociate at lower
temperature than one would have expected based on calcu-
lations neglecting magnetic field [57, 58]. Figure 13 indicates
that in heavy-ion collisions at the LHC, all 𝐽/𝜓’s moving
with 𝑃

⊥
> 0.5GeV in the reaction plane would dissociate

with probability of order unity even if the QGP effect was
completely negligible. If electric field fluctuations shown in
Figure 3 are taken into account, then even low 𝑃

⊥
𝐽/𝜓’s are

destroyed. However, chiral magnetic effect has negligible
effect on 𝐽/𝜓 dissociation.

Although magnetic fields in 𝑝𝑝 and 𝑝𝐴 collisions
are much weaker than in 𝐴𝐴 collisions, they are still
strong enough to cause 𝐽/𝜓 dissociation at sufficiently high
momenta 𝑃

⊥
. A truly spectacular feature of such process

would be 𝐽/𝜓 decay into two heavier 𝐷-mesons.
The effect of 𝐽/𝜓 dissociation in a magnetic field vanishes

in the direction parallel to the magnetic field, that is, per-
pendicular to the reaction plane. Therefore, 𝐽/𝜓 dissociation
gives negative contribution to the total azimuthal asymmetry
coefficient V

2
. It remarkable that presence of electric field

reverses this effect making V
2
positive.

6. Electromagnetic Radiation by
Quark-Gluon Plasma in Magnetic Field

6.1. Necessity to Quantize Fermion Motion. In Section 3 we
discussed synchrotron radiation of gluons by fast quarks. Our
main interest was the energy loss problem. In this section we
turn to the problem of electromagnetic radiation by QGP,
namely, radiation of photons by thermal fermions [7]. In
this case quasi-classical approximation that we employed in
Sections 3 and 4 is no longer applicable, and one has to take
into account quantization of fermion motion in magnetic
field.

Electromagnetic radiation by quarks and antiquarks of
QGP moving in external magnetic field originates from
two sources: (i) synchrotron radiation and (ii) quark and
antiquark annihilation. QGP is transparent to the emitted
electromagnetic radiation because its absorption coefficient
is suppressed by 𝛼

2. Thus, QGP is shinning in magnetic field.
The main goal of this paper is to calculate the spectrum and
angular distribution of this radiation. In strongmagnetic field
it is essential to account for quantization of fermion spectra.
Indeed, spacing between the Landau levels is of the order



Advances in High Energy Physics 25

𝑒𝐵/𝜀 (𝜀 being quark energy), while their thermal width is
of the order 𝑇. Spectrum quantization is negligible only if
𝑒𝐵/𝜀 ≪ 𝑇 which is barely the case at RHIC and certainly
not the case at LHC (at least during the first few fms of the
evolution). Fermion spectrum quantization is important not
only for hard and electromagnetic probes but also for the bulk
properties of QGP.

6.2. Synchrotron Radiation. Motion of charged fermions in
external magnetic field, which I will approximately treat as
spatially homogeneous, is quasi-classical in the field direction
and quantized in the reaction plane, which is perpendicular
to the magnetic field and span by the impact parameter
and the heavy-ion collision axis. In high energy physics
one usually distinguishes the transverse plane, which is
perpendicular to the collision axis and span by the magnetic
field and the impact parameter. In this section I use notation
in which three vectors are discriminated by the bold face
and their component along the field direction by the plain
face. Momentum projections onto the transverse plane are
denoted by subscript ⊥.

In the configuration space, charged fermions move along
spiral trajectories with the symmetry axis aligned with the
field direction. Synchrotron radiation is a process of photon
𝛾 radiation by a fermion 𝑓 with electric charge 𝑒

𝑓
= 𝑧

𝑓
𝑒 in

external magnetic field 𝐵 as follows:

𝑓 (𝑒

𝑓
, 𝑗, 𝑝) 󳨀→ 𝑓 (𝑒

𝑓
, 𝑘, 𝑞) + 𝛾 (k) , (174)

where k is the photon momentum, 𝑝, 𝑞 are the momentum
components along the magnetic field direction, and indicies
𝑗, 𝑘 = 0, 1, 2, . . . label the discrete Landau levels in the
reaction plane. The Landau levels are given by

𝜀

𝑗
= √𝑚

2
+ 𝑝

2
+ 2𝑗𝑒

𝑓
𝐵,

𝜀

𝑘
= √𝑚

2
+ 𝑞

2
+ 2𝑘𝑒

𝑓
𝐵.

(175)

In the constant magnetic field only momentum component
along the field direction is conserved. Thus, the conservation
laws for synchrotron radiation read

𝜀

𝑗
= 𝜔 + 𝜀

𝑘
, 𝑝 = 𝑞 + 𝜔 cos 𝜃, (176)

where 𝜔 is the photon energy and 𝜃 is the photon emission
angle with respect to the magnetic field. Intensity of the
synchrotron radiation was derived in [81]. In [82–85] it was
thoroughly investigated as a possible mechanism for 𝛾-ray
bursts. In particular, synchrotron radiation in electromag-
netic plasmas was calculated. Spectral intensity of angular
distribution of synchrotron radiation by a fermion in the 𝑗th
Landau state is given by

𝑑𝐼

𝑗

𝑑𝜔𝑑Ω

= ∑

𝑓

𝑧

2

𝑓
𝛼

𝜋

𝜔

2

𝑗

∑

𝑘=0

Γ

𝑗𝑘
{

󵄨

󵄨

󵄨

󵄨

M
⊥

󵄨

󵄨

󵄨

󵄨

2

+

󵄨

󵄨

󵄨

󵄨

M
‖

󵄨

󵄨

󵄨

󵄨

2

} 𝛿 (𝜔 − 𝜀

𝑗
+ 𝜀

𝑘
) ,

(177)

where Γ

𝑗𝑘
= (1 + 𝛿

𝑗0
)(1 + 𝛿

𝑘0
) accounts for the double

degeneration of all Landau levels except the ground one.

The squares of matrix elements M, which appear in (177),
corresponding to photon polarization perpendicular and
parallel to the magnetic field are given by, respectively,

4𝜀

𝑗
𝜀

𝑘

󵄨

󵄨

󵄨

󵄨

M
⊥

󵄨

󵄨

󵄨

󵄨

2

= (𝜀

𝑗
𝜀

𝑘
− 𝑝𝑞 − 𝑚

2
) [𝐼

2

𝑗,𝑘−1
+ 𝐼

2

𝑗−1,𝑘
]

+ 2√2𝑗𝑒

𝑓
𝐵√2𝑘𝑒

𝑓
𝐵 [𝐼

𝑗,𝑘−1
𝐼

𝑗−1,𝑘
] ,

4𝜀

𝑗
𝜀

𝑘

󵄨

󵄨

󵄨

󵄨

M
‖

󵄨

󵄨

󵄨

󵄨

2

= cos2𝜃 { (𝜀

𝑗
𝜀

𝑘
− 𝑝𝑞 − 𝑚

2
) [𝐼

2

𝑗,𝑘−1
+ 𝐼

2

𝑗−1,𝑘
]

−2√2𝑗𝑒

𝑓
𝐵√2𝑘𝑒

𝑓
𝐵 [𝐼

𝑗,𝑘−1
𝐼

𝑗−1,𝑘
]}

− 2 cos 𝜃 sin 𝜃 {𝑝√2𝑘𝑒

𝑓
𝐵 [𝐼

𝑗−1,𝑘
𝐼

𝑗−1,𝑘−1
+ 𝐼j,𝑘−1𝐼𝑗,𝑘]

+𝑞√2𝑗𝑒

𝑓
𝐵 [𝐼

𝑗,𝑘
𝐼

𝑗−1,𝑘
+ 𝐼

𝑗−1,𝑘−1
𝐼

𝑗,𝑘−1
]}

+ sin2𝜃 { (𝜀

𝑗
𝜀

𝑘
+ 𝑝𝑞 − 𝑚

2
) [𝐼

2

𝑗−1,𝑘−1
+ 𝐼

2

𝑗,𝑘
]

+2√2𝑗𝑒

𝑓
𝐵√2𝑘𝑒

𝑓
𝐵 (𝐼

𝑗−1,𝑘−1
𝐼

𝑗,𝑘
)} ,

(178)

where for 𝑗 ≥ 𝑘,

𝐼

𝑗,𝑘
≡ 𝐼

𝑗,𝑘
(𝑥) = (−1)

𝑗−𝑘
√

𝑘!

𝑗!

𝑒

−𝑥/2
𝑥

(𝑗−𝑘)/2
𝐿

𝑗−𝑘

𝑘
(𝑥) , (179)

and 𝐼

𝑗,𝑘
(𝑥) = 𝐼

𝑘,𝑗
(𝑥) when 𝑘 > 𝑗. (𝐼

𝑗,−1
are identically

zero.) The functions 𝐿

𝑗−𝑘

𝑘
(𝑥) are the generalized Laguerre

polynomials. Their argument is

𝑥 =

𝜔

2

2𝑒

𝑓
𝐵

sin2𝜃. (180)

Angular distribution of radiation is obtained by integrat-
ing over the photon energies and remembering that 𝜀

𝑘
also

depends on 𝜔 by virtue of (175) and (176) as follows:

𝑑𝐼

𝑗

𝑑Ω

= ∑

𝑓

𝑧

2

𝑓
𝛼

𝜋

𝑗

∑

𝑘=0

𝜔

∗
(𝜀

𝑗
− 𝜔

∗
)

𝜀

𝑗
− 𝑝 cos 𝜃 − 𝜔

∗sin2𝜃

× Γ

𝑗𝑘
{

󵄨

󵄨

󵄨

󵄨

M
⊥

󵄨

󵄨

󵄨

󵄨

2

+

󵄨

󵄨

󵄨

󵄨

M
‖

󵄨

󵄨

󵄨

󵄨

2

} ,

(181)

where photon energy 𝜔 is fixed to be

𝜔

∗
=

1

sin2𝜃
{ (𝜀

𝑗
− 𝑝 cos 𝜃)

− [(𝜀

𝑗
− 𝑝 cos 𝜃)

2

− 2𝑒

𝑓
𝐵 (𝑗 − 𝑘) sin2𝜃]

1/2

} .

(182)

In the context of heavy-ion collisions the relevant observ-
able is the differential photon spectrum. For ideal plasma in
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equilibrium each quark flavor gives the following contribu-
tion to the photon spectrum:

𝑑𝑁

synch

𝑑𝑡𝑑Ω𝑑𝜔

= ∑

𝑓

∫

∞

−∞

𝑑𝑝

𝑒

𝑓
𝐵 (2𝑁

𝑐
) 𝑉

2𝜋

2

×

∞

∑

𝑗=0

𝑗

∑

𝑘=0

𝑑𝐼

𝑗

𝜔𝑑𝜔𝑑Ω

(2 − 𝛿

𝑗,0
) 𝑓 (𝜀

𝑗
) [1 − 𝑓 (𝜀

𝑘
)] ,

(183)

where 2𝑁

𝑐
accounts for quarks and antiquarks each of 𝑁

𝑐

possible colors, and (2−𝛿

𝑗,0
) sums over the initial quark spin.

Index 𝑓 indicates different quark flavors. 𝑉 stands for the
plasma volume. The statistical factor 𝑓(𝜀) is

𝑓 (𝜀) =

1

𝑒

𝜀/𝑇
+ 1

. (184)

The 𝛿-function appearing in (177) can be re-written using
(175) and (176) as

𝛿 (𝜔 − 𝜀

𝑗
+ 𝜀

𝑘
) = ∑

±

𝛿 (𝑝 − 𝑝

∗

±
)

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑝/𝜀

𝑗
) − (𝑞/𝜀

𝑘
)

󵄨

󵄨

󵄨

󵄨

󵄨

, (185)

where

𝑝

∗

±
=

{cos 𝜃 (𝑚

2

𝑗
− 𝑚

2

𝑘
+ 𝜔

2sin2𝜃) ±
√

[(𝑚

𝑗
+ 𝑚

𝑘
)

2

− 𝜔

2sin2𝜃] [(𝑚

𝑗
− 𝑚

𝑘
)

2

− 𝜔

2sin2𝜃] }

2𝜔sin2𝜃
.

(186)

The following convenient notation was introduced:

𝑚

2

𝑗
= 𝑚

2
+ 2𝑗𝑒

𝑓
𝐵, 𝑚

2

𝑘
= 𝑚

2
+ 2𝑘𝑒

𝑓
𝐵. (187)

The physical meaning of (186) is that synchrotron radiation
of a photon with energy𝜔 at angle 𝜃 by a fermion undergoing
transition from 𝑗th to 𝑘th Landau level is possible only if the
initial quark momentum along the field direction equals 𝑝

∗

±
.

Another consequence of the conservation laws (176) is
that for a given 𝑗 and 𝑘 the photon energy cannot exceed a
certain maximal value that will be denoted by 𝜔

𝑠,𝑗𝑘
. Indeed,

inspection of (186) reveals that this equation has a real
solution only in two cases:

(i) 𝑚

𝑗
− 𝑚

𝑘
≥ 𝜔 sin 𝜃, or (ii) 𝑚

𝑗
+ 𝑚

𝑘
≤ 𝜔 sin 𝜃. (188)

The first case is relevant to the synchrotron radiation, while
the second one is revelant to the one-photon pair annihilation
as discussed in the next section. Accordingly, allowed photon
energies in the 𝑗 → 𝑘 transition satisfy

𝜔 ≤ 𝜔

𝑠,𝑗𝑘
≡

𝑚

𝑗
− 𝑚

𝑘

sin 𝜃

=

√𝑚

2
+ 2𝑗𝑒

𝑓
𝐵 − √𝑚

2
+ 2𝑘𝑒

𝑓
𝐵

sin 𝜃

.

(189)

No synchrotron radiation is possible for 𝜔 > 𝜔

𝑠,𝑗𝑘
. In

particular, when 𝑗 = 𝑘, 𝜔

𝑠,𝑗𝑘
= 0, that is, no photon is emitted,

which is also evident in (182).The reason is clearly seen in the
frame where 𝑝 = 0: since 𝜀

𝑗
≥ 𝜀

𝑘
, constraints (175) and (176)

hold only if 𝜔 = 0.

Substituting of (177) into (183) yields the spectral distri-
bution of the synchrotron radiation rate per unit volume

𝑑𝑁

synch

𝑉𝑑𝑡𝑑Ω𝑑𝜔

= ∑

𝑓

2𝑁

𝑐
𝑧

2

𝑓
𝛼

𝜋

3
𝑒

𝑓
𝐵

×

∞

∑

𝑗=0

𝑗

∑

𝑘=0

𝜔 (1 + 𝛿

𝑘0
) 𝜗 (𝜔

𝑠,𝑖𝑗
− 𝜔)

× ∫ 𝑑𝑝∑

±

𝛿 (𝑝 − 𝑝

∗

±
)

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑝/𝜀

𝑗
) − (𝑞/𝜀

𝑘
)

󵄨

󵄨

󵄨

󵄨

󵄨

× {

󵄨

󵄨

󵄨

󵄨

M
⊥

󵄨

󵄨

󵄨

󵄨

2

+

󵄨

󵄨

󵄨

󵄨

M
‖

󵄨

󵄨

󵄨

󵄨

2

} 𝑓 (𝜀

𝑗
) [1 − 𝑓 (𝜀

𝑘
)] ,

(190)

where 𝜗 is the step function.
The natural variables to study the synchrotron radiation

are the photon energy 𝜔 and its emission angle 𝜃 with
respect to themagnetic field. However, in high energy physics
particle spectra are traditionally presented in terms of rapid-
ity 𝑦 (which for photons is equivalent to pseudo-rapidity)
and transverse momentum 𝑘

⊥
. 𝑘

⊥
is a projection of three-

momentum k onto the transverse plane. These variables are
not convenient to study electromagnetic processes in external
magnetic field. In particular, they conceal the azimuthal
symmetry with respect to the magnetic field direction. To
change variables, let 𝑧 be the collision axis, and let ŷ be
the direction of the magnetic field. In spherical coordinates
photon momentum is given by k = 𝜔(sin𝛼 cos𝜙x̂ +

sin𝛼 sin𝜙ŷ + cos𝛼ẑ), where 𝛼 and 𝜙 are the polar and
azimuthal angles with respect to 𝑧-axis. The plane 𝑥𝑧 is the
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Figure 16: Spectrum of synchrotron radiation by 𝑢 quarks at 𝑒𝐵 = 𝑚

2

𝜋
, 𝑦 = 0, and 𝜙 = 𝜋/3: (a) contribution of 10 lowest Landau levels 𝑗 ≤ 10;

several cutoff frequencies are indicated; (b) summed over all Landau levels. 𝑚

𝑢
= 3MeV, 𝑇 = 200MeV. Adopted from [7].

reaction plane. By definition, ̂k ⋅ ŷ = cos 𝜃 implying that
cos 𝜃 = sin𝛼 sin𝜙. Thus,

𝑘

⊥
= √𝑘

2

𝑥
+ 𝑘

2

𝑦
=

𝜔 cos 𝜃

sin𝜙

, 𝑦 = −lntan𝛼

2

. (191)

The second of these equations is the definition of (pseudo-)
rapidity. Inverting (191) yields

𝜔 = 𝑘

⊥
cosh𝑦, cos 𝜃 =

sin𝜙

cosh𝑦

. (192)

Because 𝑑𝑦 = 𝑑𝑘

𝑧
/𝜔 the photonmultiplicity in a unit volume

per unit time reads

𝑑𝑁

synch

𝑑𝑉𝑑𝑡𝑑

2
𝑘

⊥
𝑑𝑦

= 𝜔

𝑑𝑁

synch

𝑑𝑉𝑑𝑡𝑑

3
𝑘

=

𝑑𝑁

synch

𝑑𝑉𝑑𝑡𝜔𝑑𝜔𝑑Ω

. (193)

Figure 16 displays the spectrum of synchrotron radiation
by 𝑢 quarks as a function of 𝑘

⊥
at fixed 𝜙 [7]. At midrapidity

𝑦 = 0 (192) implies that 𝑘

⊥
= 𝜔. Contribution of 𝑑 and 𝑠

quarks is qualitatively similar. At 𝑒𝐵 ≫ 𝑚

2, quark masses
do not affect the spectrum much. The main difference stems
from the difference in electric charge. In panel (a) only the
contributions of the first ten Landau levels are displayed.
The cutoff frequencies 𝜔

𝑠,𝑗𝑘
can be clearly seen, and some of

themare indicated on the plot for convenience.The azimuthal
distribution is shown in Figure 17. Note that at midrapidity
𝜙 = 𝜋/2 − 𝜃. Therefore, the figure indicates that photon
production in the direction of magnetic field (at 𝜙 = 𝜋/2)
is suppressed. More photons are produced in the direction
of the reaction plane 𝜙 = 0. This results in the ellipticity of
the photon spectrum that translates into the positive “elliptic
flow” coefficient V

2
. It should be noted that the classical

synchrotron radiation has a similar angular distribution.
In order to compare the photon spectrum produced by

synchrotron radiation to the photon spectrum measured in
heavy-ion collisions, the𝑢,𝑑, and 𝑠 quarks contributionswere
summed up. Furthermore, the experimental data from [8]
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Figure 17: Azimuthal distribution of synchrotron radiation by 𝑢-
quarks at 𝑘

⊥
= 0.2GeV, 𝑒𝐵 = 𝑚

2

𝜋
, and 𝑦 = 0. 𝑚

𝑢
= 3MeV. Adopted

from [7].

was divided by 𝑉𝑡, where 𝑡 is the magnetic field relaxation
time.The volume of the plasma can be estimated as 𝑉 = 𝜋𝑅

2
𝑡

with 𝑅 ≈ 5 fm being the nuclear radius. Therefore,

𝑑𝑁

𝛾

exp

𝑑𝑉𝑑𝑡 𝑑

2
𝑘

⊥
𝑑𝑦

=

𝑑𝑁

𝛾

exp

𝑑

2
𝑘

⊥
𝑑𝑦

1

𝜋𝑅

2
𝑡

2

=

𝑑𝑁

𝛾

exp

𝑑

2
𝑘

⊥
𝑑𝑦

(

GeV
14.9

)

4

(

1 fm
𝑡

)

2

.

(194)

The results are plotted in Figure 18. In panel (a) it is seen that
synchrotron radiation gives a significant contribution to the
photon production in heavy-ion collisions at RHIC energy.
This contribution is larger at small transverse momenta. This
may explain enhancement of photon production observed in
[8]. Panel (b) indicates the increase of the photon spectrum
produced by the synchrotron radiation mechanism at the
LHC energy. This increase is due to enhancement of the
magnetic field strength, but mostly because of increase of
plasma temperature. This qualitative features can be better
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Figure 18: Azimuthal average of the synchrotron radiation spectrum of 𝑢, 𝑑, 𝑠 quarks and their corresponding antiquarks. (a) 𝑒𝐵 = 𝑚

2

𝜋
, 𝑦 = 0

compared to the experimental data from [8] divided by 𝑉𝑡 = 25𝜋 fm4 (dots) and 𝑉𝑡 = 9 × 25𝜋 fm4 (stars); (b) 𝑒𝐵 = 𝑚

2

𝜋
, 𝑇 = 200MeV, and

𝑦 = 0 (solid line) compared to 𝑒𝐵 = 15𝑚

2

𝜋
, 𝑇 = 400MeV, and 𝑦 = 0 (dashed line). 𝑚

𝑢
= 3MeV, 𝑚

𝑑
= 5MeV, and 𝑚

𝑠
= 92MeV. Adopted

from [7].

understood by considering the limiting cases of low and high
photon energies.

One possible way to ascertain the contribution of elec-
tromagnetic radiation in external magnetic field is to isolate
the azimuthally symmetric component with respect to the
direction of the magnetic field. It seems that synchrotron
radiation dominates the photon spectrum at low 𝑘

⊥
. Thus,

azimuthal symmetry can be easily checked by simply plotting
the multiplicity versus 𝜔, 𝜃, and 𝜑, where 𝜔 is photon energy,
𝜃 is emission angle with respect to the magnetic field, and
𝜑 is azimuthal angle around the magnetic field direction
(which is perpendicular both to the collision axis and to the
impact parameter). In Figure 16(a) it is also seen that in these
variables it may be possible to discern the cutoff frequencies
𝜔

𝑠,𝑗𝑘
that appear as resonances (in Figure 16 𝑦 = 0 so 𝑘

⊥
= 𝜔).

Note that averaging over the azimuthal angle 𝛼 around the
collision axis direction destroys these features; see Figure 18.

6.2.1. Low Photon Energy. The low energy part of the photon
spectrum satisfies the condition𝜔 ≪

√
𝑒

𝑓
𝐵.The correspond-

ing initial quark momentum components along the field 𝑝

and energy 𝜀

𝑗
follow from (186) and (175) and are given by

𝑝

∗

±
≈

(𝑗 − 𝑘) 𝑒

𝑓
𝐵 (cos 𝜃 ± 1)

𝜔 sin2𝜃
+ O (𝜔) ,

𝜀

𝑗
≈

󵄨

󵄨

󵄨

󵄨

𝑝

∗

±

󵄨

󵄨

󵄨

󵄨

+ O (𝜔) .

(195)

Evidently, 𝜀

𝑗
≫ 𝑒𝐵. In practice, magnetic field strength

satisfies √
𝑒𝐵 ≳ 𝑇, so that 𝜀

𝑗
≫ 𝑇. Therefore, synchrotron

radiation is dominated by fermion transitions from low
Landau levels due to the statistical factors appearing in (183).

For a qualitative discussion it is sufficient to consider the
1 → 0 transition. In this case the matrix elements (178) read

󵄨

󵄨

󵄨

󵄨

󵄨

M
1,0󵄨

󵄨

󵄨

󵄨

󵄨

2

=

1

2𝜀

1
𝜀

0

{𝐼

2

1,0
(𝜀

1
𝜀

0
− 𝑝𝑞 cos2𝜃 − 𝑚

2
)

+ cos 𝜃 sin 𝜃𝑞√2e
𝑓
𝐵𝐼

1,0
𝐼

0,0
} .

(196)

Assuming that the field strength is supercritical; that is,
𝑒

𝑓
𝐵 ≫ 𝑚

2, but keeping all powers of 𝜔 (for future reference)
(186) reduces to

𝑝

∗

±
≈

1

2𝜔 sin2𝜃
{2𝑒

𝑓
𝐵 (cos 𝜃 ± 1) + 𝜔

2sin2𝜃 (cos 𝜃 ∓ 1)} .

(197)

Furthermore, using the conservation laws (176) we obtain in
this approximation

𝜀

1±
=

1

2𝜔 sin2𝜃
󵄨

󵄨

󵄨

󵄨

󵄨

2𝑒

𝑓
𝐵 (cos 𝜃 ± 1) − 𝜔

2sin2𝜃 (cos 𝜃 ∓ 1)

󵄨

󵄨

󵄨

󵄨

󵄨

,

𝑞

±
=

1

2𝜔 sin2𝜃
(2𝑒

𝑓
𝐵 − 𝜔

2sin2𝜃) (cos 𝜃 ± 1) ,

𝜀

0±
=

󵄨

󵄨

󵄨

󵄨

𝑞

󵄨

󵄨

󵄨

󵄨

.

(198)

The values of the nonvanishing matrix elements 𝐼

𝑗,𝑘
defined

by (179) are

𝐼

1,0
(𝑥) = −𝑥

1/2
𝑒

−𝑥/2
, 𝐼

0,0
(𝑥) = 𝑒

−𝑥/2
. (199)
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Table 1:The upper summation limit in (190) that yields the 5% accuracy. 𝑗max is the highest Landau level of the initial quark that is taken into
account at this accuracy. Throughout the table 𝑦 = 0.

𝑓 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑠 𝑢 𝑢 𝑠

𝑒𝐵/𝑚

2

𝜋
1 1 1 1 1 1 1 15 15 15

𝑇, GeV 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4
𝜙

𝜋

3

𝜋

3

𝜋

3

𝜋

3

𝜋

6

𝜋

12

𝜋

3

𝜋

3

𝜋

3

𝜋

3

𝑘

⊥
, GeV 0.1 1 2 3 1 1 1 1 2 1

𝑥 0.096 9.6 38 86 29 35 19 0.64 2.6 1.3
𝑗max 30 40 90 150 120 200 90 8 12 16

For 𝑗 = 1, 𝑘 = 0 we write using (189) 𝜔

𝑠,10
=

√
2𝑒

𝑓
𝐵/ sin 𝜃.

Then (180) implies 𝑥 = 𝜔

2
/𝜔

2

𝑠,10
. Substituting (197)–(199) into

(196) gives

󵄨

󵄨

󵄨

󵄨

󵄨

M
1,0

±

󵄨

󵄨

󵄨

󵄨

󵄨

2

=

1

2

𝑥𝑒

−𝑥
[1 −

cos 𝜃 (1 + 𝑥) ± (1 − 𝑥)

cos 𝜃 (1 − 𝑥) ± (1 + 𝑥)

cos2𝜃

−

2 (1 − 𝑥) cos 𝜃sin2𝜃
cos 𝜃 (1 − 𝑥) ± (1 + 𝑥)

] .

(200)

According to (190) the contribution of the 1 → 0 transition
to the synchrotron radiation reads [7]

𝑑𝑁

synch,10

𝑉𝑑𝑡𝑑Ω𝑑𝜔

= ∑

𝑓

2𝑁

𝑐
𝑧

2

𝑓
𝛼

𝜋

𝜔Γ

𝑒

𝑓
𝐵

2𝜋

2
∑

±

𝑓 (𝜀

1
) [1 − 𝑓 (𝜀

0
)]

󵄨

󵄨

󵄨

󵄨

󵄨

M
1,0

±

󵄨

󵄨

󵄨

󵄨

󵄨

2

×

(1 − 𝑥) cos 𝜃 ± (1 + 𝑥)

−2𝑥 (cos 𝜃 ∓ 1)

𝜗 (𝜔

𝑠,10
− 𝜔) .

(201)

Consider radiation spectrum at 𝜃 = 𝜋/2, that is, perpendicu-
lar to the magnetic field. The spectrum increases with 𝑥 and
reaches maximum at 𝑥 = 1. Since 𝑥 = 𝜔

2
/(2𝑒

𝑓
𝐵), spectrum

decreases with increase of 𝐵 at fixed 𝜔. This feature holds at
low 𝑥 part of the spectrum for other emission angles and even
for transitions form higher excited states. However, at high
energies, it is no longer possible to approximate the spectrum
by the contribution of a few lowLandau levels. In that case the
typical values of quantumnumbers are 𝑗, 𝑘 ≫ 1. For example,
to achieve the numerical accuracy of 5%, sumover 𝑗must run
up to a certain 𝑗max. Some values of 𝑗max are listed in Table 1
[7].

6.2.2. High Photon Energy. Thehigh energy tail of the photon
spectrum is quasi-classical and approximately continuous.
In this case the Laguerre polynomials can be approximated
by the Airy functions or the corresponding modified Bessel
functions. The angular distribution of the spectrum can be
found in [82]

𝑑𝑁

synch

𝑉𝑑𝑡𝑑Ω𝑑𝜔

= ∑

𝑓

𝑧

2

𝑓
𝛼

𝜋

𝑛

𝑓
𝜔𝑚

2

4𝑇

3

√

𝑒

𝑓
𝐵𝑇 sin 𝜃

𝑚

3
𝑒

−𝜔/𝑇
, (202)
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Figure 19: Variation of the synchrotron spectrum with plasma
temperature. Lower line: 𝑇 = 200MeV, upper line: 𝑇 = 250MeV;
Other parameters are the same as in Figure 18(a). Adopted from [7].

provided that 𝜔 ≫ 𝑚√𝑚𝑇/𝑒

𝑓
𝐵 sin 𝜃. Here 𝑛

𝑓
is number

density of flavor 𝑓, which is independent of 𝐵 as follows:

𝑛

𝑓
=

2 ⋅ 2𝑁

𝑐
𝑒

𝑓
𝐵

4𝜋

2

∞

∑

𝑗=0

∫

∞

−∞

𝑑𝑝𝑒

−𝜀
𝑗
/𝑇

≈

4𝑁

𝑐

𝜋

2
𝑇

3
. (203)

Here summation over 𝑗was replaced by integration. It follows
that this part of the spectrum increases with magnetic field
strength as √

𝐵 and with temperature as √
𝑇𝑒

−𝜔/𝑇. Therefore,
variation of the spectrum with 𝑇 is much stronger than with
𝐵. The 𝑇 dependence is shown in Figure 19.

Unlike time-dependence of magnetic field, time-
dependence of temperature is non-negligible even during
the first few fm/c. Final synchrotron spectrum, which is
an average over all temperatures, is dominated by high
temperatures/early times. However, the precise form of
time-dependence of temperature is model-dependent.
Therefore, the spectrum is presented at fixed temperatures,
so that a reader can appreciate its qualitative features in a
model-independent way.

6.3. Pair Annihilation. The theory of one-photon pair annihi-
lation was developed in [86, 87]. It was shown in [88] that in
the super-critical regime 𝑒𝐵 ≫ 𝑚

2 one-photon annihilation is
much larger than the two-photon annihilation. In this section
the one-photon annihilation of 𝑞 and 𝑞 pairs in the QGP is
calculated.
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Figure 20: Photon spectrum in one-photon annihilation of 𝑢 and 𝑢 quarks. 𝑒𝐵 = 𝑚

2

𝜋
, 𝑦 = 0. (a) 𝑘

⊥
-spectrum at 𝜙 = 𝜋/3, (b) azimuthal

angule distribution at 𝑘

⊥
= 1GeV. Adopted from [7].

For 𝑞𝑞 pair annihilation the conservation of energy and
momentum is given by

𝜀

𝑗
+ 𝜀

𝑘
= 𝜔, 𝑝 + 𝑞 = 𝜔 cos 𝜃. (204)

The spectral density of the annihilation rate per unit volume
reads

𝑑𝑁

annih

𝑉𝑑𝑡𝑑𝜔𝑑Ω

= ∑

𝑓
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where the matrix elements T can be obtained from (178) by
making substitutions 𝜀

𝑘
→ −𝜀

𝑘
, 𝑞 → −𝑞 and are given by
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with the same functions 𝐼

𝑖,j as in (179). Integration over 𝑞

removes the delta function responsible for the conservation
of momentum along the field direction. The remaining delta
function is responsible for energy conservation and can be
written in exactly the same form as in (185) with particle
energies and momenta now obeying the conservation laws
(204). It is straightforward to see that momentum 𝑝

∗

±
is still

given by (190), (187). The photon spectrum produced by
annihilation of quark in state 𝑗 with antiquark in state 𝑘 has a
threshold 𝜔

𝑎,𝑖𝑗
that is given by the case (ii) in (188) as follows:
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Thus, the spectral density of the annihilation rate per unit
volume is
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Passing to 𝑦 and 𝑝

⊥
variables in place of 𝜔 and 𝜃 is similar to

(193).
The results of the numerical calculations are represented

in Figure 20. Panel (a) shows the spectrum of photons radi-
ated in annihilation of𝑢 and𝑢.We conclude that contribution
of the annihilation channel is negligible as compared to the
synchrotron radiation.

In summary, results of the calculations presented in this
section indicate that photon production by QGP due to its
interaction with external magnetic field gives a considerable
contribution to the total photon multiplicity in heavy-ion
collisions. This is seen in Figure 18 were the model cal-
culation is compared with the experimental data [8]. The
largest contribution to the photon multiplicity arises from
photon momenta of the order of √

𝑒𝐵. This may provide an
explanation of the photon excess observed by the PHENIX
experiment [8]. Similar mechanism may also be responsible
for enhancement of low mass di-lepton production that
proceeds via emission of virtual photon which subsequently
decays into dilepton pair.

7. Summary

Analytical and numerical calculations indicate existence
of extremely powerful electromagnetic fields in relativistic
heavy-ion collisions. They are the strongest electromagnetic
fields that exist in nature.They evolve slowly on characteristic
QGP time scale and therefore have a profound effect on
dynamics of QGP. In this review I described the recent
progress in understanding of particle production in presence
of these fields. Treating the fields as quasi-static and spatially
homogeneous allowed us to use analytical results derived
over the past half century. This is, however, the main source
of uncertainty that can be clarified only in comprehensive
numerical approach based on relativistic magnetohydrody-
namics.

I discussed many spectacular effects caused by mag-
netic field. All of them have direct phenomenological rel-
evance. Breaking of spherical symmetry by magnetic field
in the direction perpendicular to the collision axis results
in azimuthal asymmetry of particle production in the reac-
tion plane. Fast quarks moving in magnetic field radiate
a significant fraction of their energy. All electromagnetic
probes are also naturally affected bymagnetic field.Therefore,
all experimental processes that are being used to study the
properties of QGP have strong magnetic field dependence.
In addition, the QCD phase diagram is modified bymagnetic
field as has been extensively studied usingmodel calculations
[89–110] and lattice simulations [111–123]. Entanglement of
effects produced by magnetic field with conventional QGP
ones makes it difficult to quantify the role of magnetic field
in QGP dynamics. A unique observable is polarization of
leptons escaping from QGP, which can be induced only by
magnetic field see Section 3.3.

Profound influence of magnetic field on properties of
QGP is truly remarkable. Hopefully, progress in theory will
soon be matched by experimental investigations that will
eventually discover properties of QCD at high temperatures
and strong electromagnetic fields.
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diagram for external magnetic fields,” Journal of High Energy
Physics, vol. 2012, article 44, 2012.

[116] G. S. Bali, F. Bruckmann, G. Endrodi et al., “The finite tem-
perature QCD transition in external magnetic fields,” In press,
http://arxiv.org/abs/1111.5155.

[117] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, and
A. Schafer, “QCDquark condensate in externalmagnetic fields,”
Physical ReviewD, vol. 86, no. 7, Article ID 071502, 6 pages, 2012.

[118] E.-M. Ilgenfritz, M. Kalinowski, M. Muller-Preussker, B.
Petersson, and A. Schreiber, “Two-color QCD with staggered

fermions at finite temperature under the influence of amagnetic
field,” Physical Review D, vol. 85, no. 11, Article ID 114504, 12
pages, 2012.

[119] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabó, “The
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