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ABSTRACT

in the very early universe. According to the simplest models, inflation is driven

by a single scalar field that slowly rolls down its own potential. Despite the great
success of single-field inflation, usually high-energy theories beyond the standard model
accommodate a richer particle content. For this reason, in this thesis we explore different
ways of testing extra fields present during inflation, especially considering their effects
in the gravitational wave sector.

In the first part of this thesis, we examine light spin-2 fields, described within an
effective field theory approach. We show that when the helicity-2 sound speed decreases
during inflation, the spin-2 fields can induce primordial gravitational waves growing
towards small scales. We explore the region of parameter space which can be probed by
the upcoming LISA mission at interferometer scales. These light spin-2 fields would also
mediate the tensor 3-point correlation function, and we therefore study the properties
of the bispectrum signal, its amplitude in the equilateral and squeezed configurations
and shape. We also discuss a possible way of indirectly testing the bispectrum on small
scales, and identify the parameter space generating percent level anisotropies at scales
to be probed by SKA and LISA.

In the second part of this thesis, we consider the presence of an additional scalar field,
working in the framework of cosmological a—attractors, originally formulated in terms
of a radial and angular field living in a hyperbolic field space. We focus on potentials
endowed with an inflection point, and compare single- and two-field models leading to
enhanced scalar fluctuations on small scales. While in the single-field case ultra-slow-roll
dynamics at the inflection point is responsible for the growth of the power spectrum, in
the multi-field set-up we study the effect of geometrical destabilisation and non-geodesic
motion in field space. We show that compatibility with CMB measurements on large
scales constrains the small-scale phenomenology, with primordial black holes that can
only be produced with very light masses, M < 108g, and GWs induced at second-order
peaked at ultra-high frequencies, f = 10kHz.

In this thesis we study cosmological inflation, a period of accelerated expansion
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CHAPTER

INTRODUCTION

osmology is a branch of physics studying the evolution of the universe, aiming at
understanding its origin and all cosmological observations in terms of a complete

physical model.

At the foundations of all modern studies of cosmology there are two assumptions.
First that the laws of gravity are described by general relativity (GR), the theory of
gravity put forward by Albert Einstein in 1915 [5]. A first observational test of GR was
performed during the 1919 expedition to Principe and Sobral lead by the astronomers
Eddington and Dyson, who detected a deflection of starlight due to the presence of the
Sun in accordance with the value predicted by GR [6]. The final confirmation of GR
arrived in 2016 with the first direct detection of gravitational waves emitted by a black
hole binary merger [7], whose existence was predicted by Einstein a century before.
This discovery marked a landmark in modern physics, from theoretical cosmology to

observational astrophysics.

Extensive tests of GR have been performed since then, from experiments looking
at effects of gravity on very large scales to laboratory-size probes, and up to now no
deviations from GR have been detected [8]. We therefore work under the assumption

that the theory describing gravity in the universe is GR.

The second pillar of cosmology is the cosmological principle. The first detection of large
angular scale anisotropies of cosmological origins in the Cosmic Microwave Background
by the COBE mission in 1992 [9], together with observations of the distribution of

galaxies [10], shows that the universe is homogeneous and isotropic on scales larger than
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CHAPTER 1. INTRODUCTION

100Mpc. Clearly on smaller scales the universe is filled with inhomogeneous structures,
such as galaxies and clusters of galaxies, but at early times the universe looks the same
at each point and in every direction. The cosmological principle entails that the laws
of physics governing the universe are the same for all observers, crucially making it

knowable to us.

Based on the cosmological principle and GR, the Hot Big Bang model of cosmology
stands as our current best understanding of the history of the universe, from an initial
very hot and dense state to the universe we observe today, filled with clusters of galaxies

separated by voids.

Approximately 13.8 billion years ago, there was no concept of spacetime and the
entire universe was in a state where the distance between points in it vanished, usually
called the Big Bang singularity [11, 12]. The physical laws we use to understand the
world around us break down at such high energies, and cannot be used to describe such
a state, where even space and time lose their meaning [12]. The universe then started to
expand from an initial explosion, the Big Bang, that originated spacetime itself and took
place in each point of the universe. We note here that, regarding GR as the low-energy
effective field theory (EFT) of some unknown theory of quantum gravity, one expects
perturbative calculations in GR to remain valid only up to some cut-off scale of the order
of the Planck mass, Mp. In light of this, predicting an initial singularity state relies on
extrapolating the EFT treatment beyond its regime of validity, and needs therefore to be
regarded as our current (and possibly inadequate) picture of the universe initial state,
which will necessarily be updated once we understand the super-Planckian physics that

actually regulates processes at those high-energies.

At the very beginning, the universe was very dense and hot and not much is known
about it; the laws governing gravity and fields at these high energies are beyond our
current understanding of physics. For example, today we see the four forces of nature, i.e.
the gravitational, electromagnetic, strong, and weak force, acting separately, but they
would probably be unified in a single force at very high energies, very soon after the
Big Bang. The progressive separation of the four forces is caused by phase transitions,
e.g. as the temperature of the universe decreases, it crosses specific values that trigger
changes in the way particles interact. Some speculative theories have been put forward
to unify the strong nuclear force with the electroweak interaction at energies as high as
1017 GeV (see e.g. the textbook [13]), while the mechanism to unify these with gravity is
still unknown, possibly constituting the holy grail of theoretical physics. In the following

we assume that, as the universe expands and cools down, two phase transitions signal

2



the separation of the gravitational and strong forces, while the electromagnetic and
weak forces are still unified at this point. The exact temperature triggering these phase
transitions is not known, due to the incomplete theoretical knowledge we have about the
high energy theory.

When the energy drops below 1018 GeV, also known as the Planck scale, gravity can
be described by general relativity and the fields making up the universe’s content by
quantum field theory.

At this stage, the universe possibly underwent a period of accelerated expansion,
that increased its size at least by a factor of e®® in a tiny fraction of a second, between
approximately 10734s and 10733 s after the Big Bang. This phase is known as cosmological
inflation (see e.g. [14] for a review), which we review in great detail in section 2 and will
be the main focus of this thesis. In the simplest models of inflation, a scalar field slowly
rolling down its own potential is responsible for the (quasi-)exponential expansion of the
universe. At the end of inflation the scalar field decays into standard model particles
during a process called reheating [15], which provides the initial conditions for the
subsequent evolution of the universe.

At this point the temperature of the universe is too high to allow quarks and gluons
to form baryons and mesons, 3-quark and quark-antiquark systems respectively, and the
quark-gluon plasma is thermalised.

When the temperature drops below 100 GeV the electroweak phase transition takes
place: the Higgs field acquires a vacuum expectation value and the W and Z bosons
acquire their masses through the Higgs mechanism [16, 17]. The weak force is separated
from the electromagnetic interaction, that is now mediated by massless photons.

At 150MeV the Quantum Chromodynamics phase transition [18] takes place, with
quarks and gluons, previously forming a plasma, bonding to form baryons and mesons,
and their antiparticles.

At 1MeV the neutrinos decouple from the primordial plasma and start streaming
freely as the Cosmic Neutrino Background (CvB) [19], analogous to the Cosmic Mi-
crowave (CMB) background, a free stream of photons released later on. The neutrinos
making up the CvB have very low energies, which makes the CvB practically impossible
to detect, even if indirect evidence of its existence is given by observations of the CMB
photons [19].

As the temperature continues dropping, the hadron/antihadron pairs created are
no longer thermalised and annihilate each other, producing high-energy photons. An

initial asymmetry between particles and antiparticles explains why a residue of baryonic
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CHAPTER 1. INTRODUCTION

matter is left behind in this process, while the corresponding antimatter is completely
wiped out [20]. The process accounting for the initial asymmetry between matter and
antimatter is called baryogenesis [21], and whereas a lot of theories have been proposed
to explain it, there is no compelling model supported by observational evidence at the
moment. When the temperature drops to 500keV also leptons and antileptons annihilate
each other, leaving the universe filled with photons, neutrinos, some leptons and hadrons

in the form of protons and neutrons.

Around 3 minutes after the Big Bang, or when the temperature dropped to 100keV,
the light elements nuclei, i.e. deuterium, helium, lithium and beryllium, were formed in
a process known as Big Bang nucleosynthesis [22, 23]. The light elements abundance
in old galaxies and in the intergalactic medium provides one of the strongest proofs of

evidence for Big Bang cosmology.

When the temperature dropped below 0.75eV, the universe became dominated by
non-relativistic matter. From this point small perturbations in the primordial plasma,
seeded by quantum fluctuations produced during inflation, are no longer erased by the

high energy photons and can start evolving to form denser regions.

As the temperature continues dropping, the photons are not energetic enough to break
proton-electron bound states, and stable neutral hydrogen forms. This process is called
recombination. After recombination the number of free electrons drops, and Thompson
scattering between photons and electrons becomes inefficient. As a consequence, the
photons decouple from the primordial plasma and start freely streaming. While we
cannot observe electromagnetic light emitted before the photon decoupling, now for the
first time the universe is transparent to electromagnetic radiation and we can observe the
freely streaming photons as the Cosmic Microwave Background. Discovered by accident
in 1965 by the radio astronomers Penzias and Wilson [24], the CMB constitutes our best

source of information about the early universe.

After photon decoupling, the only photons streaming through the universe were the
CMB ones and those released by a rare electron transition in neutral hydrogen atoms,
emitted with wavelength of 21 cm [25, 26]. Stars and galaxies have not formed yet, there
are no sources emitting light in the universe and this period is therefore known as the
dark ages. Hundreds of millions years after the Big Bang, the first generation of stars
and the earliest galaxies started forming [27], ending the dark ages. These old stars,
galaxies and quasars emit intense radiation that reionises universe, i.e. the high-energy
photons emitted break neutral hydrogen atoms into a plasma of protons and electrons.

This process is known as reionisation [28]. In the meantime, perturbations in the matter
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1.1. THE DYNAMICS OF SPACETIME IN GENERAL RELATIVITY

distribution continue to grow to form younger stars, galaxies and clusters of galaxies.

About 9 billions of years after the Big Bang, the energy density of matter became
comparable to that of dark energy, an unknown form of energy that behaves like a
cosmological constant and accounts for 70% of the universe energy density today [29].
Due to the effect of dark energy the universe expansion accelerates, as first discovered in
1998 by observations of type Ia supernovae [30, 31] and later confirmed by the analysis
of CMB anisotropies [32]. We live in this epoch of the universe’s history, known as the
dark-energy-dominated era.

In the following we provide more mathematical details on some specific aspects of the
Big Bang model outlined above. In section 1.1 we introduce the description of spacetime
in general relativity, specialising the discussion on the only metric compatible with
the cosmological principle in section 1.2.1. In sections 1.2.2 and 1.2.3 respectively, we
describe the dynamics of the universe as dictated by general relativity and introduce the
Lambda Cold Dark Matter cosmological model, or ACDM, which constitutes the current,
leading cosmological model to explain the universe content and dynamics. We close the
chapter with a review of the three main puzzles within the Big Bang cosmological model
in section 1.2.4.

The entire chapter is based on the classic textbooks [13, 33], as well on Baumann’s

lectures on Cosmology [34].

1.1 The dynamics of spacetime in General Relativity

The dynamics of spacetime is first specified by its metric, which connects the observer-
dependent spacetime coordinates, x* = (¢, X), with an invariant quantity describing the
spacetime distance between two events, the line-element ds?. In general relativity the
spacetime metric is g,,(¢, X), where the explicit dependence on space and time encodes
the effects of gravity, which deforms the spacetime, hence changing the invariant distance

between events. The invariant line-element ds? is then
(1.1) ds® = g (t, x)dx"dx"

where the greek indices p and v run from 0 to 3. Throughout this thesis we use a
mostly plus convention for the metric signature, (—,+,+,+), as well as natural units,
c=h=ky=1.

The time coordinate separation between two events, A, is not the same as measured

by all observers, therefore it is convenient to introduce the invariant proper-time interval,

5



CHAPTER 1. INTRODUCTION

At. Assuming that two events A and B are separated by a time-like interval, ds? <0,
we can parametrise the curve connecting them, y, with the parameter A, such that e.g.

y(0) = A and y(1) = B. The proper-time interval At between A and B is

1 dxH d v
(1.2) ATE/ V —ds? =f d/l\/—gpv i
Y 0

dA dA
Massive, freely-falling particles moving in a curved spacetime are described by the action

(1.3) S:mfdr,

where m is the rest-frame particle’s mass. Their motion follows a geodesic trajectory,
XH(1), defined as the time-like trajectory which extremises the proper-time interval At,
eq.(1.2), between the initial and final points of motion. The geodesic trajectory is obtained

by solving the Euler-Lagrange equation for the action (1.3) and it satisfies

d*xt  , dXPdX°
dr2 "7 drt drt’

(1.4)

where Fgg is the Christoffel symbol associated with the metric g,

1
(1.5) F;Lota = égl“’ (apgvo +058vp — avgpa) .

For massless particles, the line element separating two space-like points is ds? = 0,
therefore the definitions given in (1.2) and (1.4) do not hold. By defining the 4-velocity
of a particle as U* = dX*/dt and its 4-momentum as P* = mU*, where P* = (E,p) and

E? =m? + p?, it is possible to recast eq.(1.4) into the compact form
(1.6) PEV,PY =0,

which holds also for massless particles. In eq.(1.6), V* is the covariant derivative associ-

ated with the metric g,
1.7) VP :6NPV+FZUP”.

After looking into the kinematics of particles in general relativity spacetime, we
describe now the dynamics of spacetime and matter. Let us consider the action of generic

matter in a spacetime with metric g, (¢, x) and cosmological constant A [35, 36],

M2
(1.8) S = 711 f d4x vV—g (R - 2A)+f d4xv —8 ZLmatter »

6



1.1. THE DYNAMICS OF SPACETIME IN GENERAL RELATIVITY

where M, is the reduced Planck mass, defined in terms of Newton’s gravitational constant
GasM,=1/ V871G, g is the determinant of the metric g wv and ZLpagter is the lagrangian
density describing matter. The first term in eq.(1.8) is known as the Einstein-Hilbert
action, where R is the Ricci scalar, a geometrical quantity built from the metric g,,. In
particular, the Riemann tensor is defined in terms of the Christoffel symbol of the metric,

eq.(1.5), as

o _ o o o 1A o 1A
(1.9 Ry =0uLy, —0,Tp, + 173, I - T3, T,
By contracting two indices in Ry, one obtains the Ricci tensor,
(1.10) R,y :wav

and the contraction of R, with the inverse metric g" yields the Ricci scalar, or scalar

curvature,
(1.11) R :g‘“’RW.

Applying the principle of least action to eq.(1.8), we can derive the equations of motion
for this system. We introduce a small variation in the metric, g,v — guv + g v, vary the
action with respect to the small perturbation §g,, and impose this variation to vanish.

This yields the Einstein equations

(1.12) G/,w = Tpv_Agm/,

2
M;
where the Einstein tensor G, is defined as

1
(1.13) Guv ERW—gRgW

and the energy momentum tensor for the matter fields 7', is defined as

-2 0 (\/ —8 gmatter)
/_g 5guv

In the Einstein equations (1.12), the left-hand side, related to the spacetime geometry,

(1.14) Tw

is directly connected with the matter content of the spacetime, in the form of matter
or a cosmological constant. Matter and geometry are two sides of the same coin, with
the geometry of spacetime dictating to matter how to move and the matter setting the

curvature of the spacetime itself.
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Conservation of the Einstein tensor, known as the Bianchi identity, VG, = 0, yields

the local conservation of the energy-momentum tensor,
(1.15) VAT =0,

where the v = 0 component corresponds to the conservation of energy, while the three
remaining space-like components correspond to momentum conservation.

We note that the conservation of the energy-momentum tensor is compatible with the
presence of a cosmological constant in eq.(1.8), as the metric g, is covariant, V¥g, = 0.
As we show later, cosmological observations clearly point to the presence in the universe
of energy in the form of a cosmological constant, which justifies why we have introduced
it in eq.(1.8) in the first place!.

1.2 The Friedmann-Lemaitre-Robertson-Walker

universe

1.2.1 FLRW metric

While in the previous section we have worked in a generic spacetime with metric g, (¢, x),
we specialise here to the Friedmann—-Lemaitre—Robertson—Walker (FLRW) metric, which
is the only form of metric compatible with the cosmological principle [34]. In FLRW the
invariant line element reads

dr?

2 _ 2 2
(1.16) ds“=—-dt“+a(t) 1-K2

+r2(d6% +sin?(0)dp?) | ,

where a(t) is the scale factor, describing the time-evolution of the universe, usually
dimensionless and normalised at unity today, a(¢g) = 1. In eq.(1.16), r is the radial
comoving coordinate and 6 and ¢ are the comoving angular coordinates, and the factor in
[---]is the line element of a maximally-symmetric 3D space with constant curvature, K.
Here K will take only three, discrete, values: K =0 or flat space, corresponding to a 3D
Euclidean space, K = 1 or positively-curved space, corresponding to a 3-sphere embedded
into a 4D Euclidean space, and K = —1 or negatively-curved space, corresponding to
an hyperboloid embedded into a 4D Lorentzian space. We note that for the metric in
eq.(1.16), only a function of time, a(¢), and a constant, K, are sufficient to describe all

the degrees of freedom of the universe spacetime.

In other words, a term proportional to g uv is the single relevant infrared operator allowed by the
symmetries, so it would be surprising if we did not include it.
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1.2. THE FRIEDMANN-LEMAITRE-ROBERTSON-WALKER UNIVERSE

In the FLRW metric time and space coordinates are treated on a different footing, e.g.
the scale factor a(¢) multiplies only the spatial line element. Especially for the study of

light propagation, it is useful to introduce the concept of conformal time 7, defined as

dt
1.17 dn=—,
(1.17) n= D
where ¢ is the coordinate time. Using conformal time, the FRLW metric (1.16) reads

2

,
1-Kr2

(1.18) ds®=am)?|-dn® + +72(d6? +sin®(0)dp?) | ,
where a(n) is the conformal scale factor.

An important quantity in modern cosmology is the Hubble parameter, defined as
(1.19) =-,

which gives the expansion rate of the universe. In general H is not a constant, while its
value measured today, Hy, is usually called the Hubble constant.

When describing distances between points using the metric (1.16), e.g. the distance
of an object from the origin r = 0, it is important to distinguish between the comoving
distance r, which remains the same as the universe expand, and the physical distance
Tohys = a(t)r, which increases as the universe expands. It follows that the physical

velocity of a point is

dTphys

1.20 =
( ) Uphys dt

=ar+Hrphys,

where eq.(1.19) has been used. The first contribution to vyhys is the peculiar velocity, i.e.
the velocity of the object with respect to the coordinate grid, and the second term takes
into account the physical velocity of the point due to the expansion of the coordinate grid
itself.

For galaxies moving in the Hubble flow, i.e. distant enough that their peculiar veloci-

ties are smaller than the velocity due to the expansion, eq.(1.20) becomes
(1.21) Uphys = HTphys ,

known as the Hubble law. In other words, galaxies are moving away from the Earth
at speeds proportional to their physical distance, with their motion only due to the
expansion of the universe. The proportionality constant gives an indication of the present
rate of expansion, Hj. The first observation of the Hubble law in 1929 by Edwin Hubble

9



CHAPTER 1. INTRODUCTION

[37], yielding Hy = 500kms~!Mpc ™!, was the first confirmation of the expansion of the
universe and constitutes a strong evidence supporting the Big Bang model.

Efforts to measure the Hubble constant continued over the decades after the 1929
measurement. In more recent years, Hj is usually inferred from Cosmic Microwave
Background measurements assuming a specific cosmological model, or directly mea-
sured from the luminosity of type Ia supernovae in the local universe in a model-
independent way. Assuming the ACDM model, analysis of the Planck data yields
Hy=67.44+0.58kms™! Mpc_1 [29], while late-time measurements produce Hy = 73.04 +
1.04kms~Mpc~! [38]. The two results are in tension at more than 50, possibly hinting
at unknown systematic errors in the supernovae data analysis or at physics beyond the
ACDM model that could shift to higher values the H inferred from CMB measurements.
The Hj tension is a pressing issue in modern cosmology, see [39] for a review.

As for the Hy measurements described above, most of the ways we observe the
universe involve detecting light coming from astrophysical and cosmological sources?.
The momentum of every particle travelling across an expanding universe as seen by
comoving observers decays with the expansion, p < 1/a, which has a fundamental
consequence for the light we observe. Consider light being emitted with wavelength A.
Given that the wavelength of light is inversely proportional to its momentum, it scales
as A o« a. Therefore for a photon emitted at time # and detected on Earth at time #(, the

wavelength at detection is

(1.22) Atg) = M/1(t) .
a(t)

For an expanding universe the scale factor increases with time, a(tg) > a(t), therefore
the wavelength at detection is larger than the wavelength at emission, A(¢g) > A(¢). By
defining the redshift parameter as the fractional shift in wavelength for a photon emitted
at time ¢ and detected today on Earth,
Mto) — M2)

A

and using eq.(1.22), one finds 1+ z = a(tg)/a(t). The usual normalisation for the scale

(1.23) z

factor, a(tg) =1, yields

1
1.24 l+z=——.
(124 *T a0
As it is connected with the time-dependent scale factor, z is often used to give an

indication of the time when specific events happened during the universe history.

2In addition to this, a new and exciting chapter in observational cosmology has been opened after the
first direct detection of gravitational waves in 2016 [7].
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1.2.2 Dynamics of the FLRW universe

The dynamics of the FLRW universe is described by the Einstein equations, eq.(1.12),
where now the metric g, is the FLRW metric (1.16). We need to specify the matter
content of the universe, described by the energy-momentum tensor 7', on the right-hand
side of eq.(1.12). The only type of matter which is compatible with the cosmological
principle is in the form of a perfect fluid. The energy-momentum tensor of a perfect fluid
is

(1.25) Tuw=@+Pluyuy+Pguy,

where the pressure, P, and the density of the fluid, p, are functions only of time, which
ensures homogeneity and isotropy, and are measured in the rest-frame of the fluid.
The 4-vector u, is the (normalised) 4-velocity of the fluid with respect to an observer
and it takes the simple form u, = (-1,0) for a comoving observer. In this case, the

energy-momentum tensor is
(1.26) T, =diag(-p,P,P,P).

The perfect fluids relevant for cosmology are typically characterised by a constant

equation of state parameter w, defined as

(1.27) w=Plp.
Ordinary matter obeys the strong energy condition [13]
(1.28) w=-1/3.

The v = 0 component of the energy-momentum conservation equation, eq.(1.15), yields

the continuity equation
(1.29) p+3Hp(1+w)=0,

where eq.(1.27) has been used. Solving the equation above for p as a function of the scale

factor yields
(1.30) p(t) = p(to)a(t) 31+,

where p(tg) is todays energy density and the scale factor is normalised, a(¢¢) = 1. This
equation shows how the energy density evolves in an expanding universe, with the
scaling with respect to a(¢) fixed by w.

Let us consider four different types of perfect fluid relevant for cosmology and use

eq.(1.30) to derive the energy density scaling with the scale factor in each case:

11
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* pressureless matter: in this case w = 0, or equivalently P = 0, and the energy
density scales as p a3, due to the expansion of the universe increasing the
volume. Ordinary baryonic matter after recombination, i.e. atoms and molecules,
and cold dark matter, a type of matter that interacts only gravitationally (or very

weakly), behave like pressureless matter;

¢ radiation: a fluid made of relativistic particles, described by w = 1/3, has energy
density scaling as p o< a~#, where the additional dilution is due to the redshift of

the energy of each particle, E «x 1/a;

* cosmological constant: A violates the strong energy condition for ordinary matter,
with w = —1. This implies that p x const; energy is created as the universe expands,

a behaviour radically different to all the other types of matter considered so far.

The actual energy content of the universe is given by a combination of the fluids

mentioned above, e.g. the total energy density is given in terms of the single components

Pn as
(1.31) P=) Pn,
n

where the sum runs over all the components. For each component, the equation of state
parameter is w, = P,/py,.

Substituting in the Einstein equations, eq.(1.12), the FLRW metric, eq.(1.16), and the
energy-momentum tensor of a collection of different perfect fluids, where for the single

fluid T,y is given in eq.(1.26), yields the Friedmann equations

(1.32) p2=tnfn K A

' 3M2 a? 3’
(1.33) d_ _Znpult3wn) A
a 6M> 3

where we have separated the contributions of pressureless matter and radiation from
those of the curvature K and the cosmological constant A.

Eq.(1.32) shows that the total energy density, together with A and K, determines the
expansion rate H. In absence of a cosmological constant (A = 0) and for flat space (K = 0),
eq.(1.32) implies that the simple presence of matter would cause the scale factor to grow,
H > 0. Also, eq.(1.33) shows that for A = 0 ordinary matter obeying eq.(1.28) causes the

expansion to be decelerated, d < 0.
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Considering a universe filled with radiation, matter, curvature and cosmological

constant, eq.(1.32) can be rewritten as

1

(1.34) H?= ——
3M?2

(or +pm +pK +pA)
where p, is the energy density of radiation, p,, is the energy density of non-relativitic
matter, and pg = -3M ?, K/a? and PA = Mlz,A are the effective energy densities associated
with the curvature and the cosmological constant respectively.

We can define the critical energy density of the universe as the energy density of a

flat universe with Hubble parameter H,
(1.35) pcrit(t) = 3M12)H(t)2 .

This allows us to introduce dimensionless parameters to describe the energy density of

each component,

pn(?)

1.36 Q)= .
( ) ® Perit(£)

Considering (2,(¢) at the present day, Q0 = pn,0/Pcrit,0, Where perito = 3M gHoz, we can
define the set {€2, 9, Q. 0, QK 0, 24,0} Which corresponds to today’s values of the energy
density of each universe component. In the following we will drop the subscript 0 when
refering to the present-day energy-density parameters, unless the context requires us to
emphasise the time-dependence of 2,,.

Together with eq.(1.30), the introduction of eq.(1.36) allows us to rewrite eq.(1.34) as
(1.37) H%a)=Ho?(Qra *+Qna2+Qxa2+Q,),
or, equivalently, in terms of redshift, see eq.(1.24), as
(1.38) H%(2)=H?[Q,(1+2)* +Q, (1+2° + Qr (1 +2) 2+ Q4] .
The equations above imply that today
(1.39) 1-Qr=Q,+Q,;,, +Qp,

where having Qg on the left-hand side shows that the density parameters Q,, Q2,, and
Qa add to one if |Qg| < 1.
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1.2.3 The ACDM model

The measured values and uncertainties of the cosmological parameters depend on several
assumptions, e.g. the data sets considered, the assumed priors for each parameter and the
way the analysis is performed. We quote here the present-day energy-density parameters
for radiation, matter, curvature and cosmological constant obtained by fitting the Planck
temperature, polarization and lensing data with a six-parameter ACDM model [29]
(1.40)

Q,=(9.02+0.21)x107°, Q,, =0.3153+0.0073, |Qk|<0.005, Qu =0.6847+0.0073,

where measurements are accompanied by the 68% confidence region and upper bounds
are given at 95%. We refer the interested reader to [29] for a detailed description of how

these measurements are made.

Looking at (1.40), we see that approximately 70% of the universe is an unknown
form of energy, for this reason usually called dark energy. Measurements of the equation
of state parameter for dark energy yield w = —1.03 +0.03 (68% C.L.) [29], obtained by
combining Planck data with Pantheon Supernovae and BAO data. This measurements
implies that dark energy behaves like a cosmological constant, A, which is why in the
following we use the terms dark energy and cosmological constant interchangeably. Such
a large value for Q, is required to explain the accelerated expansion that the universe is
undergoing today. The first detection of a cosmological constant dates back to 1998, when
observations of type Ia supernovae showed their luminosity was less than that expected
in an universe dominated by matter [30, 31]. This discovery was later confirmed by CMB
measurements from the WMAP mission [32]. While explaining the accelerated expansion
that the universe is undergoing today, the discovery of the cosmological constant raised
fundamental questions in modern cosmology. We do not know what dark energy is,
not even if it is an effect induced by, e.g., physics beyond the standard model, or a
manifestation of deviations from general relativity explained in the context of modified
theories of gravity, see e.g. [40, 41]. A natural candidate for dark energy is the energy
density of the vacuum, which can be predicted from quantum field theory to be many
orders of magnitude larger that the observed dark-energy energy density. This issue,
known as the cosmological constant problem, is one of the main challenges of modern
physics [42].

Matter makes up around 30% of the universe energy budget, however only 5% of
it is constituted by ordinary, baryonic matter, Qp = 0.049. It turns out the majority of
the matter in the universe is in the form of cold dark matter, or CDM, with Q. = 0.262.
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Figure 1.1: Evolution of a dimensionless representation of the energy density, p(¢)/pcrit,0,
as a function of the scale factor for radiation, matter and the cosmological constant in
the ACDM model.

This is a form of non-relativistic3, i.e. cold, matter that only interacts gravitationally
and only very weakly, if at all, through the electromagnetic interaction, which explains
the adjective dark. CDM plays a fundamental role in structure formation and evidence
supporting its existence is provided by rotational curves of galaxies, gravitational lensing
and the evolution of galaxy clusters [46]. Nevertheless, we do not know what is the nature
of CDM particles, and a lot of effort in modern cosmology is directed to understanding
what CDM is.

Radiation only accounts for a very small portion of the universe energy budget
today, and is mostly in the form of the CMB photons. Pending a detection, observations
suggest that the spatial curvature is very small, pointing to a spatially-flat universe. The
smallness of Q, and Qg imply that Q, and 2, approximately add up to 1 in the ACDM
model, see eq.(1.39).

Using eq.(1.30) and the ACDM parameters in (1.40), we display in figure 1.1 the

3The cold dark matter model accounts for the temperature anisotropies in the cosmic microwave
background at early times [29], as well as being successful at reproducing the large-scale clustering
of galaxies at present day (see e.g. [43]). Using CDM simulations, a number of ‘small-scale challenges’
have been claimed to afflict the CDM paradigm (see e.g. the review [44]). These motivated dark-matter
candidates beyond CDM, e.g. warm dark matter, in which the dark matter particles have a non-negligible
velocity dispersion in the early universe, or interacting dark matter models, where the dark matter
particles are coupled with a relativistic species in the early universe. On the other hand, thanks to
sophisticated hydrodynamical simulations (see e.g. [45]), it has been shown that the small-scale issues
aforementioned can be resolved withing the CDM paradigm by correctly modelling the interaction between
CDM and baryons through processes associated with galaxy formation. For this reason, the simplicity of
the CDM model and its success in explaining observations made it the leading paradigm for dark matter.
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progression of different eras in the universe evolution. The log of the energy density
parameter of radiation, matter and cosmological constant is displayed against the scale
factor a. Starting from a universe dominated by radiation, p, would decrease rapidly,
up to a point when p, = p,,, also known as matter-radiation equality. After that, the
dominant form of energy is matter, until the matter energy density drops below that of
the cosmological constant, signalling the transition to the dark-energy-dominated era.
This way of looking at the progression of the universe evolution constitutes an account of
the thermal history of the universe complementary, and compatible, to that outlined at
the beginning of the chapter.

The ACDM model, only based on six cosmological parameters, has survived every
test posed by observations in the last 20 years*. Nevertheless, a lot of work still needs to
be done, as the nature of approximately 95% of the universe content, in the form of dark

energy and cold dark matter, is still unknown.

1.2.4 Puzzles within the Big Bang cosmology

As outlined in the previous sections, the Big Bang cosmology, together with the universe
composition as prescribed by the ACDM model, can account for a very broad range of
observations, from the existence of a cosmic microwave background to the abundance
of light elements, the growth of structure under the gravitational effect of dark matter,
the observation of the Hubble law and the current accelerated expansion driven by dark
energy.

Nevertheless, from the 1960s it was noted that within the Big Bang model there
are some issues; three problems emerged, namely the horizon, flatness and monopole
problems, signalling fine-tuning was required in the theory to explain some observations.
The main issue we will focus on is the horizon problem, as a solution to it would typically
solve also the flatness and monopole problems.

The horizon problem is related to the fact that the stunning homogeneity and isotropy
of the early universe cannot be a result of causal processes within the standard Big Bang
cosmology, and therefore require fine-tuned initial conditions. Cosmological inflation,
a phase of accelerated expansion in the very early universe, was put forward in 1980
as a possible solution to the horizon problem [47], naturally driving the universe to
homogeneity and isotropy, regardless of the characteristics of its initial state. Before

diving into the theory of cosmological inflation in chapter 2, we review the three main

4Some might say that the Hy tension could be the first sign of failure of the ACDM model.
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Figure 1.2: Planck 2018 map of the temperature anisotropies in the CMB [48]. The
red and blue dots represent hotter and cooler spots respectively, with an amplitude
AT/T =107°,

problems of the Big Bang cosmology, discussing in length the horizon problem in section

1.2.4.1, and briefly reviewing the monopole and flatness problems in section 1.2.4.2.

1.24.1 The horizon problem

The horizon problem araises from observations of the homogeneity and isotropy of
the CMB. The CMB radiation has a thermal black body spectrum, with temperature
T =2.725K. The CMB photons temperature is homogeneous and isotropic to a very good
level, showing fluctuations in the temperature at the level of 1 in 100,000, AT/T = 107°.
Over-dense regions would subsequently evolve to form stars and galaxies filling the
universe. In figure 1.2 the CMB anisotropies map as obtained by the Planck mission in
2018 is displayed, with red and blue spots corresponding to slightly hotter and colder
patches respectively, i.e. regions less or more dense with respect to the background. This
is due to the fact that photons corresponding to hotter (colder) spots have to spend less
(more) energy to travel out of the potential well created by the slightly larger (smaller)
overdensities they come from.

In the following we show that the astonishing homogeneity and isotropy of the CMB
cannot be accounted for by causal processes within the standard Big Bang cosmological
model.

Let us assume flat space, K = 0, and use conformal time 7, defined in eq.(1.17) and
with the invariant line-element given in eq.(1.18). For particles travelling in the radial
direction, df =d¢ =0, eq.(1.18) reduces to

(1.41) ds? =am)?[-dn®+dr?] .
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Light travels on null geodesics, ds? = 0, therefore eq.(1.41) implies that the distance that

a photon travels between an initial time 7; and a later time 77 is

(1.42) An= —fnfd = v ar
. n=nf-—1m= . n= " a(t’)’

i

where in the last step we use eq.(1.17). Introducing the Hubble radius, defined as (¢ H)™ 1,

the equation above can be rewritten as
ar
(1.43) An= f (aH) tdlog(a).
a;

The maximum distance that a CMB photon could have travelled is between the initial
singularity at (a =0, t = 0), and the moment when the CMB was released at recombina-

tion,
Qrec 1
(1.44) ANyec = Nrec —Ni = j(; (aH) “dlog(a).

The quantity An =n—n; is also known as the comoving particle horizon, i.e. the maximum
distance from which a particle at time 7, e.g. a CMB photon at recombination in eq.(1.44),
could have received causal influences in the past.

Using the Friedmann equation (1.32) for flat space, K = 0, and without a cosmological
constant®, A = 0, together with eq.(1.30), allows to write the Hubble radius for a universe

filled with a fluid with equation of state parameter w as
-1 31+w)) " 1(1+3w)
(1.45) (aH) " = (I_Irecarec2 ) a? .

Using (1.45), we can perform the integral in eq.(1.44) and obtain

Qrec

§(1+w))_1 g 30+30)
0

2
(1.46) AT]rec =Mrec—1i = m (Hrec Qrec?

For fluids satisfying w > —1/3, see the strong energy condition (1.28), the contribution

from early times, i.e. at a = 0, vanishes, leading to

2 _
(1.47) ANyec = m (HyecQrec) 1 ’

which is finite. Eq.(1.47) has profound implications for the standard Big Bang theory:

before the CMB photons were emitted at recombination, the universe was filled with

5While our purpose here is to illustrate the horizon problem, when quantifying explicitly the angular
size of the comoving particle horizon at recombination, see eq.(1.50), we take into account the (small)
impact of dark energy at late times.
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1.2. THE FRIEDMANN-LEMAITRE-ROBERTSON-WALKER UNIVERSE

Alyee

Figure 1.3: Comoving particle horizon of a CMB photon, A7nye., and comoving distance
between an observer O today and a CMB photon y, d4. The angles highlighted in red
and blue are the angular size of the comoving particle horizon at recombination, 6y,
and the maximum angular separation between two CMB photons that were in causal
contact in the past, O.ausal = 20hor, respectively.

radiation and non-relativistic matter, obeying the strong energy condition, therefore the
CMB photons could only travel a finite distance before recombination.

As a consequence, CMB photons travelling towards us from different patches of the
sky could have not been in causal contact in the past. In particular, we can calculate the
maximum angular separation in the CMB sky between two photons which were in causal
contact in the past. This is defined as twice the angular size of the comoving particle

horizon at recombination,

ATll"ec
da ’

where d 4 is the comoving distance between an observer of the CMB today and a CMB

(1.48) Qcausal = 2Qhor =2

photon emitted at recombination, see figure 1.3. Using eq.(1.42) yields

trec dt’
Mrec—Ti _Jt;  a@)

_ T orto dt
nO nrec trec a(t’)

(1.49) Hcausal =2

To perform the integrals above, it is useful to use eq.(1.24) to swap the time variable a(¢)
with redshift, z. This leads to
oo dz’
Zrec H(2)

fzrec dz'
0 H()

(1.50) Ocausal = 2 =~2.3 deg,

where the integrals have been performed numerically using eq.(1.38), the ACDM para-
meters in (1.40) and z,e. = 1080. The result above implies that CMB patches separated
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Ho

lrec %! B
AN AN

Figure 1.4: Spacetime diagram representing the past light-cones of two CMB photons,
A and B, observed today at O. The horizontal and vertical axis display the comoving
coordinate, r, and conformal time, 7, respectively. This diagram visualises the horizon
problem of the standard Big Bang theory, with the two CMB photons never been in
causal contanct in the past, from the initial Big Bang singularity at n; to recombination

at 77rec-

by more than 2deg have never been in causal contact with each other, posing the pressing
task to explain the homogeneity and isotropy of the CMB in absence of a common, causal
process provided by the standard Big Bang theory.

In figure 1.4 we display a spacetime diagram illustrating the horizon problem. On the
vertical axis conformal time is represented, with 7¢, 1. and n; signalling respectively
the present day, the time of recombination and an initial time when the universe started
evolving from the Big Bang singularity. In this picture, two CMB photons, A and B,
released at the time of recombination and detected today by an observer O, would have
not been in causal contact in the past, i.e. their past light-cones, represented by the
yellow triangles, do not overlap in the past.

In section 2.1 we show how an initial phase of accelerated expansion could solve the

horizon problem.

1.2.4.2 Flatness and monopole problems

The flatness problem arises from the difficulty of reconciling the standard Big Bang
theory with the fact that the universe is constrained to be extremely close to flatness

today, see [14] for a review.
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Let us consider the Friedmann equation (1.32) in presence of a fluid with energy

density p and equation of state parameter w, and with K # 0,

K
(1.51) =L __=
3M 12, a?
The time-dependent energy density parameter 2(¢), defined in eq.(1.36), reads
p(t)
1.52 Q)= ———.
( ) (t) 3 Mz% H?
Using eqs.(1.30) and (1.51), yields
3M2K -
(1.53) Q@) =1-—L—a@)*3*| .
p(to)
By varying Q(¢) with respect to the scale factor, one obtains
dQ
1.54 —— =(1+3w)QQ-1).
( ) dlog(a) ( w)X( )

|QQ — 1| can be viewed as a measure of the curvature energy-density Qg, see eq.(1.39),
and observations point to the value of Qx to be very small, or in other words Q is
measured to be very close to one, see the ACDM parameters in (1.40). Eq.(1.54) admits
the solution 2 = 1, in accordance with observations, but for fluids obeying the strong
energy condition®, i.e. 1+ 3w > 0, this solution is unstable. While Qg = 0 is a stable
solution, to explain today’s small value of Qi given by observations we need to fine-tune
its initial value to be even smaller, and this is the reason why this is called the flatness
problem. Adding a period of evolution before the standard Big Bang expansion where the
dominant fluid violates the strong energy condition, 1+ 3w < 0, would make the solution
Q) =1 stable and solve this issue. We show in chapter 2 how inflation naturally drives
the universe towards flatness.

The monopole problem arises in the context of grand unified theories [49, 50], high-
energy theories based on gauge groups larger than the standard model one, proposed
as possible extension of the standard model at energies larger than 10 GeV. When the
temperature of the universe drops, the GUT symmetries are broken into the standard
model ones, and this process involves the creation of magnetic monopoles in large
abundance [561-53]. Magnetic monopoles are not detected today [54], and this fact is
not explained withing the standard Big Bang theory’. Nevertheless, an initial phase

6Clearly dark energy violates the strong energy condition, but we ignore here its effect as it came to
dominate the universe energy budget only at late times.

"We note that, due to our limited knowledge about physical processes at such high energies, the
monopole problem is not universally recognised as a serious issue for the Big Bang theory.
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of accelerated expansion set to happen after the phase transition breaking the GUT
symmetries would justify why magnetic monopoles are not detected, as their density

would have been diluted by the accelerated expansion up to an unobservable level.
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COSMOLOGICAL INFLATION

irst proposed by Alan Guth as a solution to the horizon and flatness problems
[47], cosmological inflation is a period of accelerated expansion in the very early
universe [55-57]. In the context of the simplest models, inflation is driven by
a scalar field, the inflaton ¢, minimally coupled to gravity and slowly rolling down its

potential.

Shorty after the initial proposal, it was realised that inflation not only solves the three
main problems of the Big Bang cosmology, but also provides the seeds for the large scale
structure of the cosmic web [568—62]. The quantum fluctuations of the inflaton, §¢(¢, x),
are stretched to cosmological scales by the accelerated expansion and translated into
the initial density perturbations that seed anisotropies in the CMB and the large-scale
structure of the universe. For these reasons, cosmological inflation is generally accepted
as part of the standard model of cosmology. In section 2.1, we show that a fluid violating
the strong energy condition, associated with a shrinking Hubble radius and accelerated
expansion, can solve the main puzzles of the Hot Big Bang theory. In section 2.2 we
review the classical dynamics of a scalar field minimally coupled to gravity and show
how a slowly-rolling scalar field violates the strong energy condition and causes an
accelerated expansion of the universe. We discuss at length the slow-roll approximation

in section 2.2.1, and review the dynamics at the end of inflation in section 2.2.2.

In section 2.3 we discuss the perturbations produced during inflation, in particular
we analyse the scalar and tensor fluctuations around a single-field inflationary back-

ground in sections 2.3.1 and 2.3.2 respectively, and then present the scalar perturbations
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CHAPTER 2. COSMOLOGICAL INFLATION

associated with single-field inflation from a different perspective, applying an effective
field theory treatment, in section 2.3.3.

In section 2.4 we review models of inflation comprising more than one scalar field.

2.1 Solving the horizon problem

In section 1.2.4.1 we have shown that cosmological fluids obeying the strong energy
condition cause the comoving particle horizon to be finite, see eq.(1.47) for the case of

CMB photons. In particular, the contribution from early times vanishes,

2 3 -1 1
2.1) ni = T (Hrecarec2(l+w)) q3(1+3w)

The result would be quite different if the universe was dominated by a fluid violating the

=0.
a=0

strong energy condition, i.e. with equation of state parameter w < —1/3. In this case, the

contribution from early times would be

2 3 -1 3
_ Hooa §(1+w)) q2(1+3w)
1 + 3w ( rec “rec

In other words, the comoving particle horizon, e.g. Anyec = NJyrec —7; for CMB photons at

— —0Q.

(2.2) ni

a—0

recombination, diverges with respect to the previous case. If the period characterised by
w < —1/3 lasts sufficiently long!, this modification to the expansion would allow all parts
of our observed CMB sky to be causally connected, solving the horizon problem.

The scheme depicted in figure 1.4 is now different: n; is pushed from 0 to —oo, and
before the evolution prescribed within the standard Big Bang theory there is a new
phase. We represent the modified spacetime diagram in figure 2.1. The past light-cones
of the photons A and B now extend back up to the initial singularity at n; = —oco, and
they overlap in the region highlighted by the black star. A new phase, dominated by a
fluid with w < —1/3, starts at n;, and stops at 7,,4, after which the standard Big Bang
evolution begins.

A violation of the strong energy condition implies that the Hubble radius, defined in

eq.(1.45), decreases with time,

d
2.3 —(aH) ' <0.
(2.3) dt(a )
Using the definition of the Hubble parameter, eq.(1.19), in eq.(2.3) yields
2.4) = >0,
a

implying that a shrinking Hubble radius is associated with accelerated expansion.

IThe minimum duration of inflation required to solve the horizon problem is about 60 e-folds, see
eq.(2.33) for the definition of the number of e-folds of accelerated expansion.
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Figure 2.1: Spacetime diagram illustrating the solution of the horizon problem for two
CMB photons emitted, or last-scattered, at A and B, and observed today at O, by means
of the introduction of a new phase of evolution, with w < —1/3, between the initial
singularity and the standard evolution prescribed by the Big Bang theory.

2.2 Classical dynamics of single-field slow-roll
inflation
The action of a scalar field minimally coupled with gravity reads

4 My, 1
(2.5) S:fd x\/—8 7R—§g’"w0“(p6v¢—V((P) )

where V(¢) is the inflaton potential and we assume for the moment that the inflaton
field is homogeneous, ¢(¢). From this point on, we set M p2 =1 unless otherwise stated.

The energy-momentum tensor associated with ¢ is
1
(2.6) Ty =0up0vd— 8y (ggpgaf’(pa"gb - V((b)) .

Contracting (2.6) with the inverse metric, T, = T),g**, yields the energy density and

pressure of the inflaton fluid,
1.
2.7 T% =-p with p= 54)2 +V(¢),

; . 1.
(2.8) T';=Ps'; with P= 5¢>2—V(¢).
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In particular, %(/)2 is the kinetic energy of ¢, with a dot indicating a derivative with
respect to cosmic time ¢. The potential V(¢) contributes with opposite signs to p and P.

If the potential energy dominates over the kinetic energy,

1.
(2.9) §¢>2 < V(¢),
then the equation of state parameter of ¢ reads

132
(2.10) w:f:f‘/_’z‘—w‘l’):_l_
P 502+ V(P)

This goes to show that under the condition (2.9) the inflaton fluid violates the strong
energy condition (1.28), and causes the universe to accelerate. The condition (2.9) means
that the inflaton slowly rolls down the potential, and for this reason describing inflation
assuming (2.9) goes by the name of slow-roll inflation. We explore more in details the
slow-roll approximation in section 2.2.1.

The equation of state parameter (2.10) implies that p = 0, see eq.(1.29). Through
eq.(1.32), a constant energy density, p = const, leads to H = d/a = const, which allows us

to recover the evolution of the scale factor,
(2.11) a(t) = ain exp[H(¢ - tin)],

where a;, is the scale factor value at the initial time #;,. The background solution for
slow-roll inflation is an almost de-Sitter spacetime, with the deviation from perfect de-
Sitter expansion responsible for the end of inflation, i.e. in a perfectly de-Sitter universe
eq.(2.11) is exact and the exponential accelerated expansion is eternal.

Substituting eq.(2.7) in the first Friedmann equation, eq.(1.32), leads

K

2_1[1-2
2.12) H= 2| 2¢7+V(g)

where we are working in flat space, K = 0, as the curvature energy-density decays in
a universe dominated by a fluid with w < —1/3, see eq.(1.54). Noting that ¢/a = H + H?
and using eq.(2.12), allows us to rewrite the second Friedmann equation, eq.(1.33), as
H = —(p +P)/2. Using eqs.(2.7)-(2.8) in the latter yields

@2

Taking a time derivative of eq.(2.12) and substituting eq.(2.13) yields the equation of

motion for the inflaton field, also known as the Klein—Gordon equation,
(2.14) $+3Hp+V,=0,
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where Vi, = dV(¢)/d¢p. After specifying the inflationary potential and initial conditions for
¢ and ¢, eqs.(2.13) and (2.14) can be numerically solved to obtain {¢(), H(¢)}, specifying

the inflationary dynamics. Inflation ends when the condition w < —1/3 is no longer met.

2.2.1 The slow-roll approximation

Studying the inflaton dynamics under the slow-roll condition (2.9) allows us to recover
some analytical solutions. The slow-roll approximation is better described in terms of
a hierarchical series of parameters, defined in terms of the inflaton potential, V(¢),
or the Hubble rate during inflation, H(¢). We will refer to the two sets of slow-roll
parameters as potential slow-roll parameters (PSRP) and Hubble slow-roll parameters
(HSRP) respectively.

The first three PSRS parameters are

1(Vp)\? Voo 2 _ VoVooo
2.15 =—|— = =
( ) €y 92 ( vV ) ) nv vV ) EV V2 )
while the first three HSRP are

Hy\? Hyg o HpHgppp
2.16 =2|— =9~ =4 7
(2.16) €H ( I ) , NH 7 SH f7e)

In (2.15) and (2.16) the first two parameters are all that is required to obtain results at
first order in the slow-roll approximation, but further parameters can be defined with
increasing number of derivatives of V(¢p) or H(¢). As an example of this progression, we
have included in (2.15) and (2.16) also the second-order slow-roll parameters, éy2 and
Epr? respectively.

The HSRP can also be expressed in terms of time derivatives of the inflaton field.
By noting that eq.(2.13) can be rewritten as ¢ = -2H,, we can derive the derivative

transformation

d d

2.17 — =-2Hy—
(2.17) dt Cde’
which holds for single-clock theories, i.e. inflationary theories with only one relevant
degree of freedom, the inflaton ¢ in this case. Eq.(2.17) allows us to transform the
derivatives of H with respect to ¢ in (2.16) into derivatives with respect to ¢,
(2.18) 1 H En” L_H 21>

: €H=~75 S —— =- - — .

w2 ™M= Topp M Temrg M
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Eq.(2.13) relates the time derivative H to the inflaton velocity, ¢. By differentiating
eq.(2.13) one and two times one can obtain H and H in terms of ¢, ¢ and ¢,
H .. H: ¢.2 ecee
(2.19) —.z2£, —.:2(é—+2£.
H ¢ H ¢ ¢
Substituting eqs.(2.13) and (2.19) into (2.18) one finds

2

i ) )
(2.20) eHEQ%, "HE_H%;’ szz_(%) N

K
H?)'

The PSRP and the HSRP can be related to each other, e.g. substituting eq.(2.14) into ey
in (2.15) and using (2.20) yields

3_77H)2

(2.21) €y :eH(
3—€H

A similar relation is found for nv,

_ 3nu +3en — nu?— &’

(2.22) nv
3- €y

Keeping only the contributions at first order in the slow-roll parameters, eqs.(2.21) and
(2.22) become

(2.23) €y =€H
(2.24) nv =€g+1NH.
We introduce here another series of slow-roll paramaters, which will be used in

chapters 4 and 5, defined by means of time-derivatives of the Hubble rate during inflation,
H,

€
(2.25) €i+1 = Hl

€;

fori =0,

where a dot represents a derivative with respect to cosmic time, ¢, and €9 = Hi,/H, with
H;, the value of the Hubble rate at the initial time #;,. Using (2.25) one can derive
(2.26) il 2 H + H
. €1=—""775> €2 =—2a—— T
"H2 T °H2 T HEH
which can in turn be related to the HSRP, see eq.(2.18),

(2.27) €1 =€y, €2=2€H—21’]H.
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Let us now derive the conditions for the slow-roll parameters which realise an
accelerated expansion of the background. By differentiating H = d/a once with respect to

t and substituting it in the definition of €z in eq.(2.18) yields

(2.28) eg=1- % ,
a

which implies that for an accelerated expansion, ¢ > 0, the slow-roll parameter has to be
small e < 1. Additionally, substituting eq.(2.12) and (2.13) and applying the slow-roll
condition (2.9) in the definition of e in (2.20), yields e < 1. At leading order in slow-roll
€q = €y, see eq.(2.23), therefore the condition above implies Vi, < V, i.e. a necessary
condition for slow-roll inflation is the flatness of the inflaton potential.

In order for the condition €77 << 1 to persist during inflation, also the time-variation
of ¢z has to remain small,

€H
He H

(2.29) = 2(€H - 77H) «<1 ,

which implies g <« 1. Slow-roll inflation is formally defined by requiring all the parame-
ters in the slow-roll hierarchy to be small. Formally inflation ends when ez = 1.

Eq.(2.12) can be rewritten exactly in terms of €7 as

V(g)
3 - €y

(2.30) H? =

which at leading order in slow-roll simplifies to
(2.31) H?=V($)/3.

Additionally, the smallness of 7 implies that the inflaton acceleration, ¢, is small, see
eq.(2.20), and can therefore be neglected in eq.(2.14), reducing the equation of motion of

the inflaton to
(2.32) SO
. ¢ = 3

By defining the number of e-folds of inflationary expansion as

Nend tend
(2.33) N =log Zend _ f dN= | " H@ds,
Qin N; tin
eq.(2.32) becomes
(2.34) ¢'(N) = —&
. v
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where ' = d/dN. At leading order in slow roll, the second-order differential Klein—Gordon
equation becomes first order, no more dependent on the initial inflaton velocity. This
means that, once inflation begins, different trajectories in phase space rapidly approach
one another, all converging on the attractor solution (2.34) [63, 64]. So, as long as the
solutions are given enough time to approach the attractor solution before inflation enters
its observable window, different initial conditions in phase space (asymptotically) lead to
the same dynamics.

Once V(¢) and the initial condition ¢;, are specified, eq.(2.34) can be solved analyti-
cally to derive ¢p(IV). Using eq.(2.34), the duration of slow-roll inflation is

Pend Vv

(2.35) ANt = Nena~Nin == [ "
Pin Vo

Before closing this section, we note that having defined different series of slow-roll
parameters is not simply a matter of aesthetics, and one should use the appropriate set
depending on the purpose of the calculation. Let us consider for example the first slow-roll
parameter, defined in terms of the potential, ey, or the Hubble rate, ez. They are related
by eq.(2.21) and for most inflationary models their values are almost coincident at early
times, e.g. when the CMB scale crossed the horizon, while they slightly deviate from
each other towards the end of inflation. The end of inflation is defined as ¢z = 1, and not
ev =1, and using the latter would lead to different results. This is manifest for example
in the calculation of the inflaton value at the end of inflation, ¢enq. As demonstrated in
[65], one should calculate ¢epngq from solving (1 + \/m )2 =1 (as opposed to ey = 1),
which correctly takes into account the fact that ey = 1 is only a first-order approximation

at the end of inflation.

2.2.2 Reheating

At the end of inflation, the inflaton oscillates about the minimum of its potential V (¢)
and its kinetic energy becomes comparable with its potential energy. During this phase,
¢, and/or its decay products, must decay into Standard Model particles in order to recover
Big Bang nucleosynthesis. The process describing the energy transfer from the inflaton
sector to ordinary matter goes by the name of reheating [15].

During reheating the energy density decreases from its value at the end of inflation,
Pend, t0 pth, When the Standard Model particles are thermalised. Requiring that reheating

is complete before the onset of Big Bang nucleosynthesis bounds the value of py, from
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below. In particular, py, is in the range? [(1TeV)?, Pendl [67], where the upper limit
corresponds to the case of instant reheating.

The duration of reheating measured in terms of e-folds after the end of inflation,
ANy, = Nyh — Nend, depends on the effective equation of state parameter, w,p, and the

value of py,, and is given by

) 1 Pend
(2.36) AN, = lo ( ) .
P31 wm o\ pm

Usually reheating can be described as a matter-dominated phase, w,,, =0, as we demon-
strate in the following for a specific case. When the inflaton starts oscillating around
its minimum, the expansion time-scale, H !, quickly becomes much longer that the
inflaton oscillation period. This implies that the drag term in the Klein—Gordon equation
(2.14) due to the expansion can be neglected. Assuming that the inflaton potential can be
approximated by a simple quadratic minimum, V(¢) = %m2¢2, the equation of motion

for ¢ becomes that of an harmonic oscillator,
(2.37) $+m2p=0.

Solving eq.(2.37), together with the Friedmann equation (2.12), yields

M
(2.38) o) = V6 ?pHcos(mt).

The inflaton oscillates around its minimum, with a frequency set by the mass m. Substi-
tuting eq.(2.38) into the definition of the pressure of the inflaton fluid, P, and taking a

time-average, leads
(2.39) (P) =3M72H?(1-2cos®(mt)) =0,

showing that the inflaton behaves as non-relativisitic, pressureless matter, w,, = 0, when

oscillating around a simple quadratic minimum of its potential.

2.3 Inflationary perturbations

We turn now to the study of quantum scalar and tensor fluctuations around the inflating

background.

2Recalling that nuclei form at energies ~ 100keV, the reheating temperature has to be larger than
~ 1MeV to allow for successful Big Bang nucleosynthesis, while being likely much higher to allow for
baryogenesis after inflation [66].
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In section 2.3.1 we derive the equation of motion for the scalar perturbation, we
quantise it and calculate the 2-point correlation function, i.e. the dimensionless scalar
power spectrum. We show that canonical single-field slow-roll inflation predicts an almost
scale-invariant scalar power spectrum, decreasing towards smaller scales. By applying
a similar procedure, we analyse the metric tensor fluctuations in section 2.3.2, derive
the tensor power spectrum and show that the amplitude of primoridal gravitational
waves generated during inflation is slow-roll-suppressed with respect to that of the scalar
perturbations.

In section 2.3.3 we present a unifying perspective on the study of inflationary pertur-
bations, based on an effective field theory (EFT) approach. We review the construction of

the EFT of single-field inflation and re-derive the power spectrum of scalar perturbations.

2.3.1 Scalar perturbations

Let us start by perturbing the inflaton field and the spacetime metric,

(2.40) P(t, x) = Pp(t) + (¢, x),
(2.41) ds? = —(1+6g00)dt® +2agoidx dt +a®(5;; +5g;)dx'dx’

where a(?) is the scale factor and the perturbations 6g¢o, 6g0; and 6g;; are functions of
space and time. By applying the scalar-vector-tensor decomposition [68] and retaining

only the scalar perturbations, we get

(2.42) P(t, x) = p(8) + 6¢(t, x),
(2.43) ds?=—(1+38g00)dt> +2a0;Bdx'dt +a® [(1-20)5;; +0;0;D] dx'dx’

where we see that there is a total of 5 scalar perturbations, even if not all of them are
physical, as discussed below.

Two scalar perturbations can be eliminated by using the energy and momentum
constraints derived from the Einstein equations (1.12). This reduces the number of scalar

perturbations to three,

(2.44) D¢, %) = p(B) +5¢(t, %),
(2.45) ds? = —dt* +a® [(1-20)8;; +0;0;D] dx'dx’ .

For the purpose of calculating the second-order action for the scalar perturbation, we

choose to work in the comoving gauge [34], which for eqs.(2.44)-(2.45) implies
(2.46) D(t,x)=06¢p(t,x)=0.
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The inflaton is now homogeneous, ¢(¢), and the metric (2.45) can be simplified to
(2.47) ds? = —dt* +a?(1-20)8;;dx'dx’

where ( is known as the curvature perturbation, as its Laplacian corresponds to the

spatial curvature of space-like slices at constant ¢(¢) [34]. After carefully removing the

four non-physical scalar modes, we are left with one physical scalar perturbation, (.
After expanding the action (2.5) around the perturbed metric (2.47), one can derive

the second-order action for the scalar perturbation { [34],

(2.48) s=Lfaraxa? 2 |2 L 0,02

. —5 xa Iﬁ ( —g LC .
By defining

(2.49) z Ea% =av/2¢ex ,

and introducing the (canonically-normalised) Mukhanov—Sasaki variable [34, 69, 70]
(2.50) v=2z(,

the action (2.48) can be rewritten as

2

1
(2.51) S = ifdnd3x W2 - (0;0)% + 02|,
2

where we have also switched to conformal time, see eq.(1.17), and ' = d/dn.
By applying the principle of least action to (2.51) and transforming to Fourier space,
v(n,x)= [ % vk(n)e ™ % the equation of motion for vy (1)), known as the Mukhanov—

Sasaki equation, reads

"

z
(2.52) i+ (kz - —) vKk=0.

z
Eq.(2.52) is the equation of motion for an harmonic oscillator with time-dependent
frequency, (uk(n)2 = k2 —2"/z, which only depends on the modulus %. By differentiating
(2.49) twice with respect to conformal time, one obtains

"

3 1 1
(2.53) 2 —24%H2 1+€H—§77H—277H€H+€H2+§§H2+§UH2
z
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Figure 2.2: Schematic representation showing the horizon crossing of a mode with
comoving wavenumber k2 during and after inflation. The sub-horizon (2 > aH) and the
super-horizon (k¢ < aH) regimes are highlighted in blue and green respectively.

Solution in the de-Sitter limit and quantisation of the curvature perturbation

The inflationary background is quasi de-Sitter space, therefore we can study eq.(2.52) in
the limit of a de-Sitter universe and gain insight into the behavior of { during inflation.

In de-Sitter space, e =0 and a = exp(Ht) = —1/(Hn). The size of the causal Hubble
horizon, defined by the Hubble radius, is (aH)™! = —n, which decreases for 1 ranging
from 1 = —oco at very early times to n = 0. Using a = —1/(Hn) and the fact that ey is
constant yields wp(n)? = k2 —2/n2,

2
(2.54) vk + (k2 - —2) vk =0.
n

Eq.(2.54) clearly points to the existence of two different regimes, % > |v/2/n| = aH and
k < |vV2/n| = aH. These respectively correspond to the sub-horizon regime, i.e. the wave-
length of the mode % is smaller than the Hubble horizon, and the super-horizon regime,
i.e. the wavelength of the mode % is larger than the Hubble horizon. We schematically
summarise the different regimes of evolution in figure 2.2. Together with the horizontal
line representing 2!, the evolution of the Hubble horizon, (¢ H)™! is also displayed. The
horizontal axis represents time, with inflation taking place before the standard evolution
prescribed within the Big Bang model. The mode % starts off in the sub-horizon regime,

k > aH, and, after crossing the horizon at £ =~ aH, becomes super-horizon, £ < aH. We
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2.3. INFLATIONARY PERTURBATIONS

highlight the sub-horizon and super-horizon regimes with blue and green colors respec-
tively. The mode % later re-enters the horizon during the standard Big Bang evolution
and sources the temperature anisotropies in the CMB.

For & modes that are sub-horizon (k > aH), eq.(2.52) reduces to vk + kv =0, i.e.
the equation of motion of an harmonic oscillator with constant frequency, with solution
vk(n) = A cos(kn)+ Bsin(kn).

For % modes that are super-horizon (¢ <« aH), eq.(2.52) reduces to v —2/n% vk =0,
with solution v(n) = A'n~! + B'n?. By recalling the range of conformal time 7, we see
that the first solution grows, while the second one corresponds to a decaying mode. The

evolution of the curvature perturbation (i (n) on super-horizon scales is therefore

vk(n)

1
2.55 li =l —-n= t.
(2.:55) i, Clm) = lim, 7 oc 7 = cons

To summarise, during inflation the curvature perturbation {xk(n) oscillates when sub-
horizon and then freezes to a constant value after horizon crossing, £k ~aH.

Whilst eq.(2.55) does apply during inflation, it is possible to demonstrate that the
curvature perturbation generated within single-field canonical slow-roll inflation re-
mains constant on super-horizon scales after inflation too [71]. This implies that, while
perturbations are outside the horizon, we can neglect all the complex physical processes
taking place at very high energies in the early universe after inflation is complete, and
make a direct connection between the inflationary predictions and late time observables,
e.g. the CMB.

We turn now to solving eq.(2.54). The frequency wy(n)? only depends on the modulus

k, therefore we can expand the solution, vk(n), as
(2.56) o) = ax v +a_x vi()*,

where v;,(n) and vx(n)* are two linearly-independent solutions and a) and aik are two

integration constants. By imposing the reality of vk (n), it follows that aik =(a_K)".

Promoting ax and aik to quantum operators, we can quantise the field vi(n),

(2.57) o) = divp(m +a’ | vp()*,
with
(2.58) [dx,, 67y 1=0%(k1 +ke) and [dy,,d 1,1 =[af %) 1=0.

For the mode v;(n) in (2.57), eq.(2.54) becomes

2
(2.59) vk”+(k2——2)vk =0,
n
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with solution

(2.60) vr(n) = c1 2 (_cos(kn) - sin(kn)) +ca 2 (— cos(kn) + sin (k1) .
mk kn k kn

We rewrite the solution (2.60) in a more illuminating fashion,

—ikn : ikn :
(2.61) op(p) = al (1—i)+/3 ¢ (1+L),
Ver' \" kn) T V2R kn

where the constants @ = —cg—icy and = —cg+ic; are fixed by using the initial condition
for vy (n).

The definition of the vacuum associated with the Mukhanov—Sasaki equation in the
limit of de-Sitter space in ambiguous. Indeed, by looking at eq.(2.57) we can see that
0k(n) is left unchanged if dx and v;(n) are both suitably changed. Since di defines the
vacuum of the theory, dk|0) = 0, an additional input is required to completely fix vz (n),
such that the vacuum state |0) is unambiguously defined. To this end, we note that at
sufficiently early times all the modes v;(n) were sub-horizon, & > aH, obeying eq.(2.59)
with & > 2/n2,

(2.62) v + kv () =0.

This is the equation of motion for an harmonic oscillator with constant frequency, i.e. the
Mukhanov—Sasaki equation in the limit of Minkowski space. The modes v(n) are not

affected by gravity and the mode

1 .
(2.63) (1) = —— e k7
Ur(n o e

is the Minkowski vacuum state.
By identifying the initial condition for v;(n) with the Minkowski vacuum (2.63), we
can solve the Mukhanov—Sasaki equation in the limit of de-Sitter space, see eq.(2.59),

with the initial condition

—ikn

(2.64) i) =

also known at the Bunch—Davies vacuum?.

3Requiring that the initial state correspond to the vacuum, i.e. that the average occupation number of
states with momentum £ is much less than 1, is ensured by having enough inflation before the observable
universe left the horizon. This is realised when the mild requirement 2AN 2 log M ,/H holds, where AN
here is the number of e-folds already occurred before the observable window of inflation [72].
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Taking the n — —oo limit of (2.61), we can compare it with (2.64) and get a =1 and
B =0, yielding

(2.65) = (1
‘ ”’”"\/ﬁ( ‘%)'

The super-horizon limit of vz(n) in eq.(2.65) determines the super-horizon, constant
behavior of the curvature perturbation {;(n), see eq.(2.50). Taking the super-horizon
limit of vp(n), i.e. k <aH = —kn < 1, yields

1 1
iV2R32 5 ’
Substituting eq.(2.66) into eq.(2.50) and using (2.49), yields the curvature perturbation

(2.66) _}#E o vp(n) =

(r(n) in the super-horizon regime,
I H
V232 \/2ep \k=aH’

where the expression is evaluated at £ = aH since (3(n) freezes after horizon crossing.

(2.67) Cr(n) =

The scalar power spectrum

The quantum fluctuations produced during inflation can be characterised by the cor-
relation functions ({(x1){(x2)---), or equivalently in terms of their Fourier transforms
(« K ¢ ko ). Quantum Gaussian fields are completely characterised by the 2-point corre-
lation function, (¢ klf ko), While non-zero higher-order correlations contain information
about deviations from Gaussianity. The 2-point correlation function for the quantum

vacuum curvature fluctuation {x(n) is
(2.68) (G16yCiey) = (0101, 81109 = 182 (I (ke +Ke2)

which is obtained using eqs.(2.50), (2.57), the commutation relations (2.58) and the
vacuum normalisation (0|0) = 1. In eq.(2.68), we identify |{ k(n)|2 = % (k) and define the

dimensionless power spectrum of the curvature perturbation as

B3 H?

2.69 Prk)=s —P/ (k)= ———
(2.69) (k) 572 (k) 8nZep |beatt’

where eq.(2.67) has been used.

At leading order in slow-roll, H? = V/3, see eq.(2.31), and g = ey, see eq.(2.23),
therefore P;(k) can be equivalently written in terms of the inflaton potential V(¢) and
the first PSRP ey as

\%

2.70 Pi(k)= —— .
(2.70) () 24n2ey lk=aH
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It is costumary to parametrise the scalar power spectrum on large scales with a

simple power-law expression,

k ns—l+%log(k/kCMB)+~-~
@.71) P(k) = <4 (k )

K

CMB

where o/, and ng — 1 are the amplitude and spectral tilt of P;(k) respectively, defined
at the scale kcoyp = 0.05Mpce ! (chosen as pivot scale as it is best constrained by CMB
measurements, and to conform with most of analyses, including Planck), and as measures
the scale-dependence of the tilt. The further P;(k) is evaluated from kcyp, the more we
expect the power spectrum to deviate from a simple power law with constant tilt, e.g. the
running of the tilt and higher order terms become important.

Assuming as =0, ng — 1 quantifies the deviation of the scalar power spectrum from
perfect scale-invariance, P;(k) £°. Considering the expression (2.69) and the fact that
in canonical single-field slow-roll inflation H and possibly ¢z are time-dependent, e.g.
nu # 0, Py(k) is expected to be almost scale-invariant, with ns very close to one, but

different from it. Using eq.(2.71), ng — 1 is defined as
dlog (P (%))
2.72 gml=—2 0
(2.72) " dlog(k)
which is evaluated at horizon crossing £ = aH. We can transform the derivative with
respect to log(k) into a derivative with respect to the number of e-folds N,

d _ dN d
dlog(k) dlog(k)dN '

(2.73)

Considering that log(k) = log(a;i, exp(N)) + log(H), we get

dN ( dlog(k)

(2.74) dlog(k) \dlog(V)

where we have used the fact that ey = —H'/H in terms of N. By differentiating log (P((k))
with respect to N we get

dlog (P;(k €,
(2.75) M = ¢ — _H _ —dep +2n
dN €H

where we have used (2.29). Putting eqs.(2.74) and (2.75) together yields

-1
) =(1-eg) P =1+ep,

(2.76) ng—1= (—4€H+217H)(1+€H):—4€H+217H

at first order in slow-roll. In a similar way, one can also calculate

d?log (P;(k))
dlog(k)?

(2.77) a, = 2 + 10en s — 8ex?
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where we have used eq.(2.29) and n}{ =egng — . The expressions (2.76) and (2.77) are
to be evaluated when the CMB scale, kcyB, crossed the horizon during inflation. From
(2.76) and (2.77), one realises that a; is slow-roll suppressed with respect to the tilt, ng,
and therefore we expect the power law expansion given in eq.(2.71) to be accurate in

single-field slow-roll inflation.

Neglecting the effect of the running of the tilt for the reason above, we see from
eq.(2.76) that P;(k) is predicted to be slightly deviating from scale-invariance, n; # 1,
in single-field slow-roll inflation, since €z and 1y are non-zero and small. As we will
describe in section 3.1, measurements of the CMB anisotropies are consistent with an
almost scale-invariant primordial scalar power spectrum, see (3.5), in perfect agreement
with what predicted within single-field slow-roll inflation. Besides resolving the main
issues related to the Hot Big Bang cosmology, inflation also provides the seeds for the

large-scale structure of the cosmic web.

Let us pause here for a moment to remind the reader that, despite being the leading
paradigm describing the very early universe, cosmological inflation faces some criticisms.
One of the main challenges for inflation relies with its initial conditions. For cosmological
inflation to be considered as a really successful theory, it should arise from generic initial
conditions. A lot of work has been done to assess whether the inflationary spacetime is
robust against homogeneous and inhomogeneous initial conditions, with some works
pointing to problems with the naturalness of the initial conditions [73], and others
supporting that the inflationary spacetime arises very naturally [74, 75]. For more
details on recent developments see the review [76] and [77] (and references therein).
Another issue related to inflation is the so-called Trans-Planckian problem [78, 79].
Most models involve a period of inflation that lasts much longer than the number of
e-folds required to solve the horizon problem, and therefore the comoving scales which
correspond to the present large-scale structure of the universe were smaller than the
Planck length at the beginning of inflation. For this reason, the usual computations of
the inflationary fluctuations inevitably rely on hidden assumptions about physics at
energies above the Planck scale [78, 79]. This poses questions as to whether the current
predictions of inflationary cosmology might need to be revisited taking into account our
ignorance about super-Planckian physics, but also opens up the possibility of testing the

imprints of such high-energy physics with current observations [80].
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2.3.1.1 Ultra-slow-roll inflation

In section 2.3.1 we have shown that single-field slow-roll inflation leads to an almost
scale-invariant scalar power spectrum. On the other hand, it is interesting to explore
under which conditions the scalar power spectrum can become large. By inspecting
eq.(2.69) we see that this could happen when the inflaton velocity drops substantially,
¢ — 0, corresponding to eg — 0, see eq.(2.20). Equivalently, this is realised when the
gradient of the potential gets extremely small, V; — 0, corresponding to ey — 0 in
eq.(2.70).

Cases where the gradient of the potential becomes extremely small can coincide
with violations of the slow-roll approximation [81], and potentially realise a phase of
ultra-slow-roll dynamics [82—84]. Indeed, neglecting the gradient of the potential in the
Klein—Gordon equation (2.14) yields

(2.78) ¢+3HPp=0,

signalling a break-down of the slow-roll approximation, see eq.(2.32) where the acceler-
ation of the inflaton field is neglected instead. This can be implemented by having an
almost stationary inflection point in the potential [85-90].

More formally, one can show under which conditions the scalar perturbation is no
longer constant on super-horizon scales and potentially become large. By rewriting the
Mukhanov—Sasaki equation (2.52) in terms of the scalar perturbation { and transforming
the time variable to the number of e-folds N, see eq. (2.33), one gets [91]

d*{(N, k) d{(N,k)
ANt —av ¢

On super-horizon scales, k£ < aH, this equation admits the solution

k 2
(2.79) +(3+ex—2np) (a—H) (N, k) =0.

(2.80) (N, Rt =1+ ¢ [ AN e TN @i,

On super-horizon scales the scalar perturbation receives two contributions, a constant
adiabatic mode, and a second term whose magnitude depends on the sign of the quantity
3+ep —2nyg and is usually referred to as the entropic perturbation. During slow-roll
inflation er,ng < 1, therefore the second contribution in eq.(2.80) is approximately
proportional to exp(—3N) and quickly decays, i.e. the scalar perturbation is constant in
the super-horizon regime, see eq.(2.55). On the other hand, when 3+ e —2ng <0, the
second contribution grows and ( is no longer constant on super-horizon. This is realised
during ultra-slow-roll inflation when the gradient term Vi, can be neglected and typically

ng ~ 3 (or equivalently €3 = —6, see eq.(2.27), where we have assumed e < ng).
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2.3.2 Primordial gravitational waves

The tensor perturbation to the space-like part of the metric g;; is 6g;; = y;;, where y;;
is a symmetric, transverse and traceless tensor, Giyij = )fii = 0. This implies that it has
only two degrees of freedom, or polarisations, which in the chiral basis are L and R.

At linear order, the scalar, vector and tensor perturbations are decoupled, therefore
we can consider only the metric tensor perturbation, y;;(n, x), and derive its second order

action by expanding the Einstein—Hilber term in the action (2.5) at second order,
2 2
(ng) —(0174) ] :

analogous to eq.(2.51) for the scalar mode v(n, x).

1
(2.81) S = 3 f dnd®xa®

Proceeding in a similar fashion with respect to what was done in section 2.3.1 for the
scalar perturbation, we expand the tensor modes in Fourier components as y;;(n, X) =
S %yk (M e ‘KX The modes Yk,ij(n) can be decomposed using the transverse and

traceless polarization tensors e?j (k),

(2.82) Yifm= Y. e} (&) ym.
A=L,R

We quantise the tensor modes by setting
(2.83) Tl = dpyrm+atiyy ),

where the creation and annihilation operators satisfy [dﬁ,dﬂ;] = (2m)36M 6@ (ky + ko).

If there is no evidence for parity violating terms in the universe, the two polarisations
behave in the same way and they contribute equally to the tensor power spectrum. For
this reason, we first solve eq.(2.81) for a single polarisation and then add the second
polarisation contribution to the final result. For this reason we drop the superscript 1 in
the following.

By defining the canonically-normalised variable
a
(2.84) wr(n) = EYk(n),

one can show from the action (2.81) that it obeys the equation

1

(2.85) wy + (kz—a—)wk -0.
a

In the limit of de-Sitter space, a’/a = 2/n%, which makes eq.(2.85) the same as eq.(2.59)

for v;,(n). By using the results found in section 2.3.1, we get

2H?

(2.86) Pyy==5| .
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where the difference with respect to P;(k) is due to the different canonical normalisation
(2.84) and a factor 2 accounting for the contribution of both polarisations.

Similarly to eq.(2.71), the tensor power spectrum (2.86) is usually parametrised
with a power-law centered around kcyp, with amplitude < = 2H?/72 and spectral tilt
n; = —2ep. Usually the amplitude of the tensor power spectrum is discussed in terms of

the tensor-to-scalar ratio,

o,
(2.87) = j ~ 16¢y ,

S

where the second equality applies to canonical single-field slow-roll inflation, see eqs.(2.69)
and (2.86).

Tensor fluctuations of primordial origin contribute to the present GWs energy density,
Qaw,

k
aoHy

1 2
(2.88) Qaw(k,no) = — ( ) Py(k)TQ(k, n0),

12

where P, (k) here stands for the generic primordial tensor power spectrum including all
early-universe contributions. In eq.(2.88) quantities with the label "0" are evaluated at
present time, 7 is the conformal time, see eq.(1.17), Hy = 100k km/s/Mpc is the Hubble
rate today (we use h = 0.674 [29]), and T'(k,no) the transfer function. By considering a
standard reheating scenario where inflation is initially followed by a matter-dominated
phase, see section 2.2.2, and then by a radiation-dominated era, the transfer function is

given by (see e.g. [92, 93])

3Qum j1(k k B2
(2.89) T(k,no)ZM\/1.0+1.36(—)+2.50(—) .
kno keq keq

In the equation above, Q,, = 0.315 [29] is the matter energy-density today, j1(kno) is
the first spherical Bessel function and keq = 7.1 x 1072Q,, h2Mpc~! is the comoving
wavenumber that crossed the horizon at radiation-matter equality. By assuming the

standard ACDM cosmological model, Qx and (2, are negligible and

00 dz
(2.90) o :f y
0 HoVQp+Qp(1+2)3

We note that in eq.(2.88) there might be other sources of GWs from the early universe
other than those predicted by quantuum vacuum fluctuations during single-field slow-roll
inflation. These include GWs from other inflationary models, non-perturbative effects
during preheating, first-order phase transitions, topological defects such as cosmic strings.

For a complete review of early universe sources see [94].
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In general, it is important to stress that sources in the early universe give rise to a
stochastic background of GWs [94], i.e. the amplitude of y; j(n, X) is a random variable and
can be characterised only statistically. GWs generated during inflation are intrinsically
stochastic, as they are generated by quantum vacuum fluctuations of the metric, and
the transition from quantum to classical regime* due to the exponential expansion of
the background makes the random, quantum, tensor fluctuation an effectively classical
stochastic variable. Stochastic GWs backgrounds from the early universe are assumed to
be [94] statistically (i) homogeneous and isotropic, as the background is; (ii) unpolarised,
as there is no evidence of a parity violating source in the universe; (iii) Gaussian, as

gravitons are only very weakly interacting.

2.3.3 The effective field theory approach

We discuss here a unifying approach for the study of inflationary perturbations for
general single-field models. This is based on an effective field theory (EFT) approach and
has the advantage of systematically including all possible deviations from the vanilla
single-field slow-roll scenario due to the effect of high energy operators. This approach
was pioneered in [96] for single-field inflation, and later extended to the case of multi-field
inflation [97], light spinning fields [98], and also to the study of dark energy [99]. In the
following we review the results of [96] and explore in chapter 4 the case of light spinning

fields during inflation.

EFT of single-field inflation

The EFT provides a systematic way of parametrising our ignorance about the microphys-
ical description of a physical system when describing some of its macroscopic properties
[100]. One needs to first identify the relevant degrees of freedom for the physical process
of interest. For instance, for a specific experiment in particle physics, one can distinguish
between light particles, ¢;, which can be produced on shell at the energies available to
the experiment, and heavy particles, ¢y, too heavy to be produced at these energies. If
the full action for heavy and light fields is S(¢n, ¢1), the effective action for the light
fields is obtained by integrating out the heavy fields,

(2.91) ¢iSEFT(O) = f Dy SO0

4While before horizon crossing the field 0k(n, x) and its conjugate momentum 7k(7n, x) do not commute,
on super-horizon scales 7k(n, X) x 0x(n, xX), and they therefore commute. This implies that a state with
definite field value has definite momentum, signalling a transition from the quantum to classical regime,
see e.g. [66, 95] and references therein.
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As a result, the effective Lagrangian for the light fields includes an infinite number of

operators, 0;(¢)), with dimension A; higher than 4,

Oi(¢p1)
(2.92) gEFT ) ZmZAA—:p—IA} .

12

In other words, the effects of high-energy degrees of freedom (dof) are included as higher-
dimension operators in the effective Lagrangian. In the schematic expression (2.92),
operators appear suppressed by the energy scale A, also known as the cut-off of the EFT,
i.e. the energy scale that signals the break down of the EFT and above which one should
not trust the EFT results.

In principle, one should take into account the complete series of operators in (2.92),
but in practice only few terms need to be considered. This is because the effect of higher
energies operators on low-energy physics is suppressed by powers of E/Ey, < 1, where
the energies E| and E}, identify the characteristic scales of the low- and high-energy dof.
The higher the energy associated with one operator, the more its effect on the low-energy
physics will be suppressed.

An EFT approach is particularly useful for the study of those systems whose UV-
complete theory is not known. If the symmetries of the low-energy theory are known,
one considers an effective, low-energy, theory that contains all the operators that are
compatible with these symmetries. In this way, all the possible effects of the high-energy
dof are systematically taken into account. In the context of theories of gravity, for
example, general relativity is the EFT of the complete (and unknown) theory of quantum
gravity, valid at scales E < M, [101].

Let us first identify the symmetries relevant for the inflationary scalar perturbation.
Unlike a perfectly de-Sitter universe, inflation has to end and the inflaton field ¢(¢)
acts as a clock, measuring the time left to the end of inflation [96]. The time-dependent
background, ¢(t), breaks the time diffeomorphism (diffs)

(2.93) t—t+&%%,x),

with the inflationary perturbation transforming non-linearly under (2.93), i.e. 6¢' #
(1+ a)d¢ with a small, but instead

(2.94) 5¢' =6¢+ ).

While space diffs are still an explicit symmetry of the system, the symmetry associated
with the time diffs (2.93) is linearly broken.
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By choosing &0 = —6¢/(f) in eq.(2.94), one can choose to work in the comoving (or
unitary) gauge [96], with 6¢ = 0 and ¢(¢) = ¢(¢). In this gauge, the scalar degree of
freedom is contained in the metric and the most generic action including all the terms

compatible with the (unbroken) space diffs x* — x* + (¢, x) is [96]

1 My(t)* Ms(t)*
(2.95) S= f d*x\/~—g [EMsz —c()g® — A(t) + %(g00 +1)2%+ %(g00 +1°%+
Mq(t)? My(¢)? Ms(2)?
- %(goo +1)6K " - 2(t) 5K M - 8(2) 6K, 6K M +---

where 6K, =K, - a’Hh v s the variation of the extrinsic three-curvature of constant
time hypersurfaces, K,,, and A, is the induced three-metric. These are defined in terms

of the unit vector n,, which is perpendicular to hypersurfaces at constant time, ¢ = Z,

0,

\/—8P70,10,t

The induced three-metricis A4, = guv+nyn, and the extrinsic three-curvature of constant

(2.96) ny

time hypersurfaces is K, = hZV oMy,

The coefficients M;(t) and M;(¢) in the action (2.95) may have a generic time depen-
dence, as the inflaton breaks time-reparametrisation invariance, and keep track of the
energy scales above which the EFT treatment cannot be trusted, in analogy with the
(unique) scale A introduced in the schematic effective Lagrangian in eq.(2.92).

The first and third terms in eq.(2.95) are background quantities, and the second term
is explicitly linearly-dependent on the perturbations, while all the other terms contain

quadratic perturbations or higher. For this reason, the part of action

1
(2.97) S = f d*x =g 5M,ﬁR —e()g" - A2)

can be used to fix the background, i.e. a FLRW universe [96]. Using eq.(1.14) at zeroth
order in the metric perturbations, one can calculate the density p and pressure P
associated with the action (2.97),

(2.98) p=ct)+ A1), P=c(t)-A®).

Substituting the above in the Friedmann equations (1.32) and (1.33) (with no cosmologi-

cal constant) and solving for c¢(#) and A(¢) yields
(2.99) c(t)=-M,*H, At)=M,*3H*+H).
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Substituting eq.(2.99) back in the action (2.95) yields

(2.100) S = f d4x\/——g[ M,?R+M,?>Hg" - M,*(3H + H)+

Mo(t)*
2!

where for simplicity we drop the terms containing 6K ", not relevant for the purposes of

2208 (00, 1y2 z(_“( 04 1) 4

this review.

Even if eq.(2.100) might seem a bit obscure, it is possible to write the inflationary
single-field models we are familiar with in the language of (2.100). Let us consider the
case of single-field slow-roll inflation. In the comoving gauge, 6¢(¢,x) =0 and ¢ = ¢(t),

the action (2.5) becomes

(52

1 _
(2.101) S:fd4x 7 | 1,2~ L0 v

Using eqgs.(2.12) and (2.13) to write (Z)Q and V(¢) in terms of H and H?, eq.(2.101) can
be rewritten as eq.(2.100) with My = M3 = 0. We note here that there is an advantage
in using the action (2.100) rather than the single-field slow-roll action (2.5): the former
carries more information about the system, containing all the terms that could possibly
be generated by loop corrections, i.e. it systematically includes the effects of high-energy
physics [96].

The action (2.100) is not invariant under the time diffs (2.93), but it is possible to
restore the full gauge symmetries by employing a technique known in standard gauge
theory as the Stiickelberg trick [102]. This effectively mimics a gauge transformation,
after which the scalar mode explicitely appears as the Goldstone boson. To this end, let

us consider the simplified action (2.97) and the transformations
(2.102) t—F=t+&=x) and ' —>F =x'.

Under (2.102) the term g% transforms as

0%° 0x°
2.103 00 _, 590 (%(x)) = — —g"¥
(2.103) g — 8" ) = S o2 g (),
with the inverse transformation being
9x° 9x°
00 =~V
(2.104) g (x)= 7 o% & (%) .

The inverse tranformation for /=g is

(2.105) Vg = ( ‘F
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gx is the Jacobian of the inverse coordinate transformation. Substituting eqs.(2.104)

and (2.105) in the action (2.97) yields

(2.106) S = f d4x) \/—g[ c(t)—

where

=~V
Mavg ® - A@)

where we have dropped for the moment the Einstein-Hilbert term. Recognising that

d*x gi = d*% and using the time diffs (2.102) yields
3 a(f-¢%a(F-¢%) 8
_ 4~ = | _ _ 0 SUV Y _ 0
(2.107) S—fd x\-8 |-c(t-¢") Frm pPT g @-A(E-&7)] .

If we promote the parameter ¢(x) to being a field, &% (x(x)) — —7(%), eq.(2.107) becomes
o(t+a®) 0 (f+ %)

—c (f + fr(ic)) FY FYe

(2.108) S-= f d*z\/-g 8 (@) - A (E+ 7))

The field 7(%) is the Goldstone boson, and provided it transforms as
(2.109) m(x) — 7 (#(x) = 7(x) - E0(x)

under diffs (2.102), the action (2.97) is now invariant under space and time diffs.
Applying this transformations to the full action (2.100) and dropping the tilde symbol
for simplicity, we obtain [96]

(2.110)
1 | )
S:fd4x —g{EM 2R+ My?H(t+m)((1+ 2%+ 2(1+ 1)9img” + 0,m0jmgY) +

Mz(t-l—]'[)

~ M2 [3H(t +7)* + H(t +m)] + o

. .. 2
[(1+7r)2 00+2(1+7’t)6ing0l+0in6jng”+l] +

Ms(t + )t
+ .

. . 3
T |+ 0?8 +2(1+ M) aimg™ +dimdymg 1] +---

where we have used

A(t+m) ot , .
(2.111) (a+u”) (a+vﬂ) W)= 1+m)2 g% +2(1 +7)0;ng" +0;m0;ng"
X X

We are interested in slow-roll solutions where H and H do not vary significantly in one
Hubble time, and we assume the same also for the other time-dependent coefficients
My and M3. For this reason, the time-dependence of all these functions is slow-roll
suppressed, and we can safely assume H(¢ + ) = H(¢) and so on in eq.(2.110).

In the action (2.110) the metric components are perturbed, e.g. g% = -1+ 5g%

in principle the scalar field 7 couples with the metric fluctuations. This can be seen for
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example from one of the terms in (2.110) proportional to H, M p2H (1+7)?g%. Expanding
it yields

(2.112) M,2H 1+ 1) g% > -M,2H #% +2M,*H76g°°,

where we can see that, besides the usual kinetic term o 72, there is also a term coupling
7 and the perturbation §g%. Nevertheless, by working in the regime where this term is
suppressed, also known as the decoupling limit, we can safely neglect the mixing between
the Goldstone and gravity [96]. The decoupling energy scale can be estimated by looking
at the second term in eq.(2.112) for the canonically normalised fields® 6g%° ~ M 0 g%

and 7, = M,H"?,
(2.113) 2HY25,66% .

For energies E > Eix = H? = \/egH , the mixing with gravity can be neglected.
In the decoupling limit, we can study the action (2.110) with the unperturbed metric

(2.114) g%=-1, g%=0, g¥=6Y?,

yielding up to third order [96]
(2.115)

1 . 2
S-= f e Nars [§Mp2R _M,2H (7‘[2— (0m)

2

K

on)*) 4
)+2M§(7‘r2+ﬁ3—fr( 7;) )—§M§fr3+...

a a

where we do not include the terms linear in 7 because they do not contribute to the
second-order action, and the equation of motion therefore.

The Goldstone boson described by the action (2.115) can be related to the the cur-
vature perturbation, . In particular, { is defined in the comoving gauge as the scalar
perturbation to the three-metric g;;, see eq.(2.47). When the Goldstone boson is on stage
instead, time is transformed according to ¢t — = t — 7 and the metric is unperturbed, see

eq.(2.114). By simply comparing these two different pictures,
(2.116) gij=at)?(1+20)8;; < gij = alt —m)?5;j = at)* (1-2Hn)5;;,
we can derive the first-order relation between 7 and { [96]

(2.117) (=-Hrm.

5The canonical normalisation for 7 is obtained for Ms = 0, in which case the dominant 72 term is the
first term in eq.(2.112). For a theory where M9 # 0, the canonically normalised 7. is determined by the
coefficient of the dominating 72 term.
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2.3. INFLATIONARY PERTURBATIONS

Eq.(2.117) implies that, up to a factor of H, the Goldstone action (2.115) describes the
scalar fluctuations around an inflating background up to third order in the perturbations.
Using eq.(2.117) allows us to connect the 2-point correlation function of the curvature
perturbation with that of the Goldstone boson,
3 3

k k
(2.118) P(k) = o (i (k) = ﬁH%nklnkQ :

where we use the symbol = as we are not including the delta function §2(k; + kg). To
calculate the 2-point correlation function of the Goldstone boson, let us consider for the
moment the slow-roll case, e.g. we set Mo = M3 =0 in eq.(2.115). The quadratic action

for the canonical field 7, then is

5 <anc>2) ]

(2.119) S = f d*xy/=g e~ 3

15 (.
“M,2R+|i
2

which is the quadratic action for scalar perturbations on de-Sitter space. By using the
results obtained in section 2.3.1, the two-point correlation function for the field 7.y is
2

(2.120) (e Tetg) = 0° (k1 + ko) g
where the expression above is evaluated at horizon crossing. Transforming to the non-
canonical field, 7 = / (M pH v 2), and inserting the resulting expression in eq.(2.118)
yields

k3 H? H?

_~<7Tck17[ck2> =

(2.121) Pik)= — T )
¢ 272M,% H 82M ,%ep Ik=aH

which is the same result obtained in section 2.3.1 in the context of the standard pertur-
bation theory calculation.

Another interesting consequence of the action (2.115) is that, in principle, the co-
efficient of the time kinetic term, 72, is different from that of the spatial kinetic term,
On)?,

(2.122) (-M,2H +2M3)7* vs M,*H(m)?.

To avoid ghost and gradient® instabilities, it must be that —M,2H +2M3 >0 and H <0
respectively. Moreover, if My # 0 the sound speed of 7 would be different from one [96],
2 _MP2H
sE T -

2M35 - M,*H

6Having a ghost in the theory implies that the energy of the system is unbounded from below and
unitarity is broken, while in presence of a gradient instability the field modes grow exponentially.

(2.123) c
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IfH<0and M g > 0, then the propagation of 7 is sub-luminal, ¢; < 1. A reduced sound
speed is natural in this context, as the background evolution breaks Lorentz invariance,
so that ¢; =1 is not protected by any symmetry.

By inspecting the action (2.115) one can see that the same operator which leads to
a reduced speed of sound also induces cubic couplings of 7, see e.g. the terms 7° and
71(dn)?. These terms induce primordial 3-point correlations for the scalar perturbation,
(Ck,{ky{ks), Which constitute the leading non-Gaussian signature for inflationary pertur-
bations. In other words, a reduced sound speed for the scalar perturbations in single-field
inflation is always associated with enhanced non-Gaussianities [96].

We conclude this section with a comment on the cut-off of the EFT of single-field
inflation. While the theory (2.115) makes sense and can be used at energies E =~ H > E iy,
at high energies we expect the Goldstone boson to become strongly coupled, e.g. its cubic
self-interactions induce loop corrections to the 2-point correlation function. By calculating
the energy at which these corrections become important, we can evaluate [96] the cutoff
of the theory (2.115),

5

s
3 -
s

c

(2.124) A* = 167°M,?|H]| -

We note that the cutoff of the theory is higher in case c¢s = 1, while it decreases for sub-
luminal propagation, which again manifests the connection between a reduced sound

speed and enhanced effects of 3-point interactions.

2.4 Multi-field inflation

Despite the great success of single-field inflaton in solving the puzzles within the standard
Big Bang cosmology and explaining the origin of structure formation, it is more natural
to embed in high-energy theories inflationary models comprising multiple fields.

A straightforward example of the UV-sensitivity of single-field inflation is the 7
problem. In order to solve the horizon problem, inflation has to last at least (approxi-
mately) 60 e-folds. To this end, not only the first PSRP has to be small, ey < 1, but also
nv < 1 for at least 60 e-folds. If we consider the EFT of single-field inflation, we have
to include in the effective Lagrangian, %, an infinite number of non-renormalisable
terms with dimension A >4, each one suppressed by powers of the cutoff of the theory,
A2~*. Amongst these, there is the dimension six operator
¢* 1 59"

cm
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2.4. MULTI-FIELD INFLATION

where c is a coupling constant of ©(1) and in the second equality we assumed a quadratic
V(¢). The operator above induces a modification to the inflaton potential, which in terms
causes 1y to change,

M)?
A2

(2.126) Any =0|e

For ¢ =0(1) and A < M, the correction above is Any 2 1, pointing to the fact that the
small value of ny is not protected from the effect of high-energy physics. The sensitivity of
inflation to Planck-scale physics motivates the study of inflation in the context of higher
energy theories, e.g. string theory, which usually accommodate a rich(er) inflationary
particle content, including compactification moduli, axions, gauge fields, Kaluza-Klein
modes [103].

For these reasons, inflationary models comprising multiple fields have been exten-
sively studied in the last 20 years. We devote the rest of this section to reviewing the
basic formalism of multi-field inflation, where multiple scalar fields are considered, and
the interesting effects of the multi-field dynamics.

When considering the extension from single-field inflation into a multi-field scenario,
there are two novel ingredients which enter the inflationary evolution: the field-space
geometry and the multi-field potential. The action of the multi-field model can be written

as
(2.127) s=[atxy=g [—%%J (%) aup' a9’ ~v (qbK)] :

where 977 (¢X) is the metric on the field space and V (¢X) is the multi-field potential.
For simplicity, let us consider the case of two-field models, K = {1, 2}.

In a FLRW universe, the equations of motion for the evolution of the background
fields read (see e.g. [104])

1
(2.128) 3H2:502+V,
(2.129) = _Lg?
. 14
2 b
(2.130) 2! +3HY + 477V ;=0,

where V; = dV/d¢?, 62 = 415¢'¢” is the kinetic energy of the fields, 2,47 = AT +
FIJK(bJAK and Ff,K are the Christoffel symbols on the field space. After some manipula-
tion, eq. (2.130) can be rewritten as [105]

(2.131) G+3Ho+V,=0,
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where V; = (j)I\(I/d.

In order to ensure that the study of scalar field fluctuations relies on quantities
which are covariant under field-space transformations, the covariant perturbation in the
spatially-flat gauge, @, is used [106]. The equations of motion for the linear perturba-
tions are then [107-109] (see also the review [110])

k2
(2.132) 2:2,Q" +3H2,Q" + a—ZQ’ +M';Q7 =0,
where the mass matrix, M!;, is defined as
I I I .K .L 1 a3 'I .
(2.133) M=V~ R kLG " — 5D\ P b |-

The first component of M! ; is the Hessian of the multi-field potential Vie=Vig —F? 7V K,
defined by means of a covariant derivative in field space in order to take into account
the non-trivial geometry. The second term also depends on the geometry of the field
space, whose Riemann tensor is R x1.7. For a two-dimensional field space, the Riemann
tensor is Z1jkr, = %%fs (Y1951 —%1.%5K), where %, is the intrinsic scalar curvature
of the field space. The third term encodes the gravitational backreaction due to spacetime
metric perturbations induced by the field fluctuations at first order.

When studying the dynamics of the perturbations, instead of directly using the
variables Q! it is often convenient to project the fluctuations along the instantaneous adi-
abatic and entropic directions [108, 111]. The adiabatic direction follows the background
trajectory in field space and the entropic direction is orthogonal to it. More precisely, the

new basis is described by the unit vectors (67, §7), where

v4
(2.134) 61 = ‘/’—
g
LUI
(2.135) §' = — where o' = 9t01 ,
w
(2.136) 6's1=0, 6'6;=8"s;=1.

Usually w is referred to as the turn rate in field space, while the dimensionless bending

parameter

measures the deviation of the background trajectory from a geodesic in field space. Using

eqgs. (2.130) and (2.131), the components of the turn rate can be expressed as

(gIJV w1
(2.138) et 2 Py
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and
1,7 _ GMVEVM (Vo)

(2.139) w? =950 = 3
o o

Projecting the perturbations @ in the adiabatic and entropic directions allows us to
define the adiabatic and entropic perturbations as @, = §;Q! and Q, = §;Q' respectively.
From these, the dimensionless comoving curvature and isocurvature perturbations are

given by
H H
(2.140) (=—Qos, S=—Q;.
o o

The presence of isocurvature perturbations, S, gives rise to multi-field effects. The

equations of motion for @, and @ are [107-109]

. . (k2 . (H V.
(2.141) Qo +3HQ, +|— + mgz) Qo =(2Hn1Qs) - (— + —U) 2Hn.1Qs ,
a H ¢
2
(2.142) Qs +3HQ + k—2 + mﬁ) Qs =-201.¢.
a

These equations show that the adiabatic and entropic perturbations are coupled in the
presence of a non-zero bending of the trajectory (1, # 0), i.e., non-geodesic motion in
field space [111]. The squared-masses of the adiabatic and isocurvature fluctuations are

my2 and m,2 respectively. At leading order in slow roll the adiabatic squared-mass is

my? = —%ez +0(e2), while the entropic squared-mass is
2
m V;ss 2
(2.143) 7 =z TR

where V. = §I§J‘/;]J.
In the super-horizon regime (k¢ < aH) the curvature perturbation obeys

. H?
(2.144) (=~ 21”7623 ,

which demonstrates that in multi-field inflation the curvature perturbation, {, is not
constant in the super-horizon regime for non-geodesic trajectories, in contrast to what
found in section 2.3.1 for single-field inflation. Substituting this expression into eq. (2.142)

for @5 we obtain
(2.145) Qs + 3HQS + ms,efszs =0,

where the entropic effective squared-mass in the super-horizon regime is [112]

2
Mg eff V;ss

(2.146) 2 e

+e1 R + 31)2L .
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For reasons which will become clear in chapter 6, we focus on the case of hyperbolic
field space, Z¢; < 0. From the equations above one can identify two important regimes

characterising the multi-field dynamics in a hyperbolic field space:

(i) geometrical destabilisation: the effective squared-mass of the isocurvature pertur-
bation (2.146) receives a contribution from the curvature of the field space, %Z¢;, which on
a hyperbolic geometry is negative. If the combination €1 %s; is large enough to overcome
the other contributions in (2.146), this can lead to geometrical destabilisation [112, 113].
In this case, the entropic fluctuation is tachyonic and renders the background trajectory
unstable. As a consequence, inflation might end prematurely, affecting the inflationary
observables [114], or the geometrical instability drives the system away from its original

trajectory into a new, side-tracked, field-space trajectory [105, 115, 116];

(i1) strongly non-geodesic motion: a large bending of the background trajectory
(7. > 1) could drive the entropic squared-mass, m 2 in eq. (2.143), to negative val-
ues. In this case the entropic fluctuation may undergo a transient instability in the
sub-horizon regime where it is exponentially amplified. However, while contributing

2 in eq. (2.143), a large bend

negatively to the squared-mass on sub-horizon scales, m
in the trajectory contributes positively to the effective squared-mass on super-horizon
scales, ms,eff2 in eq. (2.146), therefore keeping the background trajectory stable. As a
consequence of the transfer between the entropic and adiabatic modes (whose efficiency
is set by 17, ), the exponentially-enhanced isocurvature fluctuations can source curvature
perturbations [117-119]. In this case, the scalar power spectrum can grow faster than
would be allowed in single-field ultra-slow-roll inflation [120]. Depending on the duration
of the turn in field space, it can be classified as broad (taking several e-folds) or sharp
(less than one e-fold), as will be discussed in chapter 6. In the case of sharp turns P;(k)
exhibits characteristic oscillatory patterns [117-119, 121], see also [122, 123] for earlier

works on features in P;(k) produced by sudden turns of the inflationary trajectory.

In summary, multi-field dynamics in a hyperbolic field-space geometry can lead to a
very rich phenomenology, because of geometrical effects and non-geodesic motion. This
has been studied in the context of the generation of features in the primordial power
spectrum on large scales, primordial black hole production production [4, 117, 118], and
second-order gravitational waves generation [119, 121, 124-126]. We go back to these
topics in chapter 3 when discussing observational tests of inflation and in chapter 6,
where we explore multi-field effects in the context of cosmological a-attractor models of
inflation [127-134].
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n this section we discuss observational tests of inflation. We present large-scale
CMB observations of the primordial scalar power spectrum and current upper
bounds on primordial GWs from observations of the CMB polarisation map in
sections 3.1 and 3.2 respectively. In sections 3.3 and 3.4 we define the scalar and tensor
3-point correlation functions for the scalar and tensor perturbations, and discuss current
upper bounds from CMB observations. In section 3.5 we focus on inflationary models
that support large scalar fluctuations on small scales, which could potentially lead to
primordial black hole formation, see section 3.5.1, and detectable second-order GWs at

high frequencies, see section 3.5.2.

3.1 CMB temperature anisotropies

In section 2.3.1 we demonstrate that the scalar perturbation is conserved on super-
horizon scales within canonical single-field inflation, see eq.(2.55). Weinberg [71] formally
showed that the adiabatic mode of the curvature fluctuation is excited during inflation
and that it has a physical non-zero constant solution on super-horizon scales, regardless
of the equation of state of the constituents of the universe. Importantly, this result allows
us to neglect the complicated high-energy processes taking place at the end of inflation
and connect directly inflationary predictions to observables quantities at later times.
Some years before, a similar result was derived in [135], where the separate-universe

argument is used to prove the conservation of { for adiabatic perturbations.
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In this section we focus on the CMB anisotropies, see section 1.2.4.1, which are mainly
seeded by scalar quantum vacuum fluctuations produced during inflation [14, 33].

When studying the phenomenology of an inflationary potential, in order to compare
it with CMB observations it is of key importance to calculate the number of e-folds
before the end of inflation when the CMB scale, defined by the comoving wavenumber
kEcmp =0.05Mpe ™!, crossed the horizon (k = aH) during inflation [67]

ANcMB = Nena — NcomB

k 1. (V2 1-3
CMB) L omB | Wy ln( Pth )
aoHy Pend 12(1 + wy) Pend

3.1)

1
- —In(gw).

=67—1n(
12

In this expression (agHp) ! is the comoving current size of the universe, penq is the
energy density at the end of inflation, Voup is the value of the potential when the
comoving wavenumber kcyp crossed the horizon during inflation, w; is the equation
of state parameter describing reheating, see section 2.2.2, py, is the energy scale and
Zth 1s the number of effective bosonic degrees of freedom at the completion of reheating.
Following [67], we fix g¢n, = 103.

The precise value of ANcyp depends on the inflationary potential and the details
of reheating [136]. For matter-dominated rehating, w, = 0, and more in general for
reheating scenarios with equation of state —1 < w, < 1/3, one can obtain the maximum
value which ANcypB can take by assuming instant reheating, pth = Pend-

In single-field slow-roll inflation, the inflationary predictions for scalar fluctuations
on large scales can be calculated by evaluating the corresponding slow-roll expressions
ANcump e-folds before the end of inflation. In particular, the slow-roll expressions for the
scalar spectral tilt, ns — 1, the running of the spectral tilt, a; and the tensor-to-scalar
ratio, r, are in eqgs. (2.76), (2.77) and (2.87) respectively. These predictions should then
be compared with the observational constraints from the latest Planck data release [67].
In this section we present current measurements of the spectral tilt and its running, and
leave for section 3.2 the discussion of bounds on primordial GWs.

By fitting the Planck temperature, polarisation and lensing, plus BICEP2/Keck Array
BK15 data with the ACDM + r + @5 model, the amplitude, the tilt and its running are
[67]

(3.2) s =2.1x10"Y (68%C.L.),
(3.3) ns =0.9639+0.0044 (68%C.L.),
(8.4) as = —0.0069 +0.0069 (68%C.L.),

56



3.2. CMB POLARISATION AND PRIMORDIAL GRAVITATIONAL WAVES

where we leave the discussion of the upper bound on r to section 3.2.
Observational bounds on the scalar spectral index at CMB scales using the baseline
ACDM cosmology, i.e. excluding both a; and r, with Planck temperature, polarisation

and lensing data, are [67]

(3.5) ns =0.9649+0.0042 (68%C.L.).

3.2 CMB polarisation and primordial gravitational

waves

As shown in section 2.3.2, inflation predicts the existence of a stochastic background
of gravitational waves (GWs) [137]. These primordial GWs are too faint to be directly
detected at CMB scales. Nevertheless, it is possible to indirectly probe them by detecting
a specific pattern in the CMB polarisation map [138].

The CMB photons are polarised due to Thompson scattering, in this case elastic
scattering off the free electrons in the primordial plasma just before decoupling [138].
The outgoing radiation is polarised only when the incoming radiation is anisotropic, in
particular with a quadrupolar pattern [138].

To demonstrate this, let us start from the simplest case and consider an electron,
sitting in the origin of the (x, y, z) space, and incoming radiation in the & direction, see
the top-left panel in figure 3.1. This corresponds to electric and magnetic fields oscillating
perpendicularly to the direction of propagation, i.e. in the y and Z directions. If the
intensity along the y and 2 directions is equal, then the incident light is unpolarized,
which is the case depicted in the top-left panel in figure 3.1, where the thickness of lines
representing the incoming radiation is the same in the y and 2 directions. The electric
field of the incident wave accelerates the electron, causing it to emit radiation at the
same frequency as the incident wave, i.e. the electron scatters the wave. In particular,
the radiation component parallel to the incoming (x) and outgoing (2) directions is
blocked, while the perpendicular one passes through unchanged. In this case, the result
is radiation polarised in the y direction.

This very simple cartoon does not describe the primordial plasma case, where incident
light is coming from all directions. So, let us now consider the case of isotropic radiation
incident on the electron, where for simplicity we consider two photons travelling from
perpendicular directions. In addition to the photon travelling along the % direction

as before there is also one, with same intensity, incoming from the ¥ direction. This
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outgoing radiation
e

outgoing radiation
—

outgoing radiation
—_—

Figure 3.1: Schematic representation of different Thompson scattering processes. We
display the scattering off an electron placed in the origin of unpolarised light incoming
from the & direction (top-left panel), unpolarised light incoming from two perpendicular
directions (top-right panel) and light with a quadrupolar anisotropy pattern (bottom
panel).
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case is represented in the top-right panel of figure 3.1. The second photon induces an
additional polarisation to the light emitted by the electron, this time in the % direction.
This, combined with the one from the first photon, makes the light emitted from the
electron unpolarised, i.e. in presence of isotropic radiation Thompson scattering leads to
unpolarised light.

The same mechanism of cancellations happens also for the case of anisotropic light
with a dipole pattern, with overall unpolarised outgoing radiation.

The case of incoming radiation with a quadrupolar anisotropy is different. This
corresponds to a set-up in which the free electron sees, e.g., two hot spots in the £ and
—x directions and two cold spots in the ¥ and —j directions, where hot (cold) means
more (less) intense radiation. This situation is represented in the bottom panel of figure
3.1, where the thicker lines indicate more intense radiation. The outgoing light in this
case is linearly polarised in the y direction. As anticipated, incoming radiation with a
quadrupolar anisotropy induces a net linear polarisation of the CMB photons.

The polarisation field can be described in terms of two components, the E- and
B-modes. While scalar perturbations can induce only E-modes, tensor perturbations
produce both E- and B-modes! [138]. E-modes in the CMB have already been detected
[139], while the search for primordial B-modes is ongoing?.

Detecting B-mode polarisation patterns in the CMB would be an indirect detection of
primordial gravitational waves, i.e. would be the smoking gun for inflation?. It would
also determine a specific value of the tensor-to-scalar ratio, see eq.(2.87), which would
allow us to measure the energy scale of inflation, H, for single-field slow-roll models.

In the absence of a detection, using Planck, WMAP and the latest BICEP/Keck data
to constrain the tensor-to-scalar ratio at # = 0.05 Mpc™! for the ACDM + r cosmological
model yields the upper bound [142]

(3.6) r<0.036 (95%C.L.).

Space- and Earth-based observatories proposed as future CMB surveys, such as CMB-S4
[143, 144], Simons Observatory [145], LiteBIRD [146] and PICO [147] will continue

IPrimordial vector modes can also give rise to B-mode polarisation, but vector perturbations decay
with the expansion of the universe [13], therefore their contributions is expected to be subdominant at
recombination and can be neglected.

2B-modes have also been observed in the CMB, but are consistent with being caused by gravitational
lensing of E-modes, see e.g. [140].

3This is because alternatives to inflation do not generate a detectable signal, see e.g. [141], but this is
also true of many inflationary models, e.g. single-field a-attractor models, see chapter 6, with a < G(1072)
would lead to a signal that is out of reach for detection with current and planned CMB polarisation
observatories.
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the hunt for B-modes, reaching a designed sensitivity, e.g. for the case of PICO, up to
o(r) =107 [147].

We note here that single-field slow-roll inflation predicts a red-tilted tensor power
spectrum, see section 2.3.2, therefore the direct detection of primoridal GWs on small
scales is not expected before the launch of dedicated space-based detectors such as
DECIGO/BBO [148, 149]. On the other hand, a direct detection of GWs of primordial
origin on small scale could point to different inflationary scenarios, possibly comprising
additional fields, see e.g. the review [93]. We explore this possibility in chapter 4 for the
case of additional light spin-2 fields.

Coherent phases: two striking pieces of evidence for inflation

While inflation was motivated in the first place as a solution to the main problems of the
Hot Big Bang cosmology, see section 2.1, we presented in section 3.1 observations of the
CMB temperature anisotropies that point to an almost scale-invariant power spectrum
of primordial scalar fluctuations that is in perfect agreement with the predictions of

single-field slow-roll inflation, see eq.(2.76).

On top of these remarkable successes of cosmological inflation, there is another char-
acteristic of CMB primordial fluctuations, namely their phase coherence, that constitute
strong evidence for inflation, see [138]. Inflation causes the modes of a single wavelength
to oscillate with the same phase, i.e. all modes reach the maximum amplitude (or cross
zero) at the same time. Coherent phases (as opposite to random initial phases) are
therefore responsible for the coherent interference which produces the typical peaks
and troughs observed in the CMB temperature power spectrum at multipoles [ > 200
(see e.g. figure 1 of [29]). If the modes were oscillating with random phases, the CMB
power spectrum would look like white noise instead. The multipoles involved (I > 200)
correspond to scales that were sub-horizon at recombination, so one might think about
other causal processes that could have been responsible for coherent phases. Given this,
an even more striking observation is the (anti-)cross-correlation between the CMB tem-
perature fluctuations and E-modes polarization on large scales, 50 <[ < 200 [150]. This
is again the result of coherent phases, but now the scales involved were on super-horizon

at recombination, meaning that no causal process can explain these observations.
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3.3 Scalar non-Gaussianities

For a Gaussian quantity the 2-point correlation function is sufficient to statistically
characterise its distribution. Observations of the CMB anisotropies point to scalar fluctu-
ations with a nearly Gaussian distribution. The leading deviation from the Gaussian
distribution is given by the 3-point correlation function, ({(x1){(x2){(x3)).

There are several sources of non-Gaussianities in the CMB [151], and in the following
we focus on the description of primordial non-Gaussianities produced during inflation.

The Fourier transform of the 3-point correlation function of { is the bispectrum
[14, 152],

(3.7) (i (iep iey) = )2 83 (ky + kg + kg) B(k1, ko, k3).

Here the delta-function is due to the statistical homogeneity, or translation invariance?,

of the background, and it implies that the three momenta must form a closed triangle.
Isotropy, or rotational invariance, implies that the bispectrum only depends on the
magnitude of the momenta, B(k1, ko, k3).

The bispectrum is usually written as [152]
(3.8) B(k1, ko, k3) = [NLF(R1, k2, k3),

where fnr, is the dimensionless non-linearity parameter® which measures the amplitude
of the bispectrum, and F(kq, ko, k3) describes the shape and scale dependence of it.
Possible configurations for the momenta include the squeezed one®, k1 <« kg ~ k3, and
the equilateral one, k1 = ko = k3. The value of the bispectrum varies as we change the
momenta configuration, and the shape of the bispectrum is defined by the configuration
of the triangle which contributes the most to the signal. Importantly, the shape of the
bispectrum carries a lot of information about the { interactions that produced the 3-point
correlation in the first place. For example, derivative interactions typically lead to an
equilateral shape as the correlation is mainly imprinted on modes with similar %, due to
the suppression of the interactions after horizon crossing.

Maldacena [153] showed that non-Gaussianities produced in single-field slow-roll

inflation are slow-roll suppressed, fni, = O(e, n), and that the squeezed limit of the

4Spatial translation invariance leads to momentum conservation.

5Note that the parameter fxi, is shape-dependent, i.e. there will be a specific amplitude for each shape.

6The momenta k9 and k3 in the squeezed configuration are nearly equal because of momentum
conservation, e.g. the squeezed triangle is closed.
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7

bispectrum’ can be related to the power spectrum through the consistency relation

(3.9) lim B(k1, ko, k3)ox (1—ng)P(k1)Pi(k2),

k1<<k2~k3

where ng is the spectral tilt of the scalar power spectrum. In other words, for an almost
scale-invariant P;(k), non-Gaussianities with a large squeezed limit are suppressed,
and this applies in general to all single-field slow-roll inflation models, regardless of
details of the inflaton potential. These results imply that detecting large squeezed
non-Gaussianities would potentially rule out single-field slow-roll inflation [153, 157].

Using an EFT approach, see section 2.3.3, it is possible to show that single-field
inflation supports in general non-Gaussianities in the equilateral and orthogonal shapes
[158, 159], where the latter is orthogonal to the local and equilateral shapes. Examples
of single-field models different from the vanilla slow-roll scenario include models with
non-standard kinetic terms [160], £ = P (X, ¢), where X = d,¢0"¢, or models with
higer-derivative interactions, such as ghost inflation [161].

Multi-field models typically support non-Gaussianities of the squeezed type, see the
reviews [157, 162, 163]. When the field-space geometry is hyperbolic and the trajecto-
ries strongly deviate from geodesic motion the bispectrum can be enhanced in the flat
configuration, k1 + ko ~ k3, [164], see section 2.4.

Measurements from the Planck satellite lead to the current bounds at 68% C.L. [151]

(3.10) £39=-09+451, fi%=-26+47,

consistent with single-field slow-roll inflation.

3.4 Tensor non-Gaussianities

Whilst in the previous section we have focused on the bispectrum of the scalar perturba-
tion, there could be sources in the early universe leading to tensor non-Gaussianities
[165].

Similarly to what was done in eq.(3.7) for the scalar 3-point correlation function, we

define the tensor bispectrum as

(3.11) N nenie) =@m)° 6% (k1 + ko + kg) o/ 14243 By (1, ko, k3),

"Whether the squeezed bispectrum corresponds to a physical observable effect, or can be cancelled by
a suitable coordinates tranformation is still a matter of discussion, see e.g. [154—156].
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where the function «#*11243 accounts for the different polarizations. Current bounds at
68% C.L. on the amplitude of tensor non-Gaussianities in the squeezed and equilateral
limits are [151, 165]

sq _ eq —
(3.12) T tens = 2902180, fyd . =600+1600,

where the non-linearity parameters in (3.12) are defined as
(3.13) = lim By "tk ko ko)
) NL, tens ™ p, <kg~ks S54(k1,ko,k3)
+++

@1 =

’ 5 2k
To connect with the bispectrum definition given in eq. (3.11), we identify B; *F(k1,ko,k3) =
ARRRB. (k1,ko,ks3) / 2v'2. The numerical factor «/EEE is equal to 27/64 and 1/4 in the

equilateral and squeezed shapes respectively [166]. In the squeezed limit, the bispectrum

shape template S°? reduces to

12 2
(3.15) S%U(ky, kg) = — (272Py (k) ,
Lo ks) = (@mP(B) k3RS

where we have identified k7, = k1 and kg = k9 ~ k3, with k; < kg. The scalar power
spectrum in eq.(3.14) can be related to the dimensionless scalar power spectrum P;(%)
using eq.(2.69).

Sizeable non-Gaussianities in the tensor sector are typically produced when addi-
tional fields source primordial GWs. This is the case, for example, for inflationary models
with an additional spectator sector comprising a pseudo-scalar axion field and gauge
fields [167—169]. Whilst the gauge fields are directly coupled with the axion spectator,
the spectator sector is coupled only gravitationally with the inflaton.

Cook and Sorbo [167, 168] considered the case of U(1) gauge fields and showed that
the rolling of the axion amplifies the vacuum fluctuations of the gauge fields, which
in turn can source primordial GWs and lead to an amplified tensor bispectrum signal.
Only one polarisation of the gauge fields is excited and therefore the induced tensor
bispectrum is parity-odd [168]. The U(1) fields also source scalar perturbations, and
current tight constraints on the scalar power spectrum and bispectrum severly restrict
the parameter space of these models [170].

If the gauge fields have an SU(2) symmetry instead, the sourcing of scalar modes is
negligible and the model is shown to support enhanced primordial GWs [169], as well as
amplified (equilateral) tensor non-Gaussianities at CMB scales [171].

We explore tensor non-Gaussianities sourced by light spin-2 fields during inflation in

chapter 5.

63



CHAPTER 3. OBSERVATIONAL TESTS OF INFLATION

3.5 Testing models predicting large fluctuations on

small scales

As discussed in section 3.1, CMB observations tightly constrain the power spectrum of
scalar fluctuations produced during inflation on large scales. On the other hand, the
primordial power spectrum is much less constrained on smaller scales, i.e. £ > kcyp. An
intriguing possibility is that, on small scales, the statistics of the curvature perturbation
deviates strongly from the large-scale behaviour, for example displaying a significant

enhancement in the scalar power spectrum.

A sudden growth of the scalar power spectrum is usually associated with departures
from single-field slow-roll inflation [81], for example in cases when a transient ultra-
slow-roll phase is realised, see section 2.3.1.1. In single-field inflation this can be realised
by a local feature in the inflaton potential, e.g., an inflection point [85-90, 172]. Other
mechanisms associated with multi-field models have been proposed, such as a strongly
non-geodesic motion [117, 118] and/or a large and negative curvature of the field space [4,
173]. These could cause a transient instability of the isocurvature perturbation, then
transferred to the curvature fluctuation, leading to a peak in the scalar power spectrum,

see section 2.4.

Enhanced scalar perturbations can lead to primordial black hole (PBH) production
and potentially detectable second-order GWs, which we review in sections 3.5.1 and
3.5.2 respectively. These provide appealing ways of testing on small scales models of
inflation beyond the vanilla single-field slow-roll one. In chapter 6, we study small-
scale enhancements of the scalar fluctuations in the context of cosmological a-attractors

[127-134], and explore their phenomenology in light of CMB large-scale constraints.

3.5.1 Primordial black hole formation

Very large amplitude scalar fluctuations produced during inflation give rise to large
density perturbations when they re-enter the horizon after inflation, which can collapse to
form primordial black holes [174] (see the review [175] for other formation mechanisms).

Interestingly, PBHs formed in the early universe could potentially constitute cold

dark matter (or a fraction of it) [176—178], or could explain some of the events detected
by the LIGO-Virgo collaboration [179-182].

The mass of the PBHs formed is related to the mass contained within the Hubble
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horizon at the time of formation [175]

(3.16) MPBHEYMH:Y%,

where p is the energy density at the time of formation and y is a dimensionless coefficient
describing the fraction of the Hubble horizon mass which collapses into the PBH. The
parameter y is a numerical factor (somewhat below 1) [183] that depends on details of
the gravitational collapse; for illustration we use the benchmark value y = 0.2 [184]. For
simplicity, we assume that there is a one-to-one correspondence between the mass of
the PBH formed and the comoving scale of the scalar perturbations which produced it,
M(k) = M;,. In practice the spectrum of enhanced scalar perturbations will span a range
of scales, and the process of critical collapse [185] will then lead to a spectrum of PBH
masses [186, 187]. Nonetheless the Hubble mass (3.16) provides an upper limit on the
PBH masses formed.

The mass fraction at formation of PBHs with mass M}, is given by

PPBH

Ptot lat formation -

(3.17) B(M},) =

This is commonly estimated using the Press—Schechter formalism [188], but we note
that the peak theory approach [189-191] can also be used. In the Press-Schechter
approach the PBH abundance is determined by the probability that some coarse-grained
random field, §, related to the comoving density perturbation (e.g., the compaction

function [192, 193]) exceeds some critical threshold value, § =d,:

© 45 —§
(3.18) BMy) =2y | ———=e *7Wp,
8 /2mo2(My)

The PBH mass fraction, f(M}), is exponentially sensitive to the variance of the coarse-
grained density field, 02(M}), and thus to the peak of the primordial power spectrum on
small scales [187, 194, 195]. In eq. (3.18) we assume that the probability distribution of
the coarse-grained scalar perturbations, §, is well-described by a Gaussian distribution,
while noting that the abundance of very large density fluctuations could be very sensitive
to any non-Gaussian tail of the probability distribution function [196—-200].

The abundance of PBHs is constrained by several observations, with different masses
leading to different types of constraints [175, 183]. PBHs with masses M < 101°g [183]
evaporate within the current age of the Universe due to Hawking radiation [201]. PBHs
with smaller masses, 10%g < M < 10'%g, are mainly constrained by the effects that the

radiation they emit would have on Big Bang nucleosynthesis [202] and CMB anisotropies
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Figure 3.2: Diagrammatic representation of the interaction between a tensor mode, Y%/,
and the density perturbation, ¥, at second order. We depict a representative interaction
vertex, y*/0; Yo iV, and the resulting 1-loop contribution to the tensor power spectrum in
the top and bottom sections of the figure respectively.

[203], see figure 4 in [183]. PBHs with masses M > 10'5g are constrained e.g. by (i) the
amount of radiation they emit [202]; (ii) the lensing they would induce in the light from
sources of known redshift, e.g. gamma-ray bursts events [204], near stars [205], stars in
Large and Small Magellanic Clouds [206], stars in Messier 31 [207]; (iii) the dynamical
interaction they could have with astrophysical objects [183]. For a summary of these

constraints see figure 10 in [183] or figure 1 in [208].

3.5.2 Second-order gravitational waves generation

First-order primordial scalar fluctuations produced during inflation induce a stochastic
background of primordial GWs at second order in perturbation theory [209-213] (see
also the review [214]).

After reheating is complete, primordial perturbations from inflation, {(n, k) in the
language of section 2.3.1, re-enter the horizon during the radiation-dominated era and are
transferred to the density perturbation, W(n, k), where W(n, k) = 2/3T(kn){(k) and T'(kn)
is the transfer function in the radiation-dominated era [215]. In the Newtonian gauge,
Y(n, k) coincides with the Bardeen potential and it plays the role of the gravitational
potential. The scalar perturbation sources at second-order the tensor fluctuations y; ;(n, k)
[216]. As an example, we schematically represent in figure 3.2 one of the source terms,
in the form 9;'W0;¥. This type of interaction, depicted in the upper part of figure 3.2, in
turn induces a 1-loop contribution to the tensor power spectrum, as represented in the

lower section of figure 3.2.
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Figure 3.3: Left panel: two examples of a scalar power spectrum with a log-normal peak,
see eq.(3.20), with parameters {kpcax = 3 X 102Mpc~1, A = 0.01} (dashed-purple line)
and {kpeak = 3 x 1012Mpc~1, A = 0.5} (green line) respectively. Right panel: Qgw(k) of
the second-order GWs induced by the primordial scalar power spectra displayed on the
left. The vertical gray line signals the scale & =2/ V3 kpeak, Wwhere resonant amplification

produces a peak in the induced GWs [211].

GWs induced at second order contribute to the stochastic background of GWs, see

eq.(2.88). In particular, the present-day energy density associated with the second-order
GWs is [212, 217]

1/V3

Qo o 1 d2-1/3)s3-13)]% _ [kV3
(3.19) Qawk)=—2 | dd ngs[ e } Pe|—5~(s+d)

x Py (k\f(s - d)) [Fe(d,8)* + Fs(d,8)?],

where Q.o = 8.6 x 107% and the functions .%, and .%; are defined in eq. (D.8) in [217]. We
note that the expression above is derived assuming a ACDM evolution, see [218, 219]
for details on how the induced GWs could be used to probe the thermal history of the
universe.

The amplitude and scale-dependence of the second-order GWs depends on the overall
shape and amplitude of the primordial scalar power spectrum, see P;(k) appearing twice
in eq.(3.19). In single-field slow-roll inflation, P;(k) has amplitude </, = 1072 at CMB
scales and is red-tilted, see sections 2.3.1 and 3.1, therefore the induced GW signal
is expected to be small in amplitude, decreasing towards small scales, and in general
beyond the reach of GWs detectors in the near future.

On the other hand, a large peak in the scalar power spectrum could lead to a poten-

tially detectable second-order GW signal. As an example, in figure 3.3 we illustrate the
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(idealised) case of a log-normal peak in the scalar power spectrum [220],

(3.20) Py(k) =

\/ZQT exp (—log (k/kpeak)/2A2) ,

where kpcqi is the position of the peak, A controls the width of the scalar power spectrum
and A its amplitude. In the left panel we display P;(k)/A for two models with kpeax =
3 x102Mpc~! and A = 0.01 (dashed-purple line) and A = 0.5 (green line). The resulting
spectrum of the second-order GWs is plotted in the right panel, and it is produced by
numerically evaluating eq.(3.19). Both spectra display a two-peak structure, with a
principal peak from resonant amplification located at & = 2/v/3 kpeak [211]. The two-peak
structure is more evident for narrow peaks, in this case A =0.01, while it gets smoothed
away for broader peaks, A =0.5.

Because of their primordial origin, the detection and characterisation of the second-
order GWs signal could provide an indirect way of probing the scalar power spectrum on
scales much smaller than those where the CMB constraints apply, see section 3.1, and in
turn constrain the physics of inflation. From 2035 a series of space- and Earth-based GWs
observatories will be searching for GWs on small scales, 10 Mpc™! <% < 108 Mpc?,
potentially able to detect GWs of primordial origin, including the stochastic background
induced at second-order from inflationary perturbations. We represent in figure 3.4 the
sensitivity curves of present and upcoming GWs observatories, including the Square
Kilometer Array (SKA) [221], Laser Interferometer Space Antenna (LISA) [222], Einstein
Telescope (ET) [223], DECIGO/BBO [149], Cosmic Explorer (CE) [224] and Advanced
LIGO-Virgo (aLV) [225].
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Figure 3.4: Sensitivity curves of present and future space- and Earth-based GWs obser-
vatories, operating up to frequencies in the kHz.






CHAPTER

PRIMORDIAL GWS FROM LIGHT SPIN-2 FIELDS

s discussed in chapter 3, the detection on small scales of a stochastic background

of GWs with cosmological origin could point to inflationary scenarios different

from canonical single-field slow-roll inflation. In this sense, present and future
GWs interferometers, see figure 3.4, directly probe inflationary physics that deviates
from the minimal scenario. In this chapter, we adopt an EFT description, see section
2.3.3, of extra spin-2 fields, where we dub the spin-2 as “extra” to underline the fact
that it is distinguished from the standard massless spin-2 particle, the graviton, of
general relativity. We demonstrate that time-dependent sound speed for the helicity-2
modes can generate primordial GWs with a blue-tilted spectrum, potentially detectable
at interferometer scales. In particular, we focus here on the capability of the Laser
Interferometer Space Antenna (LISA) [222] to constrain the parameter space of the
spin-2 fields.

This chapter is based on the publication [1], and is arranged as follows. After moti-
vating our work in section 4.1, in section 4.2 we briefly review the EFT approach and
derive the scalar and tensor spectral indices in the case of time-dependent sound speeds
for the helicity modes of an extra spin-2 field. In section 4.3 we discuss the theoretical
requirements on the EFT Lagrangian parameters alongside current experimental con-
straints. These are later employed in section 4.4 to define current exclusion limits on
the parameter space and to explore LISA detection and constraining power on this very

general set-up. We discuss our results in section 4.5.
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0 2 9/4 m2/H2
P *—o v

Figure 4.1: Upper line: mass spectrum the spin-2 field in case of coupling through gravity;
the dotted region is excluded by the Higuchi bound [236] and red stars represent the
(light) masses tested in this work, see section 4.4.1, which cover most of the Higuchi
region without going to the massless limit. Lower line: values of v = \/9/4 — (m/H)>?
corresponding to the masses above.

4.1 Motivation

Single-field slow-roll inflation is just one of several scenarios compatible with current
observations and plenty of multi-field realizations can be found in the literature, see
section 2.4. Upon requiring that the mass of the main field driving inflation is small
enough to guarantee about 60 e-folds of expansion, any extra particle content can in
principle cover a wide mass range. Very massive fields, m > H, are typically integrated
out, although one may look for remnants of such fields in late-time observables [105, 122,
164, 226-232]. For example, inflaton trajectories that display fast turns might lead to
effects of heavy physics in the primordial fluctuations, such as oscillatory features in the
scalar power spectrum and related non-Gaussian signatures [122]. Cosmological probes
are more sensitive to lighter, i.e. more long-lived, particles, satisfying m < H. Light extra
particles will be the main focus of this chapter.

It proves useful to organize any extra content according to the mass and the spin
of each given particle. Primordial correlators such as the bispectrum, see section 3.3,
in their squeezed (and generalizations thereof) configuration, store key information
about the mass and the spin of particles that mediate the corresponding interactions.
Intriguingly, spinning fields generate a richer dynamics, including for example an extra
angular dependence [233-235] that may be searched for by current and up-coming
experiments.

As one considers the requirement of a consistent and predictive theory of spinning
fields in de-Sitter space, the allowed mass range is dramatically reduced. Starting
with s = 2, unitarity bounds [236] force massive particles to satisfy inequalities of the
schematic form m = H, to the detriment of the observational prospects for signatures
corresponding to spinning fields. For spin—2 fields this takes the form of the so-called
Higuchi bound on the graviton [236], m2 > 2H?, see figure 4.1.
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Given that the inflationary background is not exactly de-Sitter, one may hope that
unitarity is less demanding on an FLRW background. This specific question has been
addressed, for the case of extra spin-2 fields, in [237]: although weakened in FLRW, a
consistent cosmological evolution leads to a unitarity bound of the same form. In the
absence of fine-tuning, the bound is no weaker than about one order of magnitude with
respect to the pure de-Sitter case. Intuitively, this is expected in view of the fact that one
can continuously go from FLRW to de-Sitter.

The one implicit assumption in the above results is that the extra fields are mini-
mally coupled, i.e. only coupled through gravity to the inflaton field. Therein lies the
key for drastically weaken unitarity bounds. Indeed, the latter stem from identifying
unitary representations of the de-Sitter isometry group [238]. However, the inflationary
background breaks de-Sitter isometries, see section 2.3.3, the very same isometries at the
heart of unitarity requirements, and so will any field with sizable coupling to the inflaton.
Unitarity bounds are much weakened as a result of such non-minimal couplings' and a
much more interesting phenomenology ensues. This is not surprising: direct coupling to a
light field, in this case the inflaton, makes much more efficient the energy exchange and
enables heavier modes to become effectively lighter and considerably more long-lived.

When considering extra fields non-minimally coupled with the inflaton, it is important
to first verify that the direct coupling does not lead to instabilities, or ghostly degrees of
freedom, see e.g. [239]. There is an extra difficulty when it comes to higher spin (s > 2)
theories in that a fully non-linear Lagrangian formulation is still missing [240, 241].
The massive s = 2 case is special in that a ghost-free fully non-linear formulation exists
[242, 243] and has been used in the context of inflation [244—247] (see also [248] and
references therein for an approach with a related model).

Here we shall adopt a specific approach [98] to non-minimal coupling during inflation
which is the natural generalization of the EFT of single field inflation of [96], see
section 2.3.3. The advantage intrinsic to this formalism is that the EFT will span almost
the entire space of possible signatures. It is nevertheless possible to implement some
consistency checks so that the theory is free of well-known pathologies, such as e.g.
gradient instabilities [98].

We will focus in particular on the gravity sector of an inflationary theory with extra

spinning fields. The degrees of freedom associated to spinning particles can source GWs

IFor the spin-2 field with non-minimal coupling described in [98], the unitarity bound is derived by
imposing the positivity of the coefficient of the helicity-0 mode kinetic term. The non-minimal coupling
modifies (more precisely, it increases the number of) the parameters that affect the bound, and therefore
one has more freedom to relax it with respect to the minimal-coupling case.
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already at linear order, and the fact that these extra modes can be light enhances their
effect on late-time observables. Remarkably, the sourced contribution can be the leading
one and may dramatically alter the properties of the signal with respect to the vacuum
dominated scenario, see eq.(2.86). Indeed, in contrast to the slightly red-tilted GW signal
of single-field slow-roll models, multi-field set-ups enable a (strong) scale dependence
in the tensor power spectrum, spanning from bump-like features to a purely blue-tilted
signal, see e.g. [169, 249-256].

In the following sections, we first review how an extra spin-2 field can source the GW
spectrum at tree level [98] and then show how a time-dependent speed of sound for the
extra modes delivers a blue-tilted spectrum within reach of LISA. We combine bounds
from the model self-consistency checks with those originating from (i) measurements of
the primordial scalar power spectrum on large scales; (ii) the upper limit on the tensor-
to-scalar ratio r at CMB scales and scalar/mixed non-Gaussianities in the same regime;
(iii) ultracompact minihalos and primordial black holes; (iv) big bang nucleosynthesis;
(v) the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Pulsar
Timing Arrays (PTA).

4.2 EFT of light spin-2 fields during inflation

The unitarity bounds that prohibit a large fraction of the mass range for fields with spin
s = 2 stem from the common notion of particles as unitary irreducible representations
of the spacetime isometry group [238]. The fact that inflation does not correspond to
de-Sitter, but rather to quasi de-Sitter background, points to a natural way around
stringent unitarity requirements. The inflaton itself breaks de-Sitter isometries for the
simple reason that inflation needs a “clock” for the accelerated expansion to eventually
come to an end, see section 2.3.3. Demanding unitarity on extra fields in quasi de-Sitter
space turns out to enforce qualitatively similar constraints to the de-Sitter case as long
as the extra content is only minimally, i.e. gravitationally, coupled to the inflaton field.
The key step is then to directly couple spinning particles to the inflaton.

Given a specific set-up one can then work out the corresponding effects of non-minimal
coupling on late-time observables. In this work we shall adopt a different perspective,
namely that of [98], which is an extension of the works in [96, 97] on the EFT of inflation.
As reviewed in section 2.3.3, the set-up of [96] uses the Stueckleberg trick to make
manifest the Goldstone boson of the (spontaneously) broken time-reparametrization

invariance. At sufficiently high energies, i.e. in the decoupling limit, the dynamics of the
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system if fully captured by the Goldstone boson 7, which can be related to the curvature
fluctuations (, see eq.(2.117). It is then natural to consider extra fields in this framework
[97].

The extension to extra spinning fields is somewhat more complex. It relies on the fact
that one can classify the extra field content, as is typical in the case of non-linearly re-
alised symmetries, as representations of the unbroken group. The unbroken symmetries
being rotations, it is straightforward that particles of different spin will have a different
description (as a three-vector, a three-tensor and so on). In the case of interest for us,
that of an extra spin-2, the five propagating degrees of freedom are described by the
traceless symmetric tensor X% which is “embedded” as the four-tensor X"V, whose (0, 0)
and (0,7) components are:

B ain’ajn’zij Zoj:—ai—n

= i
aQ+m)2 1+7

(4.1) >0
The effectively light states described by £ have their couplings with the inflaton pre-
scribed by the fact that broken symmetries are non-linearly realized. An explicit example

is provided in the quadratic and cubic interactions for o/ = a2Z% [98],

So8® 8@ 4 g®

free int int

1 ) 2 3 ) 12
:Zfdtd?’xa3 ((f”) ~c2a™2 (diajk) —é(c%—cg)a_z (aia”) -m? (0”) ]
4.2) 3 3 [ _9 o1 ..
+fdtd xXa _\/EHG 6i6jnc(7”+§pycija”
- fdtd3xa3 La_2 (6,-7106 ~ncdij+2H6inca~ncaij) +u(0ij)3+...
2e1H2M, I J

where €7 is defined in eq.(2.26), m is the mass of the spin-2 field and 7, = \/ﬁHMp b4
and y®;; = Mpyi; are the canonically normalized Goldstone boson and tensor fluctuations
respectively, see section 2.3.3. The quantities p and u are coupling constants with mass
dimension one.

The quadratic interactions in the action (4.2) are obtained in the decoupling limit
from a term o p6K,,ZH" [98], coupling the spin-2 tensor with the fluctuation of the
extrinsic curvature of hypersurfaces at constant time, see below eq.(2.100); the cubic
self-interaction of the spin-2 derives from a term uZWZﬁZPV [98].

In eq.(4.2), the sound speeds for the 0, 1 and 2-helicity components of o are indicated
as cg, c1 and cg, and they satisfy the relation [98]

(4.3) cf =
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The interactions in Sfii generate tree-level contributions to the scalar and tensor power
spectra, whose amplitudes are sensitive to the sound speeds (cg, c2), and to the magnitude
of the p/H coupling. In this work, we shall allow for a time-dependence in the sound
speeds and explore its implications at the level of the power spectra. For simplicity, we
take the parameter p to be a constant.

The scalar and tensor power spectra and their scale-dependence? is given by

H2 k -1 H?2  Ci(v) 2( n@-1
(4.42) P(k)=—-75 ( ) 2112 2 (21/ (ﬁ) ( ) ’
8n2Me1 \kcmB 8n2Myei co®¥ ‘\H’ \kcms
oH? ( k \"'  2H? C,) p\2( k \W
(4.4) P = (| SR (Y ()
n2M; \kcMs niMy c9®” \H) \kcms

where kcyp is the CMB pivot scale, kcys = 0.05 Mpc_l. The first contribution on the
right-hand side of eq.(4.4a) is due to vacuum fluctuations, see eq.(2.69), while the second
one is sourced by o. The same holds for the tensor power spectrum in eq.(4.4b). The

scalar and tensor spectral indices are given by

(4.5a) n(sv) -1=-2¢1-¢€9,
2
1(0
(4.5b) n® 1= —2e5— 2vsg— 1%61; (ElnC((v) - 2lnco) ,
(4.5¢) n” = -2,
2
1(0
(4.5d) ngg) = —2vsg — %61; (alnCY(v) —2In 02) .

In the above, v = \/m ,€1 and €9 are defined in eq.(2.26) and the time-dependence
of the sound speeds is described in terms of the parameters s, = ¢, / (Hey),withn =0,1,2.
The functions C;(v) and C,(v) can be computed analytically for co <1 and ¢y < 1 [98]
and are represented in figure 4.2 in the mass range 3/5 <v < 7/5.

When discussing the phenomenology of the EFT and comparing it with observations,
one needs to connect comoving scales corresponding to specific observations with the
dynamics of inflation, see the discussion around eq.(3.1). This is achieved by employing
the number of e-folds of inflationary expansion as defined in eq.(2.33). We refer to the

number of e-folds elapsed between the horizon crossing of the comoving wavenumber

2While the validity of the power law expansion is ensured around the pivot scale, kcyg, higher-order
corrections might become relevant on scales & > kcyp. To systematically take these into account, one
should include the running of the spectral tilt and higher-order derivatives, see e.g. eq.(2.71). For the
present analysis, we choose to cut the power law expansions in eqs.(4.4a) and (4.4b) at the level of the
spectral tilt.
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Figure 4.2: C¢(v) (left panel) [98] and Cy(v) (right panel) [98] plotted over the range
3/5 <v < 7/5, corresponding to spin-2 masses 0.54 < m/H < 1.37.

ko=aoHy=~10"* Mpc_l, corresponding to the current comoving size of the universe, and
the end of inflation as AN, which is defined in a way similar to eq.(3.1) [67, 257], where
kcmB is now substituted by %£¢. By considering no significant energy drops at the end of
inflation, so that penq =V, instant reheating, pth = peng and g4, = 102, eq.(3.1) becomes

1. 3H?
(46) ANtOt = 67 + Zln M_IZJ ,

where we have used the Friedmann equation during slow-roll inflation (2.31). Once ANt
is given, we define the number of e-folds elapsed between the horizon crossing of a mode
k and the end of inflation, AN (k), as

k
(4.7) AN(R) = ANyt —In .
aoH()

4.3 Current and future bounds

Let us elaborate on the bounds on the scalar and tensor power spectra that are employed
in section 4.4 to constrain the parameter space of the effective Lagrangian. We refer
the interested reader to a similar analysis carried out in [93]. There, the starting point
is the specific model in [258] (see also [259, 260]), with an additional feature: the time-
dependence of the speed of sound for the scalar spectator field has been switched on. In
what follows, theoretical requirements and experimental constraints will be combined
to draw the current exclusion regions in the (p/H , |82|) plane of the EFT Lagrangian

parameter space and to identify LISA’s constraining power.
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4.3.1 Consistency requirements

Besides being generally defined in the (0,1] interval®, the sound speeds in the EFT
framework are subject to additional theoretical (and observational) constraints. One such
bound, ¢, > 1073, arises from perturbativity requirements, in particular from requiring
that the one loop o-sourced corrections are smaller than the tree-level power spectra
[98]. In the following we relax this bound, and consider ¢, 2 10~ throughout the EFT
validity.

General consistency of the perturbative treatment also translates into bounds on
the coupling constants, p/H <« /€1 and p/H <« 1, which define the weak-mixing regime.
These ensure that Sfﬁi can be treated as a (small) correction to the kinetic Lagrangian,
see eq.(4.2).

An additional constraint on p/H is imposed in order to avoid gradient instabilities,

P /. .2
(4.8) E« €1¢y -

In presence of a time-dependent sound speed c(, we always make sure that the constraint
above is satisfied at all times, by using the minimum value that ¢y acquires throughout
the evolution. Eq.(4.8) automatically ensures that also the previous two conditions on
po/H are satisfied, given that co <1 and ¢; < 1.

We point out here that the expressions of the power spectra reported in eqgs. (4.4) are

accurate only in the regime [98]

(4.92) pkm,

(4.9b) ANG) > (2] = ANgpr,

where AN (k) is defined in eq.(4.7). For the mass values considered here, see section 4.4.1,

we calculate the corresponding ANgpT by using (4.9b),
(4.10) {(m/H, ANgp7)} = {(1.37,0.53), (1.12, 0.80), (0.54, 3.45)} .

The conditions in (4.9) ensure that the perturbative result for the tensor power
spectrum coincides with the one derived from a non-perturbative treatment of the (y — o)

mixing [98].

3For a Lorentz-invariant quantum field theory, the requirement ¢, < 1 ensures causality is preserved;
for a recent discussion about superluminality and causality see e.g. [261].
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4.3.2 Observational bounds on the scalar sector

The 2- and 3-point statistics of scalar perturbations are constrained on large scales
by measurement of CMB anisotropies, see sections 3.1 and 3.3. Constraints on scalar
non-Gaussianities on these scales give rise to a lower bound on the sound speeds of the
order ¢, > 1072 [98]. As to the 2-point statistics, Planck data constrain the amplitude
and the tilt of the primordial scalar power spectrum for the ACDM model [67]. Using the
power-law parameterisation in eq.(2.71) yields the measurements (3.2) for the amplitude
and (3.5) for the tilt. In the following, we use the central value of the tilt, n, = 0.9649
[67].

For simplicity, we assume that on large scales the scalar power spectrum (4.4a) is
dominated by the vacuum contribution which implies

p_ e

4.11 — < .
( ) H C;(v) lk=kcmp

As it will become clearer in the next section, within the spin-2 field mass range considered
in this work, eq. (4.11) and the gradient instability condition (4.8) are nearly equivalent.
When eq.(4.11) holds, €; can be deduced from the measurement of «/; upon fixing the
Hubble rate, H.

One can further verify that, given the above conditions, Planck constraints on the
spectral tilt, ng, are easily satisfied. To this aim, we compute the EFT Lagrangian

prediction for the parameters in the power-law parametrisation (2.71),

H? Civ) (py2l( B O\
¢ 8n2M2eq co?ver (H) kcMB
where ng"t =(—2¢1—€9+0) ‘k . with
=RCMB

Ce) (p )2 )

co2Ve H m 1(0
4.13) 0= % [—62 +2€e1—2vsy — Iﬁel; (alnC((v) - 21nco)

1 + cOZVgl (H)

Using the observed value of the tilt to fix e = —2¢1 — (ng— 1), one concludes that the
condition § < —2¢7 — €9 puts a bound on the parameter space which is automatically
satisfied if eq.(4.11) holds, and provided we span the range of masses and sound speeds
used throughout our analysis.

The amplitude of the scalar fluctuations is constrained on small scales by CMB spec-

tral distortions, primordial black holes and ultra-compact mini-halos (UCMH). Spectral
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distortions can be generated by dissipation of primordial perturbations through photon
diffusion and are relevant in the 1 < k/Mpc™! < 10 range [262]. We apply spectral
distortions bounds on the scalar power spectrum at £gp = 3 x 102Mpc ™!, in particular
P;(ksp) <4 x 1075 [120].

PBH may have formed from the collapse of large density perturbations, see section
3.5.1, and therefore constraints on their abundance result into bounds on the primordial
scalar power spectrum [202, 263, 264]. These are several orders of magnitude weaker
compared with CMB bounds, however they are important in that they span significantly
more orders of magnitude in scales, see [186] for an updated analysis. We apply the bound
at the scale kppyg = 1014 Mpc‘l, in particular P;(kppn) < 1072 [265]. This corresponds to
PBH masses =~ 10712 M, 0, Whose Schwartzshild radius is R¢ ~ 10~?m. They can affect the
path of photons with 1 = R, introducing an interference pattern in their energy spectrum.
This effect goes by the name of femptolensing*. The non-detection of femptolensing from

PBHs with these masses in turn constrains the scalar power spectrum [265].

We verified that both spectral distortions and PBH constraints produce less stringent
bounds on the parameter space of our EFT Lagrangian than those obtained by imple-
menting the gradient instability condition. These will therefore not be included in the

final plots.

UCMH are dense dark matter structures that can form from large density perturba-
tions right after matter-radiation equality [266]. While many of the constraints on their
abundance depend on assumptions regarding the nature of the dark matter particles,
more general constraints can be obtained by accounting for gravitational effects, in
particular lensing time-delay in pulsar timing [265]. For this reason we apply UCMH
constraints at a scale kycmpy = 3 x 10° Mpc L. The value of the bound depends on whether
one assumes a constant or a scale- and redshift-dependent value of the density contrast
that is required to form the UCMH structure. In the scale-independent case the bound
is given by P¢(kuycma) < 2 x 10-8[265]. If instead a scale-dependence is allowed the cor-
responding bound is P;(kycmu) < 3 x 1077 [265]. In section 4.4 we implement both and
refer to them as “UCMHconst” and “UCMHsc”.

4The name comes from the angular separation of the two images (of the photon), which is of the order
of 1071? arcsecs.
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4.3.3 Observational bounds on the tensor sector

Taking the upper limit® on the tensor-to-scalar ratio < 0.056, at a pivot scale %, =
0.002Mpc ™! [67], implies that

(4.14) P$>(kr)+P;U’(kr) <1.3x10719,

where the superscripts (v) and (o) indicate respectively the vacuum and sourced contribu-
tions in eq. (4.4b). For each configuration analyzed in section 4.4, characterized by fixed
values of {H, m} and initial conditions for the sound speeds, eq. (4.14) will generate an
exclusion line in the (p/H, |s2|) plane. In the case of a tensor power spectrum dominated
by vacuum fluctuations on large scales, the constraint on r corresponds to a maximum
value Hpyax = 6.13 x 1013 GeV for the Hubble rate during inflation. In section 4.4 we will
derive exclusion limits on the parameter space for the following values of the Hubble
rate, H = {1012GeV, 1013 GeV, 6.1 x 1013 GeV}.

In addition to constraints on the tensor power spectrum, measurements of CMB
anisotropies reflect on equilateral and squeezed tensor non-Gaussianity in the form of a
lower bound on the helicity-2 sound speed, cg > 1072 [166]. This bound will restrict the
range of possible values for the initial, cg;, i.e. the value that the helicity-2 sound speed
has on large scales.

Inflationary tensor fluctuations contribute to the present GW energy density, Qgw(k),
see eq.(2.88). Existing bounds on Qgw(k), besides those from CMB anisotropies, are
provided by (i) advanced LIGO-Virgo; (ii) Big Bang nucleosynthesis (BBN); and (iii)
pulsar timing arrays (PTA).

Data from the second observing run of advanced LIGO, combined with the results
of the first run, can be used to place upper limits on Qgw for a background which is

frequency-independent in the LIGO frequency band. The bound is given by [267]
(4.15) Qew <6.0x1078,

and it applies at scales comparable to those probed by LIGO, k1o = 1016 Mpc~!. As for
all bounds listed in this section, we translate this limit into a constraint in the (p/H , Iszl)
space. In particular, for each configuration tested in section 4.4, we replace the expression
of the tensor power spectrum (4.4b) into eq.(2.88), and derive the LIGO exclusion line
from (4.15)5.

5The bound presented in section 3.2, see eq.(3.6), appeared after this work was published.

6In principle, we should use a bound from a specific search for the spin—2 signal in LIGO data.
However, as shown in section 4.4, the LIGO bound is never the strongest one in the parameter space,
hence we find it safe to use the constraint given on a flat signal.
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Measurements of the abundance of the primordial light elements constrain the num-
ber of effective massless degrees of freedom at the onset of nucleosynthesis [268]. This
bound is weaker than the LIGO constraint (4.15). Pulsars, or “cosmic lighthouses”, are ro-
tating neutron stars that emit a beam of electromagnetic radiation, observed on Earth as
a regular train of radiation pulses [269]. In presence of a stochastic background of GWs,
the arrival times of the electromagnetic pulses are shifted, and therefore PTA provide a
way of constraining Qgw. We apply constraints from PTA at the scale kppa = 105 Mpc™?,
in particular Qgw(kpra) < 2.7 x 1072 [94]. It can be verified that for a monotonically

f;”, the BBN and PTA exclusion lines always sit

growing primordial power spectrum as P
above the LIGO line in the (p/H, |s2|) plane. For this reason they are not represented in
the plots of section 4.4.

Besides existing observational bounds on Qgw, we also consider LISA [222] expected
sensitivity limits. The duration of the mission will be 4 years, with a possible 6-year
extension, and LISA arms will be 2.5 x 10° Km long. The data taking efficiency of the
mission is expected to be ~ 75% of the nominal time, because of operations needed for
the antenna maintenance. As a result, the 4-year mission will effectively produce 3
years of data. The most updated LISA strain sensitivity curve can be found in [270]
(see also [271]), where the power law sensitivity curve is derived following [272], for a
signal-to-noise ratio SNR = 10. In the following, we pick as reference scale for LISA the
one that minimizes the sensitivity curve calculated in [270], kr1ga = 1.79 x 1012 Mpc ™1,
which corresponds to a sensitivity value Qpiga = 4.12 x 10713, In order to be detectable
by LISA, the energy-density associated with a gravitational wave mode must overcome
LISA’s sensitivity curve at the same scale, Qgw(k11sA) > Q11sA. This condition is used to
generate the LISA line in (p/H, |s2|) plane, see plots in section 4.4.

We provide in figure 4.3 a pictorial representation of AN =~ 60 e-folds of inflationary
expansion for H = 10'2GeV, see eq.(4.6), and highlight the stages at which the relevant

scales discussed above left the horizon.

4.4 Examples of time-dependent sound speeds

The parameters s, = ¢,/(Hcy), where n =0,1,2 for the helicity 0, 1 and 2 of g, quantify
the time-dependence of the sound speeds. From eq.(4.3) one finds

4c? 1c2
(4.16) 8025—281—5—582.
€o €o

In table 4.1, we report some of the solutions to (4.16). A negative (positive) s, produces
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Figure 4.3: Sketch of the evolution of the horizon size, (¢ H)™!, (black line), together
with the comoving lengths associated with experimental bounds discussed in section
4.3. Here we fix for illustration ANy, = 60 e-folds of inflationary expansion, which is
obtained from eq.(4.6) for H = 10'2GeV. The gray vertical lines highlight the values
AN = {55, 39, 23, 14}, which is when the modes kcMB, RucmH, RLisa and kiico left the
horizon respectively. Here inflation ends at AN =0.
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Table 4.1: Some of the phenomenologically interesting solutions of eq. (4.16). The fourth
column indicates the signs of the solutions. The cases highlighted in yellow are analysed
in sections 4.4.1, 4.4.2 and 4.4.3.

a decreasing (increasing) sound speed for the corresponding helicity, hence a power
spectrum that grows (decreases) towards small scales, see the signs of the terms including
so and s9 in eqs.(4.5b) and (4.5d). For tensor perturbations, this implies the existence
of a GW signal potentially detectable with interferometers. The solutions with s9 <0,
which we shall refer to as (1.a), (2.a), and (3.a), are highlighted in yellow in table 4.1.
Naturally, we anticipate that the region of parameter space corresponding instead to an
enhanced scalar power spectrum at small scales, sg < 0, will be more constrained, given

also the absence of gradient instabilities enforced by eq. (4.8).
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4.4.1 Case (1.a): constant c;

Let us consider the solution {sg = —% c%/c(z)sz >0,s1 =0, sg <0}. In addition, let us assume
so = constant for simplicity. The time evolution of cg is obtained by solving the differential

equation sg = ¢o/(Hco) and reads

s2 J,, dt' H(t') 52(ANot~AN(2)
b

4.17) co(t) =coje =c9je

where we have used the definition of the number of e-folds elapsed between a given
reference time ¢; and ¢, see eq.(2.33). We take #; to be the time at which our current
observable universe exited the horizon, corresponding to modes with comoving wavenum-
ber ky = agH that crossed the horizon AN, e-folds before the end of inflation, and
coi = co(t;). From eq.(4.17) one can equivalently write the sound speed evolution in terms
of &,

S2
(4.18) ca(k) = cy; (aOHO) s

where the k-dependence is obtained by virtue of the fact that cosmological correlators
give the leading contribution at horizon crossing, i.e. when a precise relation is in place
between k& and ¢.

We consider benchmark values cg; = {1072,1071,1}. This set of initial conditions lies
comfortably within the range allowed by perturbativity requirements (cg > 10™4) and
CMB constraints on non-Gaussianity (cg 2 1072). Enforcing perturbativity throughout
the scales of validity of the EFT treatment results in a lower limit for sg. In particular,
using eq.(4.17) and requiring that the sound speed saturates the perturbativity bound at
the scale kp, co(kp) > 1074, yields

1 1074
(4.19) Sg = — log( .
log(kv/(agHy))+(m/H) Coi

The factor (m/H) 2 in the denominator is due to the condition (4.9b), stating that scales
must cross the horizon ANgpr = (m/H) 2 e-folds before the end of validity of the EFT.
For the EFT perturbative results (4.4) to be valid up until the scale kr crossed the
horizon, the EFT treatment must be valid for a little more, i.e. up until the scale
Eena = aoHoexp (log(kp/agHo) + (m/H)™2), such that the bound (4.9b) is satisfied for the
scale k. In the following we identify kr = k11c0, i.e. we assume the spin-2 fields can
be described within the EFT treatment up until LIGO scales crossed the horizon. This

7Or before the end of inflation if the EFT treatment is valid up until the end of inflation.
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Figure 4.4: Example for the evolution of ca(k), co(k) and c1, see eqs.(4.18) and (4.20) with
parameters {c9; =1, c1 = 0.55, s9 = —0.186}. On the horizontal axis comoving wavenum-

bers ranging from ko = agH up to krico = 101 Mpc~! have been displayed. The value of
so chosen saturates the perturbativity bound at £11g0, ca(kLigo) = 1074, see eq.(4.19).

choice is supported by the fact that the EFT theory does not describe the background,
i.e. the EFT describes the fluctuations around a quasi de-Sitter spacetime and details
of the fields background evolution are not included, and it is reasonable to consider the
possibility that the spin-2 fields decay during inflation.

In the configuration (1.a), c; is constant and c( increases as inflation proceeds. Using

eq. (4.3) one obtains the time-evolution of ¢q

/4, 1
(4.20) co(k) = gc%—gcz(kﬁ.

Requiring cg to be a real quantity, alongside the perturbativity and subluminality
conditions on the sound speeds throughout their evolution, defines, for each co; value, the
corresponding range for c¢1. One can easily verify that values 0.55 < ¢1 < 0.85 are allowed
for all chosen cg; values. Let us point out that, rather than describing the time-evolution
of co(k) using the leading-order term in its Taylor expansion, as would be the case for
the expression in (4.4a), we derive the exact scale dependence of the power spectrum by
using eq.(4.20) directly.

As an example, we show in figure 4.4 the evolution of the sound speeds co(k), co(k)
and c1, where we use eqs.(4.18) and (4.20) with the parameters {co; =1, c1 =0.55, s9 =
—-0.186}.

We proceed by selecting a number of sample values for the set {H, m/H, c1, c9i} and
applying the constraints described in section 4.3 to obtain (current and future) exclusion
lines in the (p/H, Iszl) plane. We consider the masses m/H = {1.37, 1.12, 0.54}, identify in
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Figure 4.5: Case (1.a). We consider the (p/H,|sz|) plane of the effective theory param-
eter space for some of the configurations that can be probed with LISA. We identify
the strongest bounds among those considered and shade with the corresponding color
the area of parameter space that is (or would be, in the case of detection by LISA)
excluded. Top: the configuration {H = 6.1 x 103 GeV, m/H = 0.54, ¢c; = 0.55, c9; = 1} is
displayed. Bottom-left: {H = 6.1 x 10'2GeV, m/H = 0.54, ¢ = 0.85, c9; = 1}. Bottom-right:
{H =10'3GeV, m/H = 0.54, ¢; = 0.85, c9; = 0.1}. Bounds discussed in section 4.3 that are
weaker than p/H < 1/3 are not captured by figure 4.5 or the following plots, but they
have been taken into account in our analysis.

each plot the strongest among all the bounds and shade with its corresponding color the
area of parameter space that is excluded. We also shade in purple the area which would
be excluded by LISA in case of detection.

We show in figure 4.5 the parameter space associated with configurations that are
within reach for LISA. Among the mass values of the spin-2 particle which we test, the
lowest, m/H = 0.54, allows for a detectable signal. This reflects the fact that, the lighter
the spin-2, the stronger its effect on the tensor power spectrum at small scales.

For illustration, we consider one of the EFT models such that it is currently uncon-
strained by existing bounds and it is within reach for LISA, i.e. one of the points in the
white triangles in the parameter spaces of figure 4.5. In particular, we select the para-
meters {H = 6.1 x 1013 GeV, m/H = 0.54,¢1 = 0.55, co; = 1, s9 = —0.186, p/H = 2 x 1073},
see the parameter space in the top of figure 4.5. By means of eqs.(4.4a) and (4.4b) we
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Figure 4.6: Top row: total scalar and tensor power spectra for an EFT model with
parameters {H = 6.1 x 10'2GeV, m/H = 0.54,¢1 = 0.55, co; = 1,59 = —0.186, p/H = 2 x
1073}, together with the single contributions from quantum vacuum fluctuations and
light spin-2 fields, see the legends. Bottom row: GW signal Qgw(k) corresponding to the
tensor power spectrum plotted in the top-right panel, together with LISA sensitivity
curve [270], and upper limits from LIGO, PTA and BBN, see section 4.3.3.

represent the scalar and tensor power spectra, P;(k) and P, (%), in the top of figure 4.6.
The scalar power spectrum is completely dominated by the vacuum contribution, as
expected from enforcing the bounds (4.8) and (4.11). On the other hand, the tensor power
spectrum receives the largest contribution from the quantum vacuum fluctuations on
large scales, and is then dominated by the sourced contribution on smaller scales. We
note here that the value of H selected saturates the bound on the tensor-to-scalar ratio
at k,, see section 4.3.3, as illustrated by the black bar in the right panel, representing
s x 0.056 on large scales.

In the bottom line of figure 4.6 we display the energy density in GWs, Qaqw(k),
associated with Py(k) plotted in the top-right panel. The signal is blue-tilted and within
reach for LISA, whose sensitivity curve is plotted in red [270]. The upper limits on Qgw
at LIGO and PTA scales and the upper bound from BBN physics, see section 4.3.3, are

also represented.
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Figure 4.7: Case (2.a). The (p/H , |32|) plane for configurations at reach with LISA. In the
left panel, the EFT model {H = 103 GeV, m/H = 0.54, cg = 1, c9; = 0.1} is displayed; in
the right panel we show the plot corresponding to {H = 6.1 x 103 GeV, m/H = 0.54, ¢( =
1, ¢9; = 1}. Conventions for colors and line codes are as in figure 4.5.

4.4.2 Case (2.a): constant ¢

Let us now consider the solution {sy = 0,s1 = %c%/c? s9 < 0, s9 < 0}, where again we
consider s = constant. The time-evolution of c¢g is similar to case (1.a), ¢g is constant

and c; decreases in time as

3, 1
(4.21) c1(k) = ch+ZC2(k)2.

One can verify that values co = {1072,1071,1} and ¢9; = {1072,1071,1} guarantee sublu-
minal propagation also for the helicity-1 mode, in addition to preserving perturbativity
bounds. We consider a number of sample configurations {H,m/H, cg, cs;} and represent in
figure 4.7 the constraints on the parameter space for those that are potentially observable
with LISA.

4.4.3 Case (3.a): monotonically decreasing sound speeds

We explore here the solution {sy = s1 = s9 = s < 0}: in this case all the sound speeds
decrease over time, and we capture their dynamics by means of eq. (4.17). For simplicity,
we focus on the initial conditions cg; = ¢1; = c2; = 1. In this case also the scalar power
spectrum is blue-tilted. It is straightforward to conclude that none of the configurations
{H, m/H} tested corresponds to a signal above the sensitivity limits of LISA. What is
behind the most stringent constraints in this case is the fact that co decreases with
time. As a consequence, the line representing the gradient instabilities bound (4.8) bends
downwards, i.e. the bound gets stronger, in the (p/H , |32|) plane as |s2| = |sg| increases,

preventing any crossing with the LISA curve.
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Case (1.a), figure 4.5 Case (2.a), figure 4.7

(b){H =6.1x1013GeV,c1=0.85,c9; =1} | (b) {(H=6.1x1013GeV,co=1, cy; =1}
(c) (H=1013GeV, ¢1 =0.85, c9; = 0.1} (a) (H=1013GeV,cp=1, cg; =0.1}

Table 4.2: Configurations that select a similar portion of parameter space are listed on
the same row of the table; all the samples are characterized by the choice m/H = 0.54.

4.4.4 Additional remarks

Before drawing our conclusions, we remind the reader that an upper bound is imposed
on |sg| in each configuration from theoretical consistency, see eq.(4.19). This limits the
region accessible to interferometers: while the lines representing LIGO and LISA bounds
bend downwards as |sg| increases, the upper bound on |sg| limits the area accessible.

It is also worth remarking that the parameter space of some of the configurations
analyzed for cases (1.a) and (2.a) ends up being rather similar, see table 4.2. This should
not come as a surprise in light of eq.(4.3).

We also stress that we have focused our analysis mainly (i) on two specific observables,
namely scalar and tensor power spectra, and (ii) considered a bi-dimensional sub-region
of the entire parameter space, the (p/H,|sz|) plane. Extending the dimensionality of
the parameter space that is being probed and exploring the non-Gaussian profile of
scalar/mixed/tensor interactions will enhance the characterization of the extra particle
content in the EFT Lagrangian. We consider tensor non-Gaussianities mediated by the
light spin-2 fields in chapter 5.

As for the sg < 0 < sg scenario, which corresponds to a blue- (red-)tilted scalar (tensor)
power spectrum, the growth of the scalar spectrum on small scales is reduced upon
demanding the absence of gradient instabilities and complying with the bound on the
tensor-to-scalar ratio r < 0.056. These limits turn out to be stronger than those that arise
from PBH and UCMH.

Besides the configurations plotted in figure 4.5 and 4.7, there are other models whose
parameter space can only be marginally surveyed by LISA. We do not include here details

and plots about these models, but refer the interested reader to [1].

4.5 Discussion

In this chapter we have explored the possibility of a GW signal at interferometer scales
due to the presence of extra fields during inflation. The existence of content beyond

the minimal single-field scenario is well-motivated from the top-down perspective [103],
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see section 2.4. Within this set, are there compelling models supporting in particular a
tensor signal detectable at small scales? One interesting example is provided by so-called
axion-inflation models [273]. The appeal of such set-ups lies in their ability to solve the
n-problem, see section 2.4: an approximate shift symmetry, for example in the “natural
inflation” model of [274], protects the inflaton mass from large quantum corrections.
Extensions of the set-up in [274] have been motivated by the need to accommodate a
sub-Planckian® axion decay constant /. Among the most interesting proposals to emerge
from these efforts are those non-minimally coupling the axion-inflaton with gauge fields
without losing the naturalness of the original proposal. As a result of the direct coupling,
the GW spectrum can be blue or exhibit bump-like features that peak at small scales
[169, 249-256, 275, 276].

Having identified a class of models that delivers a signal detectable by LIGO-Virgo
and/or, in the near future, LISA, it is natural to ask whether several more multi-field
set-ups, sharing this very same property, await discovery. One proven way to scan all
that is possible, at least from the late-time signatures perspective, is to employ an EFT
approach, see section 2.3.3 and 4.2. We have done so by adopting the approach of [98] and
focusing on the phenomenology of an extra spin-2 field. The key to a sufficiently large
signal at small scales is choosing an appropriate time-dependence for the sound speed
of the helicity-2 mode, co(t). The existence of a time-dependence may be interpreted as
due to a departure, in field space, from the adiabatic trajectory [226]. We have shown
that a small and constant sg = ¢o/(H cg) corresponds to a signal to which LISA would be
sensitive and that, at the same time, cannot be ruled out by LIGO-Virgo. It would be
interesting to explore other possibilities for the functional form of cg; we leave this to
future work. It is important to stress that a considerable region of parameter space has
not been ruled out by existing data, but by the requirement that the dynamics does not
run into a gradient instability [98]. This goes to show that it is the interplay between
model building and observational requirements to act as the most powerful filter towards
a viable cosmology.

The potential to detect a primordial signal must be confronted with our ability to (i)
distinguish it from astrophysical sources [277]; (ii) identify signatures that are specific to
certain (classes of) inflationary models. To address such issues one ought to characterize
as much as possible the signal at small scales, and also consider cross-correlations with

other cosmological probes. Given our results on the power spectrum, it is natural to

8The reasons [273] for why this is desirable are manifold: (i) the expectation that all global symmetries
(including the aforementioned shift symmetry) are broken at the Planck scale; (ii) the near-absence of
string theory constructions accommodating axions with a (super-)Planckian decay constant.
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think of non-Gaussianities as the next logical step. It has recently been shown that
crucial information on the strength of primordial interactions is (at least) indirectly
accessible at small scales [278], and even once propagation effects are taken into account
[279]. A necessary ingredient to access the information via the quadrupolar anisotropies
of [278] is a non-zero, and ideally large, component of the tensor bispectrum in the
squeezed configuration. The presence of light extra fields in the inflationary set-up we
have been studying supports precisely such a scenario. Furthermore, the contribution in
the squeezed configuration mediated by the extra content will break consistency relations
and therefore deliver a signal that is immediately physical. We shall elaborate more on

the subject in chapter 5.
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CHAPTER

TENSOR BISPECTRUM MEDIATED BY LIGHT SPIN-2
FIELDS

uilding on the findings presented in chapter 4, we consider here primordial tensor

non-Gaussianities mediated by light spin-2 fields with time-dependent sound

speed for the helicity-2 mode. After characterising the bispectrum amplitude
and shape-function at CMB scales, we move on to smaller scales where anisotropies
induced in the tensor power spectrum by long-short modes coupling become the key
observable potentially constraining (squeezed) primordial non-Gaussianities. We identify
the parameter space generating percent level anisotropies at scales to be probed by SKA
[221] and LISA [222].

This chapter is based on the publication [2], and is organised as follows. In section
5.1 we discuss the importance of non-Gaussianities in characterising the inflationary
field content and briefly review the results from chapter 4 that will be our starting point.
In section 5.2 we calculate the tensor bispectrum mediated by light spin-2 fields and
study its amplitude and shape-function. In section 5.3 we focus on the GW observables
at large scales, while in section 5.4 we show how the squeezed bispectrum may be tested
in the small-scale regime. We summarise our findings and point to future research in
section 5.5. Additional details of the bispectrum calculation may be found in appendices
A and B.
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5.1 Motivation

In chapter 4 we presented an extension of the EFT of light spinning fields during inflation
[98], allowing for sub-luminal sound speeds [1]. When the helicity-2 component has a
decreasing sound-speed, the spin-2 sources blue-tilted GWs, potentially detectable on
small scales [1].

As there are several other realisations that may lead to a sizable GW production
on small scales, see e.g. [93], it is important to further explore the observational conse-
quences of the set-up in [1] in order to distinguish it from other inflationary mechanisms.
In this chapter we characterise the higher-point statistics of GWs by calculating the
tensor 3-point correlation function!, as primordial non-Gaussianities are a very efficient
probe of inflationary interactions, see sections 3.3 and 3.4.

A direct detection of the tensor bispectrum on small scales is in general not expected
given the suppression of higher-point functions due to propagation effects [178]. Inter-
estingly, the ultra-squeezed bispectrum does not suffer from the same suppression [278].
The long mode in this configuration is horizon size (or larger). Two immediate conse-
quences are that (i) the bispectrum cannot be accessed directly given that short modes
are e.g. at interferometer scales and the long mode is horizon size; (ii) the long mode and
its correlation with two nearly identical short modes is not dampened by propagation
effects, much as is the case for the GW power spectrum [278, 280]. The effect of the
long wavelength is best probed by the anisotropies it induces on the power spectrum of
the two small-wavelength modes [235, 281-284]. This configuration has been recently
studied in [278]: a primordial ultra-squeezed tensor bispectrum induces a modulation
of the corresponding power spectrum. In this context, anisotropies represents our best
handle on inflationary GW interactions. For this reason, in section 5.4 we explore the
ability of SKA and LISA to indirectly probe non-Gaussianities in the ultra-squeezed
configuration by testing anisotropies of the GW power spectrum.

Before diving into the bispectrum calculation, let us review some key findings of [98]

and [1] that will be our starting point for the following analysis.

EFT warm up

As a consequence of the non-minimal coupling between the inflaton and the spin-2 field,

the EFT quadratic Lagrangian includes terms linearly coupling the spin-2 fluctuations,

I'We note here that the present analysis goes beyond the study in [166] in several directions, one being
that we are no longer bound by the assumption of a constant sub-luminal sound speed.
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0j(x,t), and the scalar and tensor metric perturbations, 7(x, ¢) and y;;(x, t) respectively,
see eq.(4.2).

To ensure that the interaction Lagrangian can be treated perturbatively and to
avoid gradient instabilities, the coupling must satisfy p/H <« \/E [98], see section
4.3.1. While in general one should find a new basis where the degrees of freedom are
decoupled, this is not necessary here as the perturbativity requirement above ensures
we are working in the weak-mixing regime for the spin-2 field, where the mode function

of the ith-helicity component is well-described by the solution to the free-field equation,

(5.1) or(n) = \/g H(-n*2 HP(=c;kn),

with H 5,1) the Hankel function of the first kind.
As a result of the linear coupling between o;(x, t) and the metric perturbations, the

spin-2 field sources both scalar and tensor power spectra, see eqs.(4.4),

Jig Cv) (p 2
52) P k = T )
( (k) $12M2e; erc2 (H)

2H2 Cy(v) P 2
(5.3) PY(k)_ﬂzMg e (=) 1

We represent the functions C¢(v) and C,(v) in figure 4.2.

As shown in [1], there are phenomenologically interesting ansatze according to which
one can safely assume that the scalar power spectrum is dominated by the vacuum
contribution across all scales of interest, see eq.(4.11) and the related discussion.

As done in [1], we will employ the expression for the helicity-2 sound speed as a

function of &, see eq.(4.18),

$2
(5.4) ca(k) = co; (aoHO) ,

where we assume sg = ¢9 / (Hc2) to be constant for simplicity, and we take the comoving
size of the universe today as the pivot scale (one could alternatively use kcmB, as done in
[93]). Such k& dependence is obtained by virtue of the fact that cosmological correlators
give the leading contribution at horizon crossing, where a precise relation is in place
between wavenumber and conformal time, e.g. —cskn = 1.

The sound speed co(k) is assumed to be slowly varying, |sq| < 1, therefore the next-
to-leading corrections to the mode function in eq.(5.1) can be safely neglected [285]. The

resulting scaling of the tensor power spectrum is given by

1 k —2vsg
) P —_— ]
65 y(R)ox coi?V (aoHo)

95



CHAPTER 5. TENSOR BISPECTRUM MEDIATED BY LIGHT SPIN-2 FIELDS

0.100 ¢

=
% 0.010¢
o

0.5
0.001}
B =02 04! Ms=-02
B s,=-0.18 B 5,=-0.18
| W s=-0.1 ] 0.3 M s,=-0.1

1074 L L L L
104 1 10* 108 10" 106 5.x107* 0.001 0.005 0.010 0.050 0.100
k[Mpc™] K[Mpc™']

Figure 5.1: Working example for the evolution of c2(%k). In both panels the function (5.4)
is plotted, with c9; = 1 and different lines representing different choices of sg < 0. On the
left, the evolution of c2(%) is shown over a range of comoving scales which spans from the
size of the observable horizon, agHy, to LIGO scales, k1igo = 1016 Mpc_l. On the right,
the focus is on the large scale behavior of ca(%).

For a decreasing sound speed, sg <0, and an appropriate choice of the other parameters,
the GW signal is detectable at interferometer scales by upcoming probes, including LISA

[1]. One such configuration is
(5.6) {H=6.1x10"%GeV,v=1.4,cy =1},

whose parameter space is represented in the bottom-left panel of figure 4.5. We stress
that this is just one example in a wide region of parameter space that would generate a
detectable signal.

In figure 5.1, the function (5.4) is plotted with initial condition cg; = 1 for three
different values of s9. In particular, an upper bound |s3|max is identified to ensure we
stay within the perturbative regime [1], see section 4.4.1. On the left panel the evolution
over a large range of scales is displayed, while in the right panel the focus is on the large
scale behavior.

The EFT Lagrangian (4.2) also includes cubic self-interactions for the o field,
(5.7) ¥ = u(0y,),

where y/H <« 1 to ensure perturbativity. As pointed out in [166], the structure of the
interaction sector of the theory closely resembles the one in quasi-single field inflation
[286]. In particular, the 3-point correlation function of tensor perturbations receives a
contribution mediated by the light spin-2 field, as shown in figure 5.2.

In section 5.2 we shall investigate the tensor bispectrum, its amplitude and shape

dependence.
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/4

Figure 5.2: Diagrammatic contribution to the tensor bispectrum mediated by a light
spin-2 field. The vertices making up the diagram correspond to the quadratic interaction
L9 < patiy, j (green) and the cubic self-interaction LB ~ u(o; j)3 (orange).

5.2 Tensor bispectrum

A key observable when it comes to testing inflationary interactions, (tensor) non-Gaussianities
are typically more constrained at CMB scales, e.g. by data from the Planck mission [151],
than in the complementary high-frequency regime. With the advent of new, more sen-
sitive, GW probes we can aim also at testing those inflationary scenarios that support
a large signal at small scales. The set-up we are considering here is one such example
and the EFT approach we adopt is the ideal framework to expand our analysis. Our
current focus is on a spin-2 field, o;;, directly coupled with the standard tensor degrees
of freedom field and mediating their interactions. We organise the various contributions

to the tensor 3-point correlation function in the following fashion
(5.8) Terierd) = @m? 6Py +ka +kg) o/ 2% By (1, ks, ka)

see eq.(3.11), where the function «/*142%3 accounts for the different polarizations. The

quantity B, is given by

1273 p(p)\®
(5.9) By(k1,ko,k3) = —(—) Mp + Mp+ M)+ 5 perms,
o(k1,ko,k3 k‘{k2k3H M, [AA B cl p
where
(5.10)

0 x1 X9 X3 X2
./%A(V,kl,kz,kg):f dx1 f dxz f dx3 f dx4 \/ sin(—xl)
—00 —00 —00 —00 X1X3X4

. k k
H(Vl)(—cz(k1)x1)H(V2)(—02(k1)x2)] Sle ‘k3/k1x4H9>(—cz(k3)k—3x4) H§,2)(—02(k3)k—3x2)
1 1

R}

R}

. k k
etk2/k1xs H(Vl) (—C2(k2)k—2x2) H(Vz) (—Cz(kz)k—2x3)
1 1

>
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(5.11)

0 X1 X2 X3 X3 k2
%B(V’kl’k%ks):f dxlf dxzf dx3f dxg ./ sin(-x1) sin(——xz)
—00 —00 -0 —00 X1X9X4 k1

k k
S| HP(—cglk)xs) HP [ —colla) 2 a3 | HP(—ca(k1)x) H? [—colko) x5
kl kl

3 ;

| k k
e tkslkixa EO | _ oo (kg)—2 0y | H | —coks)—xg
k1 v k1

(5.12)

0 X1 X2 X3 X4 k2
J%C(V,kl,kzaks):f dxlf dxzf dxsf dxg | sin(-x1) sin(——xz)
—00 —00 —00 —c0 X1X92X3 k1

k k
H(=calk)xg) HYY (_Cz(kz)k_zm) Y (_62(k3)k_3x4)
1 1

sin(—k—3x3)i‘s
k1
@ @ ke ) @ ks

< HY(—eotk)x) HY | ~calke);Zxe | HY | ~calks) s |
1 1

where G[x] is the imaginary part of x and co(k) is given in eq.(5.4). The structure of
the integrals is due to the use of the nested commutator form in the in-in formalism
computation, see e.g. [286, 287]. The dimensionless integration variables are defined as
x; = k1n;. Let us now focus on the bispectrum in two specific limits, the equilateral and

squeezed ones.

5.2.1 Equilateral configuration

In the equilateral configuration, k1 = k9 = k3 = k, the bispectrum reads

7213 w( p \?
(5.13) By, (k):——(—) Seq(V, k),
7 k6 H\M,) "™
where
(5.14)

0 X1 X9 X3 X9
Seq(v, ) = f dx; f dx f dxs f dxa{, sin (—x1)x
oo oo oo oo X1X3%4

S H(Vl)(—cg(k)xl)H(vz)(—cz(k)m)] g[e_mH(vl)(—02(74’/)9C4)H(v2)(_‘32(k)352)

3 eix3H(Vl)(—cz(k)xz)H(v2)(—cz(k)x3)] +1/ 2 sin(-x1) sin(-x2)x
X1X9%4

HP(=co(k)g) HP(—cak)g) HE(—cak)en) HP(—cak)xs)| x

e H(vl)(—Cz(k)x4)H§2)(—02(k)x3)] +4/ " §4x sin(—x1) sin(—x2)sin(—x3)x
1X243

HP(—ca(k)xg) HP(—ca(k)xg) HP(—calk)rg) HP (—cak)en) HP (—ea(k)ip) HP (—es(k)xs) | |

X

&

&

&
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Figure 5.3: Results for s¢q(v = 1.4). On the left panel we represent the results as a
function of co(k), keeping the k-dependence implicit, whereas on the right we replace
eq.(5.4) and make explicit the dependence on the scale. In both plots, black dots represent
numerical results and the green line the fitting functions (5.16) (left) and (5.17) (right).

The integrals in eq.(5.14) need to be evaluated numerically. In figure 5.3, black dots
represent the numerical values of eq.(5.14) computed for v = 1.4, which corresponds to
m = 0.54H, and different values of ca(k). As expected, s¢q increases for small values of
the sound speed, enhancing the resulting bispectrum. The numerical results are fitted

with the power law

ax
(5.15) Seq [v, ca(k)] = W .

The validity of the approximation with a power law is, of course, not surprising consider-

ing the usual scaling B;(k) < fNL, tens @y(k)z. For v = 1.4, the fit produces

324.4

(516) seq [V = 14, Cz(k)] = W ,

which is plotted in green on the left panel of figure 5.3. One can write explicitly the

k-dependence, to obtain

—5.6539
|

as displayed in the right panel of figure 5.3 for sy = —0.2. The value of s¢q increases on

5.17 =1.4,k]1=3244
(5.17) SeqlV , k] (aoHo

small scales as the sound speed cg decreases. In figure 5.4, the fit in (5.17) is shown for
different values of so. Similar plots for different mass values, v ={0.4,0.8, 1.1, 1.48} are
included in Appendix A. Our analysis shows that the lighter the spin-2 is, the greater is
the size of s¢q. This is intuitively clear given the suppression effect of a heavy mass on

cosmological correlators. We shall now consider the squeezed limit.

99



CHAPTER 5. TENSOR BISPECTRUM MEDIATED BY LIGHT SPIN-2 FIELDS

| 82:—0.2
[ s,=-0.18
107 M $,=-0.1

108

108
10°

Seq[v=1.4, K]

10%

1000

0001 0010 0100 1 10
k[Mpc™]
Figure 5.4: Investigating the effect of s on s¢q(v = 1.4, k). The larger |ss| is, the faster

the sound speed decreases, see figure 5.1, amplifying the magnitude of the sourced
bispectrum at a given scale.

5.2.2 Squeezed configuration

We now evaluate the bispectrum in the squeezed limit k3 < k1 ~ k9 and, for practical
purposes, identify k3 = ky, and k1 ~ ko = kg. We find that the leading contributions to
the bispectrum are given by (5.10) and (5.11), while the other permutations, as well as
the C term (5.12), are sub-leading. Details on the derivation are included in Appendix
B. Our findings on tensor non-Gaussianities are somewhat reminiscent of the analysis
performed in [286] for (the scalar sector of) quasi-single field inflation and in [166] for
(the tensor sector of) the EFT set-up. The bispectrum in the squeezed configuration reads

(5.18) Bo,sqlkr,ks)= —kgfj—xigﬁ £ (Mip)sssq(v, ki ks),
where

(5.19)

Ssq(v, kp, kg) = c;(‘;e‘;))v f_(;dxl f_idxg fj:dxg X

{227 ()™ () sin(-x0) S | HiP (= ealhs)x) HY (—calks)xz)|

) [eix3 H(Vl)(—cz(ks)xz)H(vz)(—Cz(kS)m)] + (=x1) V2 (~29) VR (—ag)VEY

HP(~caks)s) HP (—ealks)is) HP (—eabs)en) HP(~calks)rs) | sin(-21) sin(-xz)}

x 3

0 :
x f dya (~ya) V2R |7 HP(~calkr)ys)| .
—00
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Figure 5.5: Fit of the numerical results obtained for sgs[v = 1.4] as a function of ca(kg)
and co(ky,), the sound speeds of the short- and long-scale modes respectively.

Similarly to what has been done for the equilateral configuration, the numerical results

can be fitted with a power law

b«
5.20 ,ea(kr), ca(kg)] = )
which is used to arrive at figure 5.5, where setting v = 1.4 gives
482.8
(5.21) Ssqlv =14, ca(kL), calks)] =

co(kr)?8ca(kg)?8
In order to visualize our findings in a different fashion, we provide in the left panel of
figure 5.6 the numerical results and the fit (5.21) with fixed co(k7,) = 0.346. The explicit

scale dependence is given by

kL )—2.832( kS )—2.882
a()H() a0H0 ’

which is plotted on the right in figure 5.6 with £z, = 0.05 Mpc ™! and sg = —0.2. Just as for

the equilateral configuration, a smaller co enhances the amplitude of non-Gaussianities.

(5.22) Ssqlv=1.4,kr, kg] ~482.8 (

In Appendix A, a similar analysis is performed for mass values v ={0.4, 0.8, 1.1, 1.48}.
The lighter the spin-2 field is (v — 3/2), the greater the amplitude of ss(v).

5.2.3 Shape

We move now to study the shape function of the bispectrum, i.e. the dependence on

the configuration of the momenta (k1, ko, k3). We expect it to interpolate between the
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Figure 5.6: Results for sgq(v = 1.4). On the left panel eq.(5.21) with ca(kr) = 0.346 is

displayed as a function of the value of the sound speed on small scales co(kg), while on

the right eq.(5.22) is plotted, with the long mode fixed at CMB scales and sg = —0.2. In

both plots, black dots represent numerical results.

local and equilateral configurations depending on the mass of the spin-2 field mediating
the interaction in the diagram of figure 5.2. This expectation stems from the analogous
interactions one finds in the scalar sector of quasi-single field inflation [286]. In particular,
for a lighter particle, v > 1, the signal peaks in the local? configuration, while for smaller
values v <« 1, i.e. for a heavier field, the bispectrum displays a momentum dependence
akin to the equilateral template. As an example, we study the shape-functions for v=0
and v =1 in presence of k-dependent sound speed cg (5.4), with initial condition co; =1
and sg = —0.2. These are plotted in figure 5.7, where the case v = 0 is represented on the
left and v = 1 on the right. The plots are produced numerically, after applying a Wick
rotation to the mixed-form of the bispectrum.

The fact that the shape-function tends towards the equilateral template for inter-
actions mediated by massive particles (as opposed to the light and/or massless fields)
has a simple explanation as clear already in the scalar case. The (quasi de-Sitter) wave-
function for massive fields has approximately a non-zero (—kn)3/ 2=V factor in front of
what would be the massless solution. This term suppresses the wavefunction (and, in
turn, the bispectrum) after horizon crossing especially for small wavenumber values,
so that the signal in the squeezed configuration is suppressed, to the advantage of the
equilateral one. For massless (scalar) fields, v = 3/2, the same factor is instead equal to

unity and therefore inconsequential for the shape. We also note that, despite co not being

2Strictly speaking, it would be more appropriate to say that the bispectrum peaks in the squeezed
limit and that its shape-function is very similar to that obtained by employing the local template. One
may define a scalar product between shape functions (see e.g. [288]) and quantify precisely their overlap.
It is usually assumed in the literature that an overlap above 75% would make two templates difficult to
distinguish from each other via CMB probes.
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Figure 5.7: Shape-function for v = 0 (left) and v = 1 (right). To conform with the literature
convention, the bispectrum has been multiplied by (k1k2ks3)? and the weight o/*142%3 g
not included. The shape values are normalised with respect to the value in the equilateral
point k1 = ko = k3.

constant in our set-up, the shape-function does not noticeably change with respect to the

constant case [166], unlike the bispectrum amplitude.

5.3 Bounds on tensor non-Gaussianities at CMB

scales

We now explore the consequences of current bounds on tensor non-Gaussianities at

eq sq
NL, tens and NL, tens”

configuration described by the parameters in (5.6). As anticipated in section 5.1, this

CMB scales, see section 3.4 where we defined We consider the
choice is interesting as it is potentially testable at interferometer scales. The latest CMB
bounds on tensor non-Gaussianities in the squeezed and equilateral configurations are
given in eq.(3.12), and the non-linearity parameters are defined in eqs.(3.14) and (3.13).
To connect with the bispectrum definition given in eq.(5.8), we identify B;; k1, ko, k3) =
ARERB (k1 ko, k3)/2\/§, where the numerical factor «#/F2F is equal to 27/64 and 1/4
in the equilateral and squeezed configuration respectively [166]. Equipped with these
definitions and by using (5.13) and (5.18), one can calculate the values of f;{i’ tens a0d
;{L tens Within the EFT.

In figure 5.8 the bounds at large scales (3.12) are displayed on the parameter space
(s2, p/H) of the configuration (5.6). The additional green and purple lines in the plot
represent the constraint stemming from the bound on the tensor-to-scalar ratio at CMB

scales, r < 0.056 [67], and LISA sensitivity, with the area above the purple line surveyable
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Figure 5.8: Effective theory parameter space (32, o/H ) of the configuration
{H =6.1x10%GeV,v=14,c9 =1, WwH = 0.5}. Bounds in (3.12) are plotted with black
lines. The region highlighted with black dots is excluded by the bound on f;‘i’ tens® the
strongest among the two. The black lines lie in the green-shaded region, which is excluded
already by the bound on the tensor-to-scalar ratio r [67]. The area above the purple line
will be surveyed by LISA. For more details on the construction of the parameter space
see chapter 4.
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Figure 5.9: Maximum level of tensor non-Gaussianities produced at kcyg = 0.05Mpe ™!

in the set-up {H =6.1x 1013GeV, v =14, cq; = 1}. fa tons @0d fxi . are represented

on the left and right panels respectively, for different values of the cubic self-interaction
coupling p/H. The shaded areas correspond to values of p/H smaller than that obtained
from saturating the value of r to the current upper limit [67].

by LISA [1]. The bounds from eq.(3.12) are weaker on the parameter space than the
constraint coming from the current upper limit on r.

Given an upper bound on p/H as a function of sg obtained by requiring r < 0.056, it
is possible to maximize the level of tensor non-Gaussianities produced at CMB scales
for the configuration under scrutiny. The corresponding amplitudes fy? and fo!

NL, tens NL, tens
are given in figure 5.9. The behavior with respect to s is clear: the greater |so| is, the
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faster co decreases, see figure 5.1, and a smaller sound speed enhances the level of
non-Gaussianities, as shown in section 5.2.

For the configuration described by the parameters (5.6), we conclude that that the
present bound on r is more constraining on the region of parameter space we are probing
than existing bounds on non-Gaussianities. This finding is specific to our starting point
in terms of the chosen parameters as well as the role played by the helicity-0 mode
in sourcing the scalar signal (which is negligible by choice, see eq.(4.11)), therefore we
expect the impact of current constraints on tensor non-Gaussianities at CMB scales to
depend on the chosen EFT configuration. Discussing these constraints for the full range
of EFT configurations is beyond the scope of the current analysis, where our choice of

parameters has been guided by its testability at small scales by upcoming probes.

5.4 Testing squeezed tensor non-Gaussianities on

small scales

As shown in the last section, tensor non-Gaussianities produced within the configuration
in (5.6) are well-below current bounds at CMB scales. When it comes to testing inflation-
ary GW higher-point correlators at small scales, one should be aware that these are not
directly testable: de-correlation sets in as a result of the propagation through structure
that GWs undergo on their way to the detector [178].

Nonetheless, it is possible to test non-Gaussianities in a specific configuration, namely
the ultra-squeezed one. Such nomenclature refers to the case where the long wavenum-
ber is (nearly) horizon size or larger, so that it avoids propagation effects whilst still
correlating with short, well-inside-the-horizon, modes. In the presence of non-trivial®
ultra-squeezed tensor non-Gaussianities, the specific effect of a long tensor fluctuation is
to induce a quadrupolar anisotropy on the power spectrum of the short modes [235, 281—
284]. This idea has been explored in the context of inflationary GW at small scales in
[248, 278, 290]. One should also keep in mind that, next to the cosmological SGWB we

3Here “non-trivial” does not mean merely non-zero. The squeezed limit of the 3-point function is directly
physical whenever so-called consistency relations (CRs) are broken [289] , i.e. whenever the squeezed
3-point function cannot be expressed as the action of a gauge transformation on the corresponding power
spectrum. The prototypical case of broken CRs is that of multi-field inflation. However, a multi-field
scenario does not by itself guarantee CRs breaking. A quick route to see that CRs are indeed broken in our
set-up when the bispectrum contribution is mediated by ¢ is to notice that such interactions are regulated
by the parameter y (see eq. (5.7)), which does not appear in the quadratic Lagrangian. The reader familiar
with quasi-single field inflation may take another path to the same conclusions by noticing the analogies
between the quantity p here and (the third derivative of) the potential V(o) of the extra field o in [286].
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want to probe, there is an astrophysical SGWB whose signal we need to disentangle from
the primordial one. For a comprehensive account on how to characterise the anisotropies
of the stochastic GWs background, we refer the interested reader to e.g. [279, 291, 292].
It suffices here to say that a sufficiently large primordial signal at small scales may
dominate the anisotropic component [278].

We briefly review here the results of [278] and then explore their consequences
for the EFT set-up at hand. This is appropriate given that the EFT bispectrum has a
significant squeezed component for sufficiently light o, such as is the case fore.g. v=1
and v = 1.4. In the presence of a non-trivial ultra-squeezed primordial tensor bispectrum,
a long tensor mode k7, induces a quadrupolar modulation on the tensor power spectrum

evaluated locally at x,
(5.23) Py (s, xc)|, =Py(ks) (1+2im(ks, xeesiksm) ,
L

where 2,(k) is the standard isotropic component of the (dimensionful) power spectrum,
kg stands for a generic small wavelength such that kg > k7, and 2;,, is the anisotropy

parameter defined as

d3k;,

(5.24) Dim (ks, Xc) = @ )3

LkLXcFNL(kL’kS)Ze (—A )Y*ﬁi

The quantity F'n1,(kL,kg) is the non-Gaussianity parameter in the squeezed configuration,
defined as*

Bsy(kL, ks)
P (k)P (kg)’

(5.25) Fnukr, ks) =

where 22, (k) = 27[2Py(k) / k3 and the quantities Py(k) and Bsy(kL,ks) are spelled out in
eqgs.(5.3) and (5.18) respectively. One can characterize the quadrupolar tensor anisotropy

by computing its variance [235],
=9 +2 2 871: 77
(5.26) 2=( ) 1Qoml®) = —(2;;27V),
m=-2 15
with
d2ky (k™ dkL

mln

(5.27) 2,27 =16 [ < o Fia (ki ks Py k),

4As mentioned in chapter 3, whether the squeezed bispectrum corresponds to a physical observable
effect, or can be cancelled by a suitable coordinates tranformation is still a matter of discussion, see e.g.
[154-156]. If the latter holds, one might need to apply the same coordinate transformation mentioned above
when connecting the primordial bispectrum to late-time observables, e.g. the quadrupolar modulation of
2. Here we choose to directly employ the primordial, non-trivial, bispectrum.
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Figure 5.10: Left panel: effective theory parameter space (s2, p/H) of the configuration
{H =6.1x103GeV, v = 1.4, c9; = 1}. The green-shaded area is excluded by the bound
on the tensor-to-scalar ratio r. The purple-hatch-shaded area is surveyable by LISA,
on top of which the region highlighted with red hatch-shading is also visible to SKA.
Right panel: examples of two tensor signals sourced within the theory. The orange line
corresponds to (sg = —0.2, p/H = 0.0035) and is visible both to LISA and SKA, while the
blue line corresponds to (sg = —0.2, p/H = 0.0004) and might be detected by LISA only.

where P, (k) is the dimensionless tensor power spectrum.

We now use the results in section 5.2 to explore small-scale signatures associated
to the presence of an extra spin-2 field during inflation with parameters (5.6). From
eq.(5.26) we compute @ and identify in the EFT parameter space areas that (i)
support a detectable tensor power spectrum and (ii) whose squeezed tensor bispectrum
produces a quadrupolar modulation with \/.9_—2 2 0.01. We use the percent value for
anisotropies as a benchmark point. There is ongoing research focussed on establishing
whether this will be attainable with upcoming probes, see [293, 294] and references
therein.

We should stress at this stage that, although our analysis has been mainly motivated
by the possibility to explore the capability of laser interferometers to detect inflationary
signatures, our results apply equally well to pulsar timing arrays. In the left panel
of figure 5.10 we plot the EFT parameter space (sg, p/H) and highlight with purple
hatch-shading the area delivering a GW signal testable by LISA. The red-hatch-shaded
area in instead at reach for SKA [221]. The region above the green line is off-limits as
it correspond to a tensor to scalar ratio already excluded by CMB data. The right side
of figure 5.10 illustrates how two points in the EFT parameter space engender a GW
signal that is sufficiently large to be detected by SKA and LISA (orange line) or by LISA
only (blue line). In order to generate the plot, we have used kgga = 6.5 x 10° Mpc ! and
k 11sa = 1012 Mpce ™! and eq.(2.88) as the definition of today’s energy density in GWs. For
studies on reconstructing the tensor power spectrum with LISA and PTA see [270, 271]
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Figure 5.11: Effective Theory parameter space (sz, o/H ) of the configuration {H =
6.1 x 10'3GeV, v = 1.4, ¢co; = 1}. The purple-hatch-shaded area delivers a tensor power
spectrum detectable by LISA. The region above the black lines corresponds to parameter
values which produce a quadrupolar modulation of the tensor power spectrum with stan-

dard deviation V.22 > 0.01 at LISA scales, with y/H = 0.1 (dashed line) and /H = 0.5
(continuous line). If LISA will be able to detect quadrupolar modulations with standard
deviation = 0.01, the squeezed bispectrum can be indirectly tested in the parameter
space area which is shaded in gray, corresponding to /H = 0.5. On the other hand, the
parameter choice y/H = 0.1 lies in a region which is already excluded by the bound on
the tensor-to-scalar ratio.

and [295] respectively.

Let us now turn to identifying the area of the parameter space delivering a tensor
quadrupolar anisotropy with standard deviation of the order of a few percent. We
focus on LISA first. Using egs. (5.3), (5.18) and (5.25) in eq.(5.27), one arrives at the
value of @ . In figure 5.11, the area above the black lines produces a signal with
\/9—2 > 0.01; the continuous and dashed lines correspond to /H = 0.5 and u/H = 0.1
respectively. The overlap with the purple-hatch-shaded area, highlighted in gray, selects
the parameter values in the (sz, o/H ) plane that deliver a detectable tensor power
spectrum with a quadrupolar modulation characterised by @ = 0.01. Depending
on the configuration parameters, the Fni, values needed to produce a quadrupolar
modulation at the percent level are of order 102 — 10%. This goes to show how probes such
as LISA will access information on (the size of) squeezed tensor non-Gaussianities and,

in turn, the inflationary particle content, by testing anisotropies.

We have stressed throughout this paper that the EFT of inflation framework is ideal
for capturing the full spectrum of possible signatures of inflationary models. On the
other hand, it may be difficult, once a specific observational feature has been identified,
to map it back all the way to a precise model of inflation. Indeed, the EFT enables
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Figure 5.12: Effective Theory parameter space (32, o/H ) of the configuration
{H =6.1x103GeV,v=1.4,c9 =1, u/H = 0.5}. The hatch-shaded areas deliver a tensor
power spectrum detectable by the corresponding probe, where the purple and red colors
correspond to LISA [222] and SKA [221] respectively. The green area is already excluded
by current upper bounds on primordial GWs on large scales [1]. The parameter space ar-
eas above the black lines delivers a quadrupolar modulation of the tensor power spectrum

induced by squeezed tensor non-Gaussianities with standard deviation v 22 = 0.01. The
gray area highlights the parameter space delivering a tensor power spectrum detectable

by LISA and SKA with a quadrupolar modulation such that v 22 = 0.01 at both probes.

one to associate signatures with specific operators in the Lagrangian of the effective
theory of fluctuations around an FLRW solution, but it is less illuminating in identifying
the complete theory (both background and fluctuations) supporting the acceleration
mechanism. These considerations apply to the use of the EFT of inflation both in the
single-field [96] as well as in the multi-field [97, 98] context. In the latter case however,
especially as particles of increasing spin are considered, it is sometimes difficult to arrive
at a fully non-linear Lagrangian formulation of the theory®. We should nevertheless
be aware of the crucial extra step necessary to build a clear-cut signature-to-theory
dictionary.

In figure 5.12, an analysis similar to the one done for LISA is performed for SKA. The
area highlighted in gray delivers a tensor power spectrum detectable by LISA and SKA
with a quadrupolar modulation such that \/E > 0.01 at both probes. At this stage it is
important to point out the following fact: very recent work [296] suggests that, in order
to be able to detect anisotropies, the monopole signal should be above the instrument

(e.g. LISA) sensitivity curve of about one order of magnitude. A similar analysis exists

5This is the case for higher spin fields, while we refer the interested reader to [244, 245, 247] for an
explicit embedding in the inflationary context of a fully non-linear theory [242, 243] comprising a massive
spin-2 field.
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also for PTAs [297]. While the parameter space on the left half of the plot in figure 5.12
can satisfy this condition, this is not the case towards smaller values of |sg]|.

Our analysis underscores the possibility of testing the same signal with different
probes and on different scales. The multi-probe characterisation of the GW signal is a

crucial steps towards solving the cosmological vs astrophysical sources dichotomy, see
e.g. [298].

5.5 Discussion

In this chapter we studied the signature of an inflationary scenario equipped with a
particle content that goes beyond that of the minimal single-field slow-roll paradigm.
By employing an EFT approach, we accounted for an extra spin-2 field non-minimally
coupled to the inflaton [1, 98]. The focus of our analysis has been on gauging the capability
of small-scale probes of gravity, such as SKA [221] and LISA [222], to uncover signatures
of inflationary dynamics in the gravitational waves spectrum we may observe today.
After reviewing how the EFT parameter space supports a detectable GW signal at
small scales once we allow time-dependence for the sound speed of helicity-2 fluctuations
[1], we studied the tensor 3-point correlation function. Its amplitude and, most impor-
tantly, its shape dependence contain tell-tale signs of the mass and the couplings of the
extra spin-2 field. We showed how a decreasing helicity-2 sound speed is connected with
enhanced tensor non-Gaussianities, and derived explicit expressions for the equilateral
and squeezed configurations, see eqs.(5.13) and (5.18). We found that the shape of the
bispectrum interpolates between the equilateral and local templates, depending on the
mass of the spin-2 mediator. In particular, lighter particles are associated with bispectra
peaking in the squeezed limit. We showed that the EFT supports a non-trivial bispectrum
signal in the ultra-squeezed configuration and showed how this may be indirectly tested
at small scales by the anisotropies induced in the GW power spectrum. The amount
of tensor non-Gaussianities needed to generate a percent level anisotropy in the GW
signal within reach of SKA and LISA is Fyr, = 6(10° — 10%). These large tensor non-
Gaussianities could potentially lead to large one-loop corrections to the tensor 2-point
correlation function; while the validity of the perturbative expansion needs to be checked,

this goes beyond the scope of this work.
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CHAPTER

TESTING THE SCALAR SECTOR

osmological a—attractors [127-134] stand out as particularly compelling models

to describe inflation in the very early universe, naturally meeting tight obser-

vational bounds from CMB experiments [67]. In this chapter we investigate
a—attractor potentials in the presence of an inflection point, leading to enhanced curva-
ture perturbations on small scales. We study both single- and multi-field models, driven
by scalar fields living on a hyperbolic field space. In the single-field case, ultra-slow-roll
dynamics at the inflection point is responsible for the growth of the power spectrum,
while in the multi-field set-up we study the effect of geometrical destabilisation and
non-geodesic motion in field space. As discussed in section 3.5, models displaying a
significant enhancement in the scalar power spectrum can lead to primordial black hole
(PBH) production and potentially detectable second-order GWs. We show that, due to
the existence of universal predictions in a—attractors, consistency with current CMB
constraints on the large-scale spectral tilt implies that PBHs can only be produced with
masses smaller than 108 g and are accompanied by ultra-high frequency GWs, with a

peak expected to be at frequencies of order 10kHz or above.

This chapter is based on the publication [3], and is organised as follows. After review-
ing a—attractor models in section 6.1, we analyse in section 6.2 single-field a—attractor
models featuring an inflection-point potential and discuss the models’ predictions for
large-scale observables. In section 6.3 we discuss the single-field model phenomenology,
focusing on PBH production and second-order GW generation. In section 6.4 we describe

the multi-field extension of the single-field inflection-point model, discuss its dynamics,
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large-scale predictions and small-scale phenomenology. We discuss our findings in section
6.5. For completeness, we provide additional material in a series of appendices. In ap-
pendix C we review how the universal predictions of a—attractors models are derived. In
appendix D we illustrate how the numerical computation of the single-field scalar power
spectrum is performed. In appendix E we study the limiting behaviour of the single-field
potential. In appendix F we provide a parameter study of the multi-field potential. In
appendix G we discuss the two-field model of [4] in terms of polar coordinates mapping

of the hyperbolic field space, clarifying its relationship with a—attractors models.

6.1 Cosmological a-attractors

Cosmological a—attractors [127—-134] stand out as particularly compelling models to
describe inflation in the very early universe. On the theoretical side they can be embedded
in supergravity theories, while leading to universal predictions for large-scale observables
that are independent of the detailed form of the scalar field potential [127], and which
at the same time provide an excellent fit to current observational constraints on the
primordial power spectra [67].

Usually a—attractors are formulated in terms of a complex field Z belonging to
the Poincaré hyperbolic disc [299, 300], with potential energy V(Z, Z) which is regular

everywhere in the disc. The corresponding kinetic Lagrangian reads

0, ZOHZ

(61) =(£kin =-30————— ,
(1-ZZ)?

where the curvature of the hyperbolic field space is constant and negative, Z¢; = —4/(3 ).

The complex field Z can be parameterized by
(6.2) Z=re' ,

where r =|Z| <1, and eq.(6.1) can then be rewritten in terms of the fields » and 6 as

o ___8a 2, .2 2
(6.3) L ] (GO COR R

As neither of the fields r and 0 are canonically normalised, it is often useful to transform

to the canonically normalised radial field ¢, defined as

(6.4) r = tanh (i) .
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In terms of ¢ and 6, the kinetic Lagrangian in eq.(6.3) reads

1.2 3a . of 2¢ 2

(6.5) Lin = —§(a¢) e sinh (\/T—a) (00)~.

Usually it is assumed that the angular field 6 is strongly stabilised during inflation, in
which case ¢ is the only dynamical field and plays the role of the inflaton [300]. This leads
to an effective single-field description of a—attractor models of inflation, characterised
by universal predictions for the large-scale cosmological observables which are stable
against different choices of the inflaton potential [127, 301, 302]. In particular, the scalar
spectral tilt, ns — 1, and the tensor-to-scalar ratio, rcmp!, are given at leading order in
(ANcmB) ! as

2
6.6 ~1- ,
66 s ANcMmB
a
(6.7) remp=12——,
ANcyp?

where ANcymB is the number of e-folds that separate the horizon crossing of the CMB
comoving scale from the end of inflation, see eq.(3.1). See appendix C for a derivation
of eqs.(6.6) and (6.7). For 50 < ANcmB < 60 and a < G(1) the predictions above sit
comfortably within the bounds from the latest CMB observations [67, 142].

In some cases both ¢ and 6 are light during inflation, implying that the angular
field 6 cannot be integrated out and the full multi-field dynamics has to be taken into
account. Effects associated with the dynamics of the angular field have been investigated
in the context of cosmological inflation [303—305]2. In particular, in [303] the authors
consider a multi-field a—attractor model with @ = 1/3 and whose potential depends also
on the angular field . Under slow-roll and slow-turn approximations, and considering a
background evolution close to the boundary of the Poincaré disc, the authors demonstrate
that the fields “roll on the ridge”, evolving almost entirely along the radial direction, and
the single-field predictions, eqs. (6.6) and (6.7), are stable against the effect of the light
angular field. The impact of a strongly-curved hyperbolic field space (o« < 1) has been
investigated in [305], showing that for small a the background trajectory could display
a phase of angular inflation, a regime in which the fields’ evolution is mostly along the

angular direction. For the models considered in [305], the phase of angular inflation

1Here the subscript CMB indicates the tensor-to-scalar ratio is evaluated when the comoving scale
Ecmp crossed the horizon, while usually r is quoted at 2 = 0.002Mpc ™!, as using the Planck plus BK15
data the tensor perturbations are best constrained at £ = 0.002Mpc ™!, while the scalar perturbations, and
hence the scalar spectral index and its running, are best constrained at kcyp = 0.05 Mpe ™! [67].

2See [306—308] for implications of multi-field a—attractors for preheating.
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shifts the universal predictions (6.6) and (6.7), whilst it does not lead to an enhancement
of the scalar perturbations.

In this chapter we investigate inflationary models that can support a large enhance-
ment of the scalar power spectrum on small scales and belong to the class of a—attractors.
Building on the work [89], we focus on single-field potentials which feature an inflection
point, proposing a potential parametrisation which has a clear physical interpretation.
The ultra-slow-roll dynamics associated with non-stationary inflection points can en-
hance the scalar power spectrum on small scales. We then assess the impact of a light
angular direction on the single-field potential, suggesting a simple multi-field extension
of the inflection-point model. Within this set-up, the inflationary evolution is realised in
two phases, the transition between them being caused by a geometrical destabilisation
of the background trajectory and characterised by a deviation from geodesic motion in
field space. At the transition the combined effect of a strongly-curved field space and non-
geodesic motion could trigger a tachyonic instability in the isocurvature perturbation.
The enhanced isocurvature mode couples with and sources the curvature perturbation,
delivering a peak in the scalar power spectrum on small scales whose amplitude is set
by the curvature of field space and the angular field initial condition. Even if the mech-
anisms enhancing the scalar perturbations differ between the single- and multi-field
models, we find that the predicted large-scale observables can be described in both cases
by a modified version of the universal predictions for a—attractor models, egs. (6.6) and
(6.7).

6.2 Single-field inflection-point model

We will first consider a—attractor models where the angular field 6 is stabilised, leading
to an effective single-field model. We take the potential to be a non-negative function of
the modulus of the original complex field, f2(r), where r = |Z|. The Lagrangian in terms

of the canonically normalised radial field ¢, defined in eq.(6.4), is

(6.8) P = %R - %(aq))z - f? (tanh i) ,

Vb6a
where f is an arbitrary analytic function.
We will consider models which can successfully support an inflationary stage gener-
ating an almost scale-invariant power spectrum of primordial curvature perturbations

on large scales, compatible with CMB constraints, and can also amplify scalar curvature
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fluctuations on smaller scales, potentially producing PBHs and/or significant primordial

GWs. To do so, the potential £2(r) must have some characteristics:

(i) at large field values (¢ > 1,r — 1), the potential has to be flat enough to support
slow-roll inflation and satisfy the large-scale bounds on the CMB observables. In a—
attractor models, the flatness of the potential is naturally achieved at the boundary
(r — 1) by the stretching induced by the transformation (6.4) so long as f(r) remains

finite;

(i1) in single-field inflation, a significant amplification of scalar fluctuations on small
scales can be achieved by deviations from slow roll [81]. In particular, this may be
realised with a transient ultra-slow-roll phase [82—84], see section 2.3.1.1, where the
gradient of the potential becomes extremely small at intermediate field values. This can

be implemented by having an almost-stationary inflection point in the potential [85-90];

(iii) at the end of inflation, the condition V(¢enq) = 0 ensures that inflation can end

without giving rise to a cosmological constant at late times.

In the following, we outline a procedure to fix the potential profile in a way that
addresses all the requirements listed above. The potential is constructed in a way similar
to [89], but our analysis differs in that we present a simplified potential, with a reduced
number of parameters and we give a clear dynamical interpretation of each parameter.
Furthermore, while in [89] cases with a = ©(1) have been studied extensively, we will
consider configurations with a < 1, which will enhance the role of the hyperbolic geometry

in the model’s multi-field extension.

6.2.1 Parameterising the inflection-point potential

Given the single-field Lagrangian (6.8), the easiest way to implement an almost-stationary
inflection point in the potential, V(¢), is to consider a function f(r) which itself has an
almost-stationary inflection point. The inflection-point structure of f(r) is then transmit-
ted to the potential

(6.9) V() =F2(r(¢)) .

The lowest order polynomial that allows the presence of a single inflection point is of
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order three?,

(6.10) Fr)=fo+ fir+ far? + fard.

From condition (iii) above we require V(¢enq) = 0 at the end of inflation. Here, for

simplicity, we set ¢peng = 0, which together with (6.9) and (6.10) implies
(6.11) fo=0.

We require f1 # 0 so that ¢ = 0 is a simple minimum with V"(0) > 0, and given that the
potential (6.9) is symmetric under f — —f we then pick f1 > 0 without loss of generality.

An inflection point in f(r) at r = rina, where 0 < rimq < 1, is defined by the condition
f"(rinn) = 0. For the function in eq.(6.10), this translates into the condition

fe

(6.12) fa=— ,
3rinf

where the positivity of ri,a implies that fo and f3 have opposite signs.
The first derivative of the function (6.10) calculated at the inflection point is then

(6.13) f'(rinf) = f1+ forin -

In order for riyn to be a stationary (f'(rina) = 0) or almost-stationary (f'(ring) = 0) inflec-
tion point, we require fs < 0, which follows from the positivity of 1 and rj,q. From (6.12),
this implies that f3 > 0.

In order to achieve a significant amplification of the scalar power spectrum on small
scales, we will consider models with an approximately stationary inflection point where
the first derivative at rj,q is slightly negative, f'(rinn) < 0. As the inflaton rolls from
r > rina down towards r = 0 this acts to further slow the inflaton as it passes through the
inflection point, realising an ultra-slow-roll phase. In this case the inflection point is then
preceded by a local minimum (for r > rj,q) and followed by a local maximum (for r < riga).
Using (6.13), both stationary and almost-stationary configurations can be described by

the condition

(6.14) fi=—fa(rinn—¢),

where ¢ =0 corresponds to the case of a stationary inflection point and an approximate

stationary inflection point is realised if 0 < { < rjnf.

3While setting the (arbitrary) function f(r) to be a cubic polynomial is a pretty generic choice, (some
of) the coefficients need to be fine-tuned to produce a stationary/non-stationary inflection point. We note
here that there are no symmetries protecting the fine-tuned coefficients from radiative corrections (see e.g.
[309] for the role played by radiative corrections during inflation).
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Figure 6.1: Structure of the potential (6.15) with a = 0.1 and ¢;j,n = 0.5. The inset zooms
around the inflection point. If { = 0 the inflection point is stationary. The case ¢ #0
corresponds to an approximate stationary inflection point, where ¢i,q (grey dot) is
accompanied by a local minimum and a local maximum (grey stars).

Finally, by substituting (6.10) into (6.9) subject to the conditions (6.11), (6.12) and
(6.14), and transforming to the canonical field ¢ defined in eq.(6.4), the potential can be

written as

1 2
6.15)  V(p)=Vp {(rinﬂ _&)tanh (\/%) _ tanh? (\/%) o tanh3 (\/%)} :

where we have defined V| = f22. For { = 0 we have a stationary inflection point at ¢ = ¢ping,

where we define tanh ((/)inﬂ/\/@ ) = rinfl. More generally we have an approximately-
stationary inflation point, with V'(¢in) = @ (é/ring) and V" (¢ina) = O (E/rina) for 0 < & <
Tinfl-

Starting from an initial set of free parameters {fy, f1, f2, f3} for a fixed value of a,
we have reduced it to the set {Vy, ring, ¢}. The normalisation of the potential Vj is fixed
at CMB scales in order to reproduce the right amplitude of the scalar fluctuations, see
(3.2), leaving only two free parameters to describe the shape of the potential, {ring, ¢},
for a given a. In figure 6.1, two configurations of V(¢) are shown in order to illustrate
a stationary inflection point (¢{ = 0) and an approximately stationary inflection point
(0 <¢ < rinfl).

6.2.2 Background evolution

The equations of motion for the homogenous field ¢(¢) in an FLRW cosmology are given by
the Klein—Gordon and evolution equations, see eqs.(2.14) and (2.13) respectively. These

are subject to the Friedmann constraint (2.12).
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Figure 6.2: Left panel: the inflaton evolution ¢(INV), for a single-field a—attractor model
with potential V(¢) given in (6.15), where we set a = 0.1, ¢ing = 0.5 and ¢ = 0.0035108.
The black dot marks the field value when the CMB scale, kcyp = 0.05 Mpc_l, exits the
horizon, taking ANcumB = 55. Right panel: the corresponding evolution of the first two
Hubble slow-roll parameters ez and |ng|. The two horizontal grey lines correspond to
1 and 3 respectively. Inflation ends when e = 1 and ng = 3 signals the ultra-slow-roll
regime.

As an example, in figure 6.2 we display the evolution of the scalar field, ¢, and
the first two slow-roll parameters, ez and ng, see (2.18), for the case of a single-field
a—attractor potential, eq.(6.15), with @ = 0.1 and an almost-stationary inflection point,
given by {¢pina = 0.5, ¢ = 0.0035108}. The time evolution is represented in terms of the
number of e-folds to the end of inflation, AN = Ng,q — N, see eq.(2.33) for the definition
of the integrated expansion or e-folds N. The early evolution corresponds to a typical
a—attractor slow-roll phase with e < |ng| < 1. The inflaton slows down as it approaches
the inflection point and enters an ultra-slow-roll regime with ez small and rapidly
decreasing, such that* nz > 3, almost coming to a stop momentarily. After it passes the
potential barrier, caused by the local maximum of V(¢) following the inflection point at
¢ < ¢ing, the inflaton rolls towards the minimum of the potential at ¢ = 0 and inflation

ends when e = 1.

6.2.3 CMB constraints

As discussed in section 3.1, in order to connect predictions from an inflationary model with
late-time observables, e.g. the CMB, one has to compute the number of e-folds elapsed

between the horizon crossing of the comoving scale relevant for the specific observable

4In terms of the Hubble-flow parameter ey, the ultra-slow-roll regime is described by es < —6. Given
that €9 = 2e7 — 217, the latter becomes 1y 2 3 in the limit e < |ng| [83], see section 2.3.1.1.
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Figure 6.3: Schematic representation showing the horizon crossing of modes with co-
moving wavenumber k£ during and after inflation. We use the expression AN = Nepng— N
when referring to e-folds elapsed during inflation, and AN = N — N.pq when referring to
e-folds elapsed after inflation. RD stands for radiation domination.

and the end of inflation, e.g. ANcup for the CMB comoving scale, 2cyp = 0.05Mpe ™!, see
eq.(3.1).

The precise value of ANcymB depends on the inflationary potential and the details of
reheating [136], as illustrated in figure 6.3. By assuming instant reheating, pi, = pend,
one can obtain the maximum value which ANcyp can take (assuming the reheating
equation of state —1 < w < 1/3). For a—attractor potentials of the type considered here we
(numerically) obtain ANcMB, max = 55 by iteratively solving (3.1) for values of V compat-
ible with CMB observations. In particular, we start by substituting on the right hand
side of (3.1) an initial guess for the value of ANcwms, ANcyve?, and use the numerical
solution for background quantities to calculate the resulting ANcmg'?, as dictated by
(3.1). We then substitute the new value, ANcys?, and calculate the resulting ANcys®.
We proceed in the same fashion until convergence is reached, ANCMB(”D =~ ANCMB(”

and assign the last value to ANcMB, max-

In the following sections, 6.2.4—6.2.6, we will present results assuming that reheating
is instantaneous, bearing in mind that in order to describe a complete inflationary
scenario it is necessary to include the details and duration of the reheating phase and
understand how it impacts the predictions for observable quantities. We will address

this topic in section 6.3.1.
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Once ANcwmp is fixed, it is possible to derive the model’s predictions for the CMB
observables ny— 1, as and r using the slow-roll expressions (2.76), (2.77) and (2.87). A
full numerical computation of the scalar power spectrum (see appendix D) confirms that
the slow-roll approximation describes well the behaviour on large scales, i.e. far from the
inflection point and the end of inflation.

Model predictions can then be compared with the observational constraints from the
latest Planck data release [67], see section 3.1. For the a—attractor potentials under con-
sideration, we will show that as and ns are not independent parameters, but rather are
related by eq.(6.25). In particular, the lower observational bound n > 0.9551 (95%C.L.)
from (3.3) implies that —0.001 < a5 < 0 at 95% C.L., about an order of magnitude smaller
than the observational uncertainty in eq.(3.4). For these reasons, we neglect the effect of
the running when considering bounds on n¢ and r in the following. We comment further
on this topic in section 6.2.7.

The upper bound on the tensor-to-scalar ratio at kcyg = 0.05 Mpc_1 in the absence
of running (i.e., for the ACDM + rcup cosmological model) is rovp < 0.036 (95%C.L.)
[142], see eq.(3.6). The predicted value of the tensor-to-scalar ratio changes by about 10%
if evaluated at kcyp = 0.05 Mpe ™! instead of £ = 0.002Mpc~!. For a < 1, this is irrelevant
as the predicted values of the tensor-to-scalar ratio in our model will be at least an order
of magnitude below this observational bound.

For the reasons outlined above, in the following we will impose observational bounds
on the scalar spectral index at CMB scales using the baseline ACDM cosmology, excluding
both as and romp. Planck temperature, polarisation and lensing data yield ng = 0.9649 +
0.0042 (68%C.L.) [67], see eq.(3.5). In particular this gives a lower bound on the spectral

index
(6.16) ng>0.9565 (95%C.L.),

which provides the strongest constraint on our models, and hence their small-scale

phenomenology.

6.2.4 ¢ =0:stationary inflection point

In the case of a stationary inflection point, the only free parameter specifying the shape
of the function f(r) in the simple cubic polynomial (6.10) is the position of the inflection
point ri,q. Along with the hyperbolic curvature parameter, «, this then determines the
field value at the inflection point, ¢inq, in the potential, V(¢) in (6.15).
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Figure 6.4: Background evolution of the first slow-roll parameter ez (left panel) and of
the inflaton field (right panel) for the stationary inflection-point model, { = 0. Different
lines correspond to different locations of the inflection point ¢i,q, as displayed in the
legend. In the right panel, the points represented on top of ¢p(IN) signal the field value
at which the CMB scale leave the horizon, ¢cyp. All the configurations represented
produce ANcuB = 55.

For our fiducial value of a = 0.1, we find that when ¢, = 0.56 the inflaton, after a
brief ultra-slow-roll phase, settles back down into slow roll towards the inflection point
and takes an infinite time to reach it. We therefore exclude that portion of the model’s
parameter space. We study configurations with 0.1 < ¢jpa < 0.5465 and plot the resulting
background evolution in figure 6.4. The limiting behaviour at large or small values of

¢inf1 are explored in appendix E.

Let us first discuss the configurations with 0.1 < ¢jng < 0.5. When the inflection
point is located at small field values, for 0.1 < ¢ < 0.4, inflation ends even before the
inflaton reaches ¢;,a, making the background evolution effectively indistinguishable
between those configurations. The case ¢ing = 0.5 is slightly different, as seen from the
corresponding ey profile in the left panel of figure 6.4; the inflaton does slow down as it
approaches the inflection point and its velocity drops, but only briefly before it passes

through the inflection point.

Using eqs.(2.76), (2.77) and (2.87) we find 0.961 < n, < 0.963, a; ~ —0.0007 and
ro.0oz ~4x107%, for (¢ =0,0.1< ¢inf1 < 0.5}, showing that this parameter space is compat-
ible with the CMB bounds given in (3.5) and (3.6). However we find that larger values
of ¢inf, corresponding to a longer persistence of the inflaton around the inflection point
(see the left panel of figure 6.4), lead to smaller values for n,, making the scalar power
spectrum more red on CMB scales. This is due to the fact that the large-scale CMB
measurements test a steeper portion of the inflaton potential as a consequence of the

persistence at the inflection point. We will return this topic in more detail in section 6.2.7
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Figure 6.5: Numerical scalar power spectrum for the single-field inflection-point model
(6.15) with parameters {a = 0.1, ¢j,q = 0.5465, ¢ = 0}, plotted against the comoving scale
k.

and give a simple explanation of the connection between the large-scale observations
and the inflection-point location.

The largest value of ¢j,n which we find is compatible with the lower limit of the obser-
vational bound on the scalar spectral tilt, eq.(6.16), is ¢ina = 0.5465. The corresponding
background evolution is displayed in figure 6.4. The inflection point does slow down
the inflaton field, but without realising a sustained ultra-slow-roll phase. We therefore
expect only a limited enhancement of the scalar fluctuations on small scales, which is
confirmed by an exact computation of the scalar power spectrum (see appendix D for
a detailed description of the computational strategy). In figure 6.5, we display P;(k)
obtained numerically for this configuration. The power spectrum does exhibit a peak
located at Epeax = 1.3 x 1029Mpc~!, whose amplitude is only one order of magnitude
larger with respect to the large-scale power spectrum, P(kpeax) = 2 X 1078, Tt is useful to

characterise the position of the inflection point through the parametrisation
(6.17) ANcMB = (Npeak — NomB) + ANpeak

which implies that the number of e-folds elapsed between the horizon crossing of the CMB
scale and the moment in which & e,k left the horizon can be expressed as ANcyB—ANpeak,
see figure 6.3. For the configuration plotted in figure 6.5 its value is ANcvB — ANpeak =
49.5.

Surveying the parameter space with ¢ = 0 shows that potentials with a stationary
inflection point do not produce a large enhancement of the scalar fluctuations on small
scales. In order for inflection-point a—attractor models to display an interesting phe-

nomenology on small scales, such as primordial black hole formation and/or significant
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¢innl ¢ ANcMB — ANpeak | Epeak/Mpe ™" ng 70.002
(IO || 0.51 | 0.0023495 47.8 2.2x10™ [0.9555 [ 5.3x107%
(ID || 0.5 | 0.0035108 49.3 9x10% 0.9569 | 4.9x107%
(III) || 0.49 | 0.0049575 50.4 2.7x10%° | 0.9579 | 4.7x107*

Table 6.1: Details of three potentials with @ = 0.1 and approximate stationary inflection
points, ¢ # 0. The value ANcuMB — ANpeak refers to the parametrisation (6.17). All the
potentials lead to inflation with ANcmg ~ 55, Vo ~ 10719 and a; ~ -9 x 1074,

production of gravitational waves induced at second order, it is necessary to turn to the

approximate inflection-point case, ¢ # 0.

6.2.5 ¢ #0: approximate stationary inflection point

It is possible to obtain a large enhancement of the scalar power spectrum on small scales,
Pi(kpeak) = 1072, necessary for PBH production after inflation, in simple cubic-polynomial
a—attractor models with ¢ # 0 in eq.(6.15).

In table 6.1 we display a selection of configurations for our fiducial curvature param-
eter of @ = 0.1 which produce a peak P;(kpeax) = 1072. We see that the field value at the
inflection point, ¢ina, determines both the location of the peak, & peak, and the predicted
value of the scalar spectral index, ng, on CMB scales. The correspondence between ¢inq
and n; holds regardless of the amplitude of the power spectrum peak. In particular, the
larger ¢inn, the smaller kpeqax and ng, as we saw for the case ¢ = 0. For the configurations
listed in table 6.1, the inflection-point field value is selected in order to have the power
spectrum peak on the largest scale possible, with predicted values for the tilt ny around
the CMB observational lower bound (6.16). The parameter ¢ has then been adjusted to
obtain P¢(kpear) = 1072, Configuration (I) in table 6.1 lies slightly outside the 95% C.L.
observational bound on ng, while (II) and (IIT) are within the 95% C.L. bound. In figure
6.6 numerical results for the power spectra corresponding to these three configurations

are displayed.

6.2.6 Changing a

In the preceding sections the parameter space {¢inf, ¢} has been studied for a fixed
fiducial value of the hyperbolic field-space curvature, corresponding to @ = 0.1. In this
section we consider the effect of varying a.

We select five different values of @ € {0.01, 0.1, 1, 5, 10}, and for simplicity restrict our

attention to the case of a stationary inflection point, £ = 0. This avoids any numerical
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Figure 6.6: Numerical results for the scalar power spectrum P;(k) for three single-field

models with @ = 0.1 and ¢ # 0. The values of ¢inn and ¢ corresponding to each line are
listed in table 6.1.

a Gini | ANcMB | ANcMB — ANpeak | kpea/Mpe ™! ns 7'0.002
0.01 || 0.255 54.3 49 1020 0.9565 | 5x107°
0.1 || 0.5465 55 495 1.3x10%° [ 0.9565 | 5x107%
1 1.009 56.3 49.4 3x 1019 0.9565 | 4.9x1073
5 1.313 57.6 49.3 4x1018 0.9565 | 0.0217
10 1.39 58.3 48.3 8 x 1018 0.9565 | 0.0385

Table 6.2: Table of parameters for each of the single-field inflection-point models used to
generate the scalar power spectra shown in figure 6.7.

instabilities, possible when a > 1 due to fine-tuning of the inflection point when ¢ # 0. For
each case, the value of ¢j,q is chosen such that the predicted scalar spectral index, ng, is
close to the lower observational bound in (6.16). The key parameters for each model are
listed in table 6.2 and the numerically computed scalar power spectra are displayed in
figure 6.7.

The peak positions for a < 1 are very close to each other, while for larger a the peak
moves, not following a specific trend and always on scales smaller than 108 Mpc™. The

peak magnitudes vary depending on a, whilst being fairly similar for a < 1.

The potential normalisation, Vj, and hence the values of r¢ o2 differ from each other
by roughly one order of magnitude. This is as expected in a—attractor models [127]
where the universal predictions relate the level of primordial gravitational waves at
CMB scales to a, as shown in eq.(6.7). Smaller a values are associated with a smaller
predicted tensor-to-scalar ratio, as seen in table 6.2. Note that the predicted value of
ro.002 for a = 10 is in tension with the upper bound (3.6), hence we do not explore a > 10
(see also [310]).
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Figure 6.7: Scalar power spectra obtained numerically for the single-field inflection-point
models listed in table 6.2. Each line corresponds to a different choice of «, as detailed in
the legend.

The fact that the results for kyeai, Pi(kpeak) and ro ooz are fairly consistent for small
a is consistent with the expected a—attractor behaviour. On the other hand the charac-
teristic behaviour of a—attractors, formulated on a hyperbolic field space, gets washed
away for large a, where these models approach the simple chaotic inflation behaviour
[299].

6.2.7 Modified universal predictions

The numerical results that we have found for observables on CMB scales from single-field
models including an inflection point suggest a simple modification of the a—attractors
universal predictions for ng and r given in eqs.(6.6) and (6.7), as previously noted in
[89]. In the presence of an inflection point at smaller field values (after CMB scales exit
the horizon), the a—attractors universal predictions still hold if we replace Ngyq with
Npeak, and hence ANcvB — ANcMB — ANpeak, such that (6.6) and (6.7) are modified for
ANpeak > 0 to become

2
ANcMB — A]Vpeak ’
a

(ANCMB - ANpeak)z .

(6.18) ng=1-

(6.19) rems = 12

In figure 6.8 we plot the approximations (6.18) and (6.19) together with our numerical
results for a number of selected configurations which lie close to the lower bound on
ns. The coloured points are centered around values 47 < ANcmB — ANpeak < 51 which,

while being compatible with CMB measurements, produce a peak in P;(k) on the largest
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Figure 6.8: Left panel: the approximation (6.18) (grey line) is plotted against numerical
results (coloured points) for the scalar spectral index on CMB scale, ng;. Each point
corresponds to a specific configurations discussed in sections 6.2.4 and 6.2.5. The yellow-
shaded area highlights the Planck 95% C.L. region, see (3.5), with the dashed line
representing the central value. Right panel: the approximation (6.19) is plotted against
the numerical results for the tensor-to-scalar ratio, rcyp. Each line corresponds to a
different value of a. See the left panel for the legend illustrating the coloured points. The
yellow-dashed line signals the 95% C.L. upper limit (3.6). We do not include the point
corresponding to the model with a = 10, as the predicted value for rcyp puts the model
in tension with the bound (3.6).

scales possible. We see that the modified universal predictions describe quite well the
numerical points, with a small offset observed in the left panel in figure 6.8. We will
investigate this further within the multi-field analysis in section 6.4.4 and show a simple
way of moving the numerical results even closer to the modified universal predictions.
In the following we will use eqs.(6.18) and (6.19) to explore in a simple and straight-
forward way the phenomenology of the inflection-point potential (6.15). Rather than
considering all the possibilities, we will focus on configurations that are consistent with
the large-scale CMB observational constraints, eqs.(3.5) and (3.6). Using eq.(6.18), the

observational bounds on ng given in (3.5) translate into
(6.20) 46 S ANcMB — ANpeak S75.

A lower limit on ANgMB — ANpeak can also be obtained by substituting the upper bound
on the tensor-to-scalar ratio (3.6) in eq.(6.19), but for @ <1 it is always weaker than the
one given in eq.(6.20). The lower bounds become comparable only when a 2> 10.

During inflation there is a one-to-one correspondence between a scale £ and the
number of e-folds, N, when that scale crosses the horizon, £ = aH. Calibrating this
relation using the values corresponding to the CMB scale yields

a(N) H(N)

x 0.05Mpc !,
acmB Hcms

(6.21) k(N)=
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where a(NV) / acms = eV ~NemB For the scale corresponding to the peak in the scalar power
spectrum eq.(6.21) is

(6.22) Epeax = eVems=ANpeak x 0,05 Mpe ™,

where we simplify the expression by assuming that the Hubble rate is almost con-
stant during inflation. This equation shows that the largest scale, i.e., the lowest & peak,
corresponds to the lowest allowed value of ANcyMB — ANpeak. The lower limit in (6.20)
can therefore be used in eq.(6.22) to derive an estimate of the lowest scale kpeax for

configurations which are not in tension with the CMB observations,
(6.23) Epeak = 4.7x 10 Mpc ™!,

which is valid regardless of the enhancement of the scalar power spectrum, P;(&peak )
Conversely, using eqs.(6.23) and (6.18) one can show that a peak at, for example, LISA
(R peak = 1012 Mpc_l) or LIGO (kpear = 1016 Mpc_l) scales would lead to the large-scale
spectral tilt values ns; = 0.9333 and ng; = 0.9498 respectively, well outside of the 95% C.L.
lower end of the Planck measurement (6.16).

Eq.(6.23) has important implications for the phenomenology of the model under
analysis® and is confirmed by the results obtained numerically and presented in tables
6.1 and 6.2.

Modifying the universal prediction for the running of the tilt, eq.(C.14), with ANcMyB —
ANcMB — ANpeak gives the approximation

2
(ANoymB — ANpear)”

(6.24) s ~

The numerical results for a; can be well-approximated by the expression above, with a
small offset similar to that seen for n; in the left panel of figure 6.8. We show in appendix

C that in fact the values of as and ns are well-described the consistency relation

(ns - 1)2

(6.25) s~ ——p

In figure 6.9 we plot our numerical results for (ng, as), and show that they are well-
described by the consistency relation (6.25). In particular, even if we allow for non-zero
running, using the lower observational bound on n; given in eq.(3.3), the consistency
relation (6.25) implies that a; > —1.01 x 1072 at 95% C.L., about an order of magnitude

5For a counter example see, e.g., [311], where a localised feature is superimposed on the original global
potential.
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Figure 6.9: Points representing our numerical results for the spectral index and its
running, (ng, as). The consistency relation (6.25) is plotted as a solid-grey diagonal
line. The yellow area represents part the 95% C.L. region for n; when Planck data are
compared with the ACDM + rcys + as model, (3.3), and the hatch-shaded area to the
right represents the 95% C.L. region for n; for the ACDM model neglecting running and
rcms- The range of a; shown is within the observational bound (3.4).

smaller than the observational uncertainty in eq.(3.4). This justifies what was already
anticipated in section 6.2.3, that we can in practice neglect the running when comparing
the model predictions with CMB bounds on the tilt, n;. Thus in the following we will
apply the more stringent lower bound on n;, eq.(6.16), derived for the ACDM model

without running, in contrast to the approach taken in [89].

6.3 Extended phenomenology of single-field models

Building on the numerical results presented in section 6.2, we extend here our considera-
tions to the phenomenology of inflection-point models on scales much smaller than those
probed by the CMB. In section 6.3.1 we consider the implications of a reheating phase at
the end of inflation. In sections 6.3.2 and 6.3.3 we review some aspects of the formation of
PBHs and the production of second-order GWs in presence of large scalar perturbations.
Using the modified universal predictions appropriate for inflection-point models, we
restrict our analysis to configurations of the inflection-point potential (6.15) which are
not in tension with the large-scale CMB measurements and explore the implications for

the masses of the PBHs generated and the wavelengths of the second-order GWs.
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6.3.1 Reheating

Thus far we have worked under the assumption of instant reheating. Next we will take
into account the presence of a reheating stage with finite duration, see section 2.2.2 for a
review of the process of reheating after the end of inflation.

The duration of reheating measured in terms of e-folds is given in eq.(2.36). We
will consider a matter-dominated reheating phase (w,, = 0), as the inflaton behaves
as non-relativisitic, pressureless matter® when oscillating around a simple quadratic
minimum of its potential, eq.(6.15), for all configurations with ¢ # rinq.

The exact duration of reheating depends on the efficiency of the energy transfer
process. In order to be as general as possible, we estimate first the maximum duration of
reheating and then, within the allowed range, consider the impact of a reheating phase
on observable quantities.

Requiring that reheating is complete before the onset of big bang nucleosynthesis
yields p, € [(1TeV)4, pend] [67], where the upper limit corresponds to the case of instant
reheating. Substituting the lower limit for py, into eq.(2.36) allows us to estimate the
maximum duration of reheating as

) 1 Pend
(6.26) AN, < —ln(—) .
=3 1 Tev)

The inflection-point potential (6.15) predicts peng ~ 10712 Mp*, with only a weak depen-
dence on a, which by means of eq.(6.26) yields

(6.27) 0<AN, <38.

It is instructive to isolate the reheating contribution to the value of ANcyMB given in

eq.(3.1). For example, for our a—attractor models with @ = 0.1 eq.(3.1) gives
1 .
(6.28) ANcpB = 55— ZAth .

Different values of AN,p, and hence ANcyg, can shift the observational predictions
for a given inflationary model [136]. CMB constraints, combined with the standard
universal predictions for n, and r in a—attractor models, eqs.(6.6) and (6.7), already have
implications for the duration of reheating in these models. Substituting (6.28) in (6.6)
and requiring that the duration of reheating does not put the model in tension with the

CMB measurement (3.5), yields the observational bound

(6.29) 0<AN;, <36.

6See section 2.2.2 where we demonstrate that w,;, = 0 in the case of a quadratic minimum.
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This restricts the maximum duration of reheating allowed compared with the theoretical
range given in eq.(6.27) and implies p¢, > (4.5TeV)?.

If we now generalise this to include inflection-point a—attractor models, giving rise to
a peak in the power spectrum on small scales, kpcax given in eq.(6.22), then substituting
eq.(6.28) in eq.(6.18) and imposing the bound on the CMB spectral index (3.5), yields a

stronger bound on the duration of reheating

(6.30) 0< AN, <36 —4ANpeak -

This in turn puts a lower bound on the the thermal energy at the end of reheating
(6.31) piA > 4.5TeV x e32Vpeak

In practice, eq.(6.30) will determine the maximum range for the duration of reheating

which we consider in the following.

6.3.2 Primordial black hole formation

Very large amplitude scalar fluctuations produced during inflation give rise to large
density perturbations when they re-enter the horizon after inflation, which can collapse
to form primordial black holes [174]. We reviewed the PBH formation process in section
3.5.1.

The masses and abundance of the PBHs formed differ according to whether the
scale corresponding to the peak in the scalar power spectrum re-enters the horizon
(kpeak = aH) during reheating or during radiation domination after reheating. If 2 peak
exits the horizon ANk e-folds before the end of inflation, it re-enters the horizon
ANpeak e-folds after the end of inflation (see figure 6.3), where

(6.32) AN peax = Npeak -

_2 A
(1+3w)
In the expression above w is the equation of state parameter describing the background
evolution when %pcax re-enters the horizon. Under the assumption of instant reheating
(AN, = 0), kpeak always re-enters the horizon during radiation domination (w = 1/3),
which from eq.(6.32) implies that ANpeax = ANpeak. If instead ANy, # 0, then kpeqx Te-
enters the horizon during reheating if AN, > ANpeak = 2ANpeak, where we take w =0 in
eq.(6.32).
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6.3.2.1 PBH formation during radiation domination

For modes that re-enter the horizon during the radiation-dominated era after reheating,
eq.(3.16), assuming conservation of entropy between the epoch of black hole formation
and matter-radiation equality, yields [312]
639 ME) - soo (L) (£ (k)

© . . 1014 Mpc
where g(T}) is the effective number of degrees of freedom at the time of formation.
Assuming the Standard Model particle content, we take g(T) = 106.75 and g(Teq) = 3.38.

If we consider the non-stationary inflection-point models presented in section 6.2.5

where we calculated the CMB constraints assuming instant reheating, the PBHs are
formed from the collapse of large scalar fluctuations at & = kyeax Which re-enter the
horizon during radiation domination. Substituting the numerical values of & pear listed
in table 6.1 in eq.(6.33) leads to PBH masses MPBH/g ~4.2x10%, 2.6 x10°, 2.8 x 10* for
configurations (I), (II) and (III) respectively. Thus PBHs resulting from these inflection-
point a—attractor models would have evaporated before primordial nucleosynthesis
[313, 314].

In section 6.3.2.3 we will argue that this is a general result which applies to all a—
attractor inflection-point models which are not in tension with the CMB measurements
on large scales and extends beyond the instant reheating assumption. In particular,
the black-dashed line in figure 6.10 shows the range of PBH masses formed when the
peak of the power spectrum on small comoving scales re-enters the horizon during the
radiation-dominated era after reheating, over the range (6.23) consistent with CMB

constraints on large scales.

6.3.2.2 PBH formation during matter domination

As discussed above, it is possible that large scalar perturbations which collapse to
form PBHs re-enter the horizon during reheating, corresponding to a transient matter-
dominated stage after inflation. The different background evolution during reheating
modifies PBH formation; intuitively the collapse is easier in a matter-dominated epoch
than in the presence of radiation pressure. Another consequence is that the correspon-
dence between the scale of the perturbation that collapses to form the PBH and its mass
is modified. In particular, following a procedure similar to the one illustrated for eq.(6.33)

and taking into account the different background evolution yields [89]

M(k) g(Trh))—l/G( krh )—2 ( k )—3

6.34 2R L1018 ( £
(6.34) M, (0.2) 106.75 104Mpet)  \Fern
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where the scale
(6.35) By = e 35N/t 5 3 8 % 1022 Mpe

re-enters the horizon at the end of reheating. For perturbations that re-enter the horizon
during reheating we have k& > &}, as sketched in figure 6.3. The coloured diagonal lines in
figure 6.10 show the range of PBH masses formed when the peak of the power spectrum
on small comoving scales re-enters the horizon during reheating for models which are in

accordance with CMB constraints on large scales.

6.3.2.3 Implications of reheating and modified universal predictions for PBH

formation

In the following we examine the implications for the allowed PBHs masses of the modified
universal predictions presented in section 6.2.7 and the resulting constraints from CMB
measurements of the spectral tilt on large scales. We consider inflection-point potentials
(6.15) with parameters, {a, ¢ing, ¢}, which generate significant enhancements of the
scalar power spectrum on small scales, as we have done for the specific cases discussed in
section 6.2. We take into account the fact that inflation could be followed by a reheating
stage, whose duration is bounded by (6.30) for a = 0.1. We discuss the effect of varying a
at the end of this section.

As already discussed, it is the hierarchy between kcqc and k., in the presence of
reheating that determines the setting for PBH formation, during either radiation or
matter domination. Equivalently one can consider the hierarchy between ANpeax and
AN, = AN,,/2. The bound (6.30) can be written as

(6.36) ANy, +2AN peqi S 18.

and we discuss here the implications of the expression above for the mass of the PBHs

formed within three different scenarios.

(i) Instantaneous reheating (AN, = 0): In this case kpcai always re-enters the
horizon during radiation domination and it is bounded by (6.23). In figure 6.10 the black-
dashed line represents Mppy against kpeax over the range 4.7 x 1018 Mpc_1 < kpeak <
kend, compatible with (6.23), where keng = 4 x 1022 Mpc‘1 for models with @ = 0.1 and
instantaneous reheating. The modified universal predictions therefore imply that the

mass is maximised for the smallest £peax and in general
(6.37) Mppn <10°g,
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Figure 6.10: Masses of PBHs generated during or after reheating as a function of £ peak
for models with a = 0.1. Diagonal coloured lines correspond to PBHs produced by modes
re-entering the horizon during a period of reheating (w = 0), where each coloured line
corresponds to a given duration of reheating, AN,;. The region on the left highlighted
in grey is excluded by the 95% C.L. lower bound on ng, eq.(6.16). The black-dashed line
corresponds to PBHs produced during radiation domination. The lower horizontal grey
line corresponds to scales that re-enter the horizon at the start of reheating, immediately
after the end of inflation.

which means that PBHs produced in this case have evaporated before primordial nucle-
osynthesis and are not a candidate for dark matter. Explicit realisations of this scenario

have been discussed in section 6.3.2.1.

(ii) PBH formation after reheating is complete (ANpeak > ANyn): In this case
the PBHs form during radiation domination. The requirement that scales & peqx re-enter

the horizon after reheating together with (6.36) implies that

(6.38) 0<ANyp<6 and ANy, <ANpeak S9- %Ath .

For fixed AN, using (6.21) in the expression above gives a range of possible scales
(6.39) 4.7x 10" Mpc ™ < kpeak < krh

where the reheating scale is given by eq.(6.35).

The mass of the PBHs formed is still set by (6.33), corresponding to the black-dashed
line in figure 6.10 for MppH(kpeak), but in contrast to the case of instant reheating, £ peax
can now only run up to k.. This means that only part of the black-dashed line in figure
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6.10 for MpH(kpeak) is accessible for a given value of AN 4. In particular, the coloured
points on the black-dashed line signal the largest allowed value of kpcax = £, for a fixed
AN, < 6. In this case the largest PBH mass produced is again Mpgy ~ 108g and it
corresponds to kpear = 4.7 x 1018 Mpc~1.

(iii) PBH formation during reheating (ANpeak < ANyh): In this case the PBHs
form before reheating is complete, i.e., during a matter-dominated era. This implies a

hierachy, kpeak = krn, which together with (6.36) results in either

(6.40) 0 < ANpeak < AN, <6,
or
1
(6.41) 6<ANp <18 and 0<ANpeak <9- AN

For a given value of AN,} and hence a given value of k.4, see eq.(6.35), we have

(6.42) Brn < kpeak < "Mk, if 0<ANg, <86,
(6.43) 4.7x 10" Mpc ™ < kpeak < e*Vhky,  if 6 < ANy, <18.

The masses of the PBHs produced is set by (6.34) and it is shown as a function of
kpeak in figure 6.10. For a given kpea, the masses produced during a matter-dominated
(w = 0) reheating stage are all below the corresponding masses produced during radiation

domination, because kpcqx re-enters the horizon before the onset of radiation domination

and this suppresses the PBH mass by a factor (krh / kpeak)3, see eq.(6.34). The PBH
masses approach those generated in radiation domination in the limit AN eac — AN
In this case kpeak — ki and therefore the formula (6.34) coincides with (6.33). The cases
representing ANpeac = ANy, are plotted in figure 6.10 with the coloured points, which
mark the intersection between the coloured lines and the black-dashed line. The case
ANy, = ANpeak = 6 maximises the PBH mass which could be produced in this scenario,
Mpgy ~ 10%g.

For any duration of reheating, ANy, substituting the upper value & peax = eANmpE o+ in
(6.34) results in a PBH mass independent of ANy, which justifies why all the coloured
lines lie above the horizontal grey line in figure 6.10 corresponding to Mppg ~1 g.

The right vertex of allowed values in figure 6.10 corresponds to the case AN, =0
and kpeak = Rend. This is the limiting case where the peak is produced at the very end of
inflation. While it may be possible to have configurations which produce a peak a few

e-folds before the end of inflation, the limited growth of the scalar power spectrum in
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single-field models [120] would not allow the 7 orders of magnitude enhancement with

respect to the CMB scales which is necessary for significant production of PBHs.

The analysis above is performed for our fiducial value a = 0.1. The parameter «a sets
the maximum value of ANcMp (corresponding to AN, = 0) as illustrated in table 6.2.
Thus the expression (6.28) gets modified for different a, which in turns changes the
scales involved, see eq.(6.21). In particular, the lower bound on the PBH mass that can be
produced during reheating corresponds to £ peax = eANeMB, max=5 AN (1,05 Mpc~!, moving
the horizontal grey line in figure 6.10 up for a < 0.1 and down for a > 0.1. On the other
hand it is the lower bound on n (6.16) that bounds £year from below and the modified
universal prediction for ng, eq.(6.18), does not depend on the parameter a. This implies

that the largest PBH mass that can be produced is the same for all «.

In summary the maximum PBH mass that can be produced in any of these scenarios
is Mppu = 108 g which corresponds to a peak on scales kpeak = 4.7 x 1018 Mpc_1 which
re-enter the horizon during radiation domination, after reheating. PBHs with this mass
would have evaporated by today and cannot constitute a candidate for dark matter. This
strong constraint on MppH(%peak) comes from the CMB observational lower bound on n,

eq.(6.16), in these a—attractor models.

PBHs with masses Mppy < 108 g would have evaporated before the onset of big bang
nucleosynthesis and cannot therefore be directly constrained. Nevertheless, it is possible
that these ultra-light PBHs are produced with such a large abundance that they come
to dominate the cosmological density before they evaporate, giving rise to a period of
early black hole domination [313, 315-318]. In this scenario, there are various sources of
GW production (see e.g., recent work [314, 319, 320]), which open up the possibility of
constraining ultra-light PBHs using GW observatories, see also the discussion in section
6.3.3.

Another possibility is that primordial black holes could leave behind stable relics.
When the mass of an evaporating black hole becomes comparable to the Planck scale,
quantum gravitational effects become relevant, such that a complete evaporation could
be prevented, leaving stable PBHs relics with masses M ~ M, [321-323]. Interestingly,
they could account for the totality of dark matter, a possibility that has been investigated
in the context of different inflationary models, see e.g. [324] where an a—attractor single-
field inflationary model is considered. PBHs relics might be tested (and their abundance
constrained) because of their gravitational effects, or with terrestrial detectors if the

carry a charge [325].

We leave for future work the exploration of early PBH domination or stable PBH
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Figure 6.11: GWs produced at second order by the large scalar perturbations generated
in single-field inflection-point models with ¢ # 0. The legend is the same as in figure 6.6
and details about the parameters {¢inq, ¢} are listed in table 6.1.

relics in the context of a—attractor models of inflation.

6.3.3 Induced gravitational waves at second order
6.3.3.1 Induced GWs after reheating

First-order scalar perturbations produced during inflation can source a stochastic back-
ground of primordial gravitational waves at second order from density perturbations that
re-enter the horizon and oscillate during the radiation-dominated era after reheating
[209-214].

We reviewed second-order GWs in section 3.5.2; in particular the present-day energy
density associated with these second-order GWs is given in eq.(3.19).

We numerically evaluate Qgw(k) for the gravitational waves induced from the peak
in the scalar power spectrum on small scales in the inflection-point models with ¢ #0
discussed in section 6.2.5. In figure 6.11 the results are represented together with the
sensitivity curves of upcoming Earth- and space-based GW observatories, operating up
to frequencies in the kHz.

The spectral shape of the GW signal for the non-stationary inflection-point models can
be understood in terms of the infrared (k¢ < kpear) and ultraviolet (& >> kpeqi) tilt of the
peak in P;(k) [214, 326]. To demonstrate this, we select configuration (III), see table 6.1
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Figure 6.12: Spectral shape of the scalar power spectrum (left) and second-order
GWs (right) for a non-stationary inflection-point model with {a = 0.1, ¢;nq = 0.49,¢ =
0.0049575}. The scalar power spectrum is well approximated by a broken power-law and
the IR and UV scaling of P;(k) explain the IR and UV tails of the GW numerical results.
In both plots, the black dots represent numerical results.

for the model’s parameters, and represent in the left panel of figure 6.12 the approximate
IR and UV scaling of P;(k) around the peak on top of the numerical results (black dots).
We note that the IR tilt is in accordance with the estimate of the maximum growth of the
scalar perturbations for single-field inflationary models, nigr <4 [120]. The IR and UV
scaling of P;(k) determine the IR and UV tails of the second-order GWs, see eqs. (5.16)
and (5.20) in [214]. In the right panel of figure 6.12, we represent the numerical results
for Qgw(k) together with the IR and UV approximations aforementioned, which well
describe the numerical IR and UV tails.

The principal peak of Qgw(k) is located at very small scales, as a consequence of
the position of the peak in the scalar power spectrum. In particular, the lower bound
(6.23) on kpeq implies that the GWs produced at second order exhibit a principal peak
at k > 6 x 108 Mpc™!, see section 3.5.2. This equivalently implies that the GW signal
peaks at frequencies f > 105 Hz, as confirmed by the numerical results plotted in figure
6.11. Configurations which are in accordance with CMB measurements on large scales

cannot be probed on small scales by currently planned GW observatories.

6.3.3.2 Induced GWs during reheating

Second-order GWs resulting from first-order scalar perturbations that re-enter the
horizon during reheating are in general suppressed [214, 327]. First-order scalar metric
perturbations, in the longitudinal gauge for example, on sub-Hubble scales during a
matter-dominated era, remain constant rather than oscillating as they do in a radiation-

dominated universe. While these scalar perturbations support second-order tensor metric
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perturbations in the longitudinal gauge during the matter era [210, 212, 328], these
tensor perturbations are not freely-propagating gravitational waves and indeed they are
gauge-dependent’ [331, 332]. At the end of the reheating epoch, when the Hubble rate
drops below the decay rate of the inflaton (I' = H), the scalar metric perturbations decay
slowly with respect to the oscillation time for sub-horizon GWs (k/a > I'). Thus the tensor
metric perturbations that they support also decay adiabatically on sub-horizon scales.
The resulting power spectrum for freely propagating second-order GWs in the subsequent
radiation-dominated era is therefore strongly suppressed on scales that re-enter the
horizon during reheating. This gives an upper bound on the comoving wavenumber of

any second-order GWs produced by modes re-entering the horizon after inflation, 2 < &,y

The only exception could be if there is a sudden transition from matter domination
to radiation domination (rapid with respect the oscillation time, a/k) [327, 333]. This
could indeed occur in an early pressureless era dominated by light PBHs which decay
and reheat the universe before primordial nucleosynthesis, as mentioned in section
6.3.2.3. For a sufficiently narrow range of PBH masses and therefore lifetimes, the final
evaporation of PBHs would be an explosive event and could lead to a sudden transition
from an early PBH-dominated era after inflation to the conventional radiation-dominated
era, leading to an enhancement of the spectrum of induced GWs from first-order scalar
perturbations on sub-horizon scales at the transition [318]. We leave the study of GWs

from a possible early PBH-dominated era for future work.

6.4 Multi-field extension

Cosmological a—attractor models are naturally formulated in terms of two fields living
in a hyperbolic field space, see section 6.1, therefore we explore here the consequences of
embedding in a multi-field setting the single-field inflection-point model studied in the
preceding sections. Our aim is to establish whether the single-field predictions are robust
against multi-field effects and under which conditions it may be possible to enhance the

scalar power spectrum through inherently multi-field effects.

"In contrast to the linear perturbation theory, the second-order (induced) tensor perturbations are
known to have gauge dependence. For the GWs produced in a radiation-dominated era, the observable
(late-time) GWs in the transverse-traceless (synchronous) gauge and in the Newtonian gauge are the same
[329], while more care needs to be taken in the matter-dominated era, as the scalar perturbations continue
to couple with the tensor perturbations on subhorizon scales even in the Newtonian gauge because of
the growing matter perturbations [329]. See also [330] for further discussions about the second-order
gauge-invariant formalism for the cosmological observables.
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We reviewed the dynamics of multi-field inflation in section 2.4, and we focus here on
the multi-field set-up of a—attractor models, with (/)I = {¢, 0}. The geometry of field space
is hyperbolic, with curvature Z¢ = —4/(3). The kinetic Lagrangian for the fields ¢ and
0 is given in eq.(6.5). The Christoffel symbols associated with the hyperbolic metric are

1 /3 2 2 2
¢ _ L /2 . 0 _ -1
(6.44) Typ= 5 \/ 54 sinh (2\ / I gb) , Tgp= \/@tanh (\ / 32 (,b) )

In this way the equations of motion for the background evolution (2.129)—(2.130) can be

written explicitly for the fields ¢ and 6 as

H 1 3a 2
4 —— == ¢+ =sinh?| /| — ¢ |67
(6.45) H 2( 9 sin ( 3 (p) ,

(6.46) H%¢"+HH'¢' +3H?¢' + T H*0? + U 4 =0,

3; sinh? (\ / % (/))

where a prime denotes a derivative with respect to the number of e-folds, N.

-1

(6.47) H?0"+HH'0'+3H?0' + 2T H*0'¢' + Ug=0,

In section 6.4.1 we illustrate one possible multi-field embedding of the single-field
inflection-point potential and discuss its phenomenology in sections 6.4.2 and 6.4.3. In
section 6.4.4 we establish the robustness of the modified universal predictions given
in eqs.(6.18)—(6.19) for single-field models against multi-field effects, and consider the
small-scale phenomenology of multi-field models which are compatible with CMB mea-

surements.

6.4.1 Multi-field embedding of the single-field inflection-point
potential

In section 6.2 we outlined the construction of an inflection-point potential in the context

of single-field a—attractor models, where the building block is the cubic function f(r).

This construction can easily be extended to a multi-field set-up. In analogy with the

single-field case, let us consider a function F(r,0) cubic in r, in terms of which the

multi-field potential is

(6.48) U(p, 0)=F2(r(¢), 6).
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In constructing a cubic function of r, we have at our disposal the complex field Z, as

defined in (6.2), its complex conjugate Z and their combinations

(6.49) Z7Z=r?,

Z+7Z

(6.50) =rcosf.

In particular, the former is symmetric under a phase-shift while the latter depends on
6 explicitly. The general form of F(r, 0) arising from terms proportional to (ZZ)%(Z +

Z)"™ x cos™(Q)r**t™ is

(6.51) F(r,0)=) Fnimmecos™(@)r™™.
m,n

We note that our potential will thus be symmetric under the reflection 6 — —6.

Asin the single-field case, we set Fp o = 0 such that the potential (6.48) has a minimum
at U(0,0) =0. For F(r,0) to be a cubic function of r, there are potentially nine terms
contributing in (6.51). For simplicity we select just the 3 remaining phase-independent

terms to be non-zero and one f-dependent term, such that
(6.52) F(r,0)=F1or+Fao(1+ycos(@)r® + Fsor®,

where y = Fz,l/Fz,o.
Identifying the potential U(r, 0) = F2(r, 0) along the direction 6 = 0 with the single-
field potential in (6.15), with an inflection point in the radial direction located at r = riq,

gives the coefficients
(6.53) Fio=rinn—¢, Foo=-1/(1+y), F30=1/(3rinn).
Substituting these coefficients into eq.(6.52) yields

(6.54) F(r0) = (g — &)r— 77080 2 1 5

1+ Y 37‘inﬂ
Away from the particular direction 6 = 0 the function (6.54) has an inflection point in the
radial direction at

1+7ycos(8)

(6.55) Fin(0) = (
1+

)7‘ infl -
For —(1 - riZnﬂ) / rinfl < ¢ < rina there is a stationary inflection point (where 0F/or = 0)
when

1+ (ring —OV2-rl2

1/2
Yrinﬂ

(6.56) cos(Ogt) =
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and
(6.57) Finfl(Bst) = 772 (rinn — V2.

If ¢ =0 then F(r, 0) has only one inflection point in the radial direction, located at r = riyq
along 0 = 0, and it is stationary. This property simplifies the form of the potential and it
is for this reason that in the following we consider two-field models with ¢ =0 and leave
the analysis of the non-stationary inflection-point case, or a stationary inflection point
away from the symmetric 6 = 0 direction, to future work.

Substituting (6.54) with { =0 in (6.48) yields
(6.58)

B _ ¢ | 1+ycos(6) 2( ¢ ) 3( o )}2
U(p,0)=Uy {rmﬂtanh(\/@) 177 tanh —m + tanh —\/@ ,

which is written in terms of the canonical field ¢, defined in eq.(6.4). The profile of the

3rinfl

multi-field potential along the direction 6 = 0 is represented by the black-dashed line in
figure 6.1 for a configuration with {a = 0.1, ¢jpa = 0.5}.

Once the field-space curvature, a, and the position of the inflection point along 6 =0,
rinfl, are fixed, the only remaining free parameter in the potential (6.58) is y. We impose
some simple conditions on U(¢, 0) to ensure a successful inflationary scenario, which
will restrict the allowed range of y. In particular, we require that the potential has a
non-negative derivative in the radial direction, a condition which forbids the radial field,
¢, from running back towards larger (radial) field values at late times. Thus we require

oF(r, 0
(6.59) %20 vr.0,
r

which one can show implies
(6.60) _p < 1ryes®
1+y

Thus we will restrict our analysis to the case y > 0 where the condition that the potential
has a non-negative derivative in the radial direction holds for any angle 6. In addition,
we can see from eq.(6.58) that the effective squared-mass of the angular field, 6, is
non-negative along 6 = 0 for y > 0 (see also the discussion in appendix F). Thus we expect
to recover the single-field behaviour for evolution along the symmetric direction, 6 =0,
while the potential can exhibit a richer phenomenology in the two-dimensional field
space for 6 # 0.

We plot the profile of the multi-field potential (6.58) with {a = 0.1, ¢;na = 0.542, y = 10}
in figure 6.13. The direction 6 = 0 corresponds to a minimum of the potential in the

angular direction, as expected for y > 0.
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An interesting comparison can be made between multi-field a—attractor potentials,
which remain non-singular throughout the hyperbolic field space, and other inflation
models discussed in the literature which employ a different coordinate chart in the
hyperbolic field space. In particular, the two-field model of [4] is formulated in terms
of planar coordinates on the hyperbolic field space and supports a strong enhancement
of the scalar power spectrum on small scales. We show in appendix G that the multi-
field potential in [4] diverges at a point on the boundary of the hyperbolic disc. At this
point, the potential shares the same singularity as the kinetic Lagrangian, and initial
conditions which support a small-scale peak in the scalar power spectrum are close to the
singularity. In this case, the large-scale observables are then sensitive to characteristics
of the potential and initial conditions, as already noted in [105] in the context of side-
tracked inflation. The model in [4], while being of interest in its own right, lies outside

the class of a—attractors that we consider here.

6.4.2 Exploring the multi-field potential: turning trajectories

and geometry at play

In the following we perform a numerical analysis of the background evolution stemming
from the multi-field potential (6.58). Initially we will explore a range of possibilities
which follow from the form of the potential and the consequences of different choices of
parameters and initial conditions. Later, in section 6.4.4, we will restrict our attention to
configurations which have been specifically selected to be consistent with CMB measure-
ments on large scales and explore the consequences that CMB observations have for this
model.

The first parameter we fix is a, which determines the Ricci curvature of the field
space, Z¢s = —4/(3a). As we did in the single-field case, we start by considering a = 0.1,
which corresponds to %Z¢ = —13.3. The profile of the potential is then parametrised by
{¢inf1, Y}, and here we select {¢ing = 0.542, y = 10}, as shown in figure 6.13. The effect of
different choices for y and ¢inq is discussed in appendix F. The background evolution
is derived by numerically solving the differential equations (6.45)—(6.47). We consider
vanishing initial velocities for the fields, but in practice the fields rapidly settle into
single-field, slow-roll attractor solution at early times. We select ¢;, such that the model
supports at least 55 e-folds® before the end of inflation after the background evolution

reaches the attractor solution.

8This choice is made in analogy with the single-field case, where ANcyp = 55 for models with a = 0.1
and assuming instant reheating.
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Figure 6.13: Background evolution obtained numerically for the potential (6.58) with
model parameters {a = 0.1, ¢inn = 0.542, y = 10} and different initial conditions 6;,. On
the left the fields trajectories are represented on top of the potential profile, with different
colours corresponding to different 6;,, see the right panel for the legend. The black point
located at 8 = 0 and ¢ = ¢ipg highlights the position of the inflection point. On the right
we display the evolution of the slow-roll parameter ez against AN = Nepg—N.

In figure 6.13 we show the field evolution (left panel) and first slow-roll parameter
(right panel) for several initial conditions for the angular field in the range n/4 < 6;, <
971/10. All the trajectories share some common features. Initially, the angular field, 6, is
frozen and only the radial field, ¢, is evolving. This is a well known effect in hyperbolic
field space, referred to as “rolling on the ridge” [303], where the geometry is responsible
for suppressing the potential gradient in the equation of motion for 0, see the term
2/(3a) sinh~2 ¢/v/3a/2 multiplying Up in eq.(6.47). As long as ¢ > V3a/2), this term is
suppressed, effectively freezing 6 at its initial value during the early stages of inflation.

When ¢ ~ v3a/2, the angular field 0 starts evolving and there is a turn in the
trajectory, which is shallower or sharper depending on 6;,. During the turn, the field
¢ can be driven back towards larger values, this effect being more or less pronounced
depending again on 0;,. The change of sign of ¢'(N) is due to the motion of 6, which
switches on the geometrical contribution, FZ’OH 20”2, in the equation of motion for o,
e(q.(6.46). This effect also appears in other multi-field a—attractor models, e.g., angular
inflation [305]. Once 0 starts oscillating around its minimum, 6 = 0, the fields cross the
radial inflection point and inflation comes to an end soon afterwards. In the right panel
of figure 6.13 we display ey = —H'/H (see eq.(6.45)) against AN = Nenq — N, where each

coloured line corresponds to a different 6;,. Depending on 6;, the profile of €z changes,
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Figure 6.14: Numerical evolution of the fields for the multi-field model with parameters
{a =0.1, ¢pina = 0.542, y = 10} and O;, = 7n/10. The black star signals the moment when
¢ = V3a/2 and the grey area corresponds to the radial field being within 1% of the

(¢ — Pinn) /<Pinﬂ <0.01.

inflection point,

with some trajectories temporarily violating slow roll and ending inflation (e = 1).
Despite these differences, all trajectories end up on the same attractor after crossing
the inflection point, due to the ‘levelling’ effect of the inflection point, suppressing the

inflaton velocity regardless of the preceding dynamics.

To get a better understanding of the background evolution we will focus on a single
case. We select 0;,, = 771/10 and represent the evolution of ¢ and 6 against AN in figure
6.14. When ¢ becomes comparable with the curvature length of the field space, V3a/2,
signaled by the black star in the plot, the angular field, 8, which was previously frozen,
starts evolving. The plot shows the transient change of direction of ¢ and its subsequent
persistence at the inflection point before finally rolling down to the global minimum,
ending inflation. In particular, the grey region highlights the phase of the evolution when
the radial field, ¢, is within 1% of the inflection point, ¢inq.

In the left panel of figure 6.15 ¢y is plotted for this case, together with its two
component parts coming from the evolution of ¢ (green-dashed) and 0 (pink-dotted), see
eq.(6.45). At the beginning, ey is dominated by the kinetic energy of ¢, which is slowly
rolling towards smaller values. Then, when ¢ = V3a/2, 0 gets released, its kinetic energy
becomes comparable to that of ¢, and ¢ changes direction. The simple ultra-slow-roll
behaviour of € observed in the single-field case (see e.g., figure 6.2) is modified due
to the change of direction of ¢ and the contribution of 8, which oscillates around its
minimum. Overall ey decreases, until ¢ crosses the inflection point and rolls away from

it towards the global minimum, bringing inflation to an end. One can see that, similar to
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Figure 6.15: Left panel: slow-roll parameter ez (black line), decomposed into two parts
coming from the kinetic energy of the radial (green-dashed line) and angular (pink-dotted
line) fields. The horizontal grey line corresponds to 1. Right panel: ez (black line) and
Ing| (blue line). The horizontal grey lines highlight the values 1 and 3 respectively. Both
panels show the model {a@ = 0.1, ¢pjpa = 0.542, y = 10} with 8y, = 7n/10.

the single-field case, inflation is made up of two slow-roll phases driven by ¢, separated
by an intermediate phase with rapidly decreasing ez. The transition between the two
slow-roll solutions is an effect of the destabilisation induced in the background trajectory
by the hyperbolic geometry of field space, see the discussion in section 2.4.

In the right panel of figure 6.15 the second slow-roll parameter, g defined in (2.16),
is plotted against AN together with ez;. The first and last phases of inflationary evolution
are distinguished by slow roll where ey < ||, with an intermediate interval in which
slow roll is violated, |ng| 2 1. In particular, |ng| = 3, signals a very brief (less than 1
e-fold) ultra-slow-roll phase, as shown in the inset plot. In this example the first slow-roll
parameter, €z, also briefly exceeds unity, signalling that inflation is interrupted (also for
less than one e-fold) about this point, sometimes referred to as “punctuated” inflation
[334, 335].

From the results above it is clear that the potential (6.58) can produce a rich back-
ground evolution whose properties depend on the initial condition 6;,. Although we
selected 0;, = 71/10 as an example, each case will be different, e.g., not all 6;, would
produce |ng| 2 3.

As reviewed in section 2.4, a strong turn in field space (7, > 1) and/or a highly
curved field space (Zg < —1) can lead to a situation in which enhanced isocurvature
perturbations source the curvature fluctuation, with the coupling between them set by
the bending parameter, 1, see (2.137). In the top panel of figure 6.16 we represent the
evolution of the absolute value of n; for the same model considered above, {& = 0.1, ¢ing =
0.542, v = 10,6;, = 7n/10}, together with ¢(IN) and O(N). In the first slow-roll phase, when
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Figure 6.16: Evolution of the absolute value of the turn rate, |1 |, with respect to AN
(black line), shown together with the field values, ¢ (green-dashed line) and 0 (pink-
dotted line), for the model {a = 0.1, ¢ipa = 0.542, y = 10} and 6y, = 77/10. The two thin
horizontal lines highlight the values 1 and 10. The bottom panels show blow-ups of the
behaviour of || | in restricted ranges of AN. The red-dashed lines show a Gaussian fit to
the evolution about the maxima, see eq.(6.61).

0 is effectively frozen, 7, << 1. When 0 is released and starts evolving, n; becomes G(1),
signalling a turning trajectory. In order to compare with the results previously presented,

e.g.,in [117, 121], we fit the shape of 7, around the peak with the Gaussian profile

(N-Ng)?

(6.61) N1L(N) =11 maxe 267

where 62 « 1 signals sharp turns in field space. In the bottom-left panel of figure 6.16 we
zoom in on the first localised peak of n; and plot it together with the Gaussian profile in
(6.61) described by (171 max = 3.9, No = 23,62 = 0.07). The (sharp) bending is not as large
as considered, e.g., in [117] for producing PBHs. During the subsequent field evolution,
the oscillations that the field 6 performs around its minimum are reflected in oscillations
of 1, signalling a series of turns. We zoom into 20 < AN < 15 in the bottom-right panel

of figure 6.16, where we fit the peak with largest amplitude with the Gaussian profile
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Figure 6.17: Evolution of the effective squared-mass of the isocuvature perturbation
together with its contributions (left) and comparison with the squared-mass (right) for
the model {a@ = 0.1, ¢pjpa = 0.542, y = 10} and 6;,, = 77/10.

(6.61) and parameters (1| max =45, No = 17.7, 62 =0.0003). Again, these turns in field

space are strong and sharp.

The behaviour of the isocurvature perturbation is determined by its squared-mass
(2.143) and its super-horizon effective squared-mass (2.146). We display m s,effz/H 2 in the
left panel of figure 6.17. Around 24 e-folds before the end of inflation the super-horizon
effective squared-mass turns negative, signalling a destabilisation of the background
trajectory, and a transient instability of the isocurvature perturbation for the super-
horizon modes. The plot displays several coloured lines accounting for the different
components of ms,eff2/H 2 see (2.146). In particular, it is the geometrical contribution
€12y that causes the squared-mass to become negative, along the lines of what was
investigated in [105, 112, 113] (see also [4]). In the right panel we plot m 2/H? and
m s’effz/H 2 together. The difference between the squared-mass and the effective squared-
mass is due to the contribution from the turn rate, which adds a negative contribution
(—ni) to ms2/H?, and a positive contribution (+3772¢) tom s’effz/H 2 on super-horizon scales.
The negative contributions from the geometry and the strong turn drive m2/H? to

negative values, signalling a tachyonic growth of the isocurvature perturbations.

We numerically evaluate the resulting scalar power spectrum, P;(k), for this model
using the mTransport Mathematica code provided in [336], with ANcmpB = 55. In fig-
ure 6.18 we represent the power spectrum, P;(k)/P(, normalised at kcyp = 0.05 Mpc'1
where Py =2.1x1079. As expected, on small scales the power spectrum grows due to the
transient instability of the isocurvature perturbation, displaying a local peak around
10'2Mpc~!. In this example the growth is very limited and it does not lead to an overall

enhancement with respect to the power spectrum on CMB scales. In terms of the charac-
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Figure 6.18: Normalised scalar power spectrum, P(k)/P, for the model described by
{a =0.1, ¢ing = 0.542, v = 10} and initial condition 6;, = 77n/10. Here Py =2.1 x 1079,

teristics of the localised turn in field space, i.e., its maximum amplitude, 17| max, and its
duration, 6, the overall amplification of P;(k)/P, following a strong turn is roughly given
by the factor 7% [121]. In this case, for the first local peak of the bending parameter

this factor is only ~ 2.8, which is consistent with the limited growth that we see.

The sharp turn in the field-space trajectory happening around AN = 23 (see the
bottom-left panel of figure 6.16) results in an oscillatory pattern in P;(k) shown in
figure 6.18, which is magnified in the inset plot. The decrease in egz(IN) about the
inflection point (see figure 6.15) explains the subsequent local maximum in P;(%), around
k=3 x10¥ Mpc~!. Although the subsequent evolution displays many sharp turns in
field space (as shown in the bottom-right panel in figure 6.16) as 0 oscillates about its
minimum, the resulting features in the scalar power spectrum are suppressed relative
to the first peak. Eventually the evolution returns to slow-roll, as seen on scales k& =

10 Mpc™!, and the power spectrum gradually decreases as ez (IN) grows.

In figure 6.19 we show P;(k)/Py resulting from the potential (6.58) with the same
model parameters {a@ = 0.1, ¢ing = 0.542, ¥ = 10} but different choices of the initial con-
dition 6;,. Each initial condition leads to a different outcome and with this choice of
parameters the largest enhancement is produced with 6;, = n/4. Despite the rich and
diverse behaviour, one can see that, for the model with a = 0.1, none of the cases consid-
ered here can produce a significant amplification of the scalar power spectrum on small

scales above the power on CMB scales.
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Figure 6.19: Normalised primordial scalar power spectrum for the potential (6.58) with
{a =0.1, ¢pina = 0.542, y = 10} and different initial conditions 6;,. Here Py = 2.1 x 1079,

6.4.3 Changing the hyperbolic field-space curvature

In the previous section we considered the dynamics for @ = 0.1. In order to investigate
the role of the field-space curvature we consider now models with @ =0.01 and a = 0.005,
which correspond to % = —133.3 and % = —266.6 respectively. We study a fixed initial
angular direction, 6;, = 77/10, and we also fix y = 10 to facilitate the comparison. For
each a, we select the value of ¢i,q in such a way that the power spectrum starts to
grow roughly at the same comoving scale k. In particular, we study three different

configurations of the potential (6.58), corresponding to

model; — {a = 0.1, ¢ing = 0.5417},
models — {a =0.01, ¢p;nn = 0.19},
models — {a = 0.005, ¢inn =0.103} .

In the following, we identify each model by the corresponding value of a.

We obtain the background trajectories by numerically solving eqs.(6.45)—(6.47) and
represent them in the left panel of figure 6.20. We parametrise the trajectories in a
slightly different fashion with respect to what was done previously, e.g. in figure 6.13,
by plotting {¢p(N)cosO(N), p(N)sinO(N)} in the last 55 e-folds of inflation, while in the
right panel we display the evolution of € against AN.

Cases with a ={0.01, 0.005} clearly differ with respect to the evolution for @ = 0.1. The
two models with smaller a are characterised by a transient phase of angular inflation,
which is defined as a regime in which the field’s motion is mostly along the angular

direction, with ¢'(IN) suppressed [305]. We show in figure 6.21 the terms contributing to
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Figure 6.20: Numerical background evolution for three models with different values for
the curvature of the hyperbolic field space, parameterised by a. Left panel: background
trajectories {p(IN)cosO(N), p(N)sin6(N)}. Right panel: evolution of e with respect to
AN.
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Figure 6.21: Terms contributing to the equations of motion (6.46) and (6.47) for the radial
field, ¢ (left panel), and angular field, 0 (right panel), obtained numerically for the model
{a =0.01, ¢ping = 0.19, y = 10} and 6;, = 77/10.

the equations of motion for ¢ and 6, eqs.(6.46) and (6.47), for the model with a =0.01.
Only the models with @ = {0.01, 0.005} lead to a phase of angular inflation as these
values correspond to a large field-space curvature %y, which destabilises the background
trajectory into the new attractor solution. During angular inflation, the geometry of
the field space pushes the radial field towards the larger volume in field space at the
boundary of the Poincaré disc [305]. The radial field remains approximately constant
while the potential gradient is balanced against the geometrical effect, and the angular
field slow rolls, see figure 6.21.

Another effect of having small a is that the dynamics at the inflection point is

changed in the presence of a phase of angular inflation. We clarify this by plotting the
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Figure 6.22: Evolution of the radial (continuous line) and angular (dashed line) fields
against AN in the last 30 e-folds of inflation, with each panel corresponding to one of
the models discussed, see the value of @ in the top-left label. The black star signals
the moment when the radial field is equal to the field-space curvature length, ¢ =
v3a/2. The red area highlights when the radial field is within 1% of the inflection point,
’ (¢ — dinn) / (,binﬂ‘ < 0.01. The persistence at the inflection point is quite extended for the
model with @ = 0.1, rather short for & = 0.01 (see the vertical, thin, red line in the central

panel, close to the end of inflation), while inflation ends before ¢ reaches the inflection
point in the model with a = 0.005.
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Figure 6.23: Evolution of the squared-mass of the isocurvature perturbation (black line)
for the model with a@ = 0.005, displayed together with its three components given in
eq.(2.143).

fields evolution against AN in the last 30 e-folds of inflation in figure 6.22, where each
panel corresponds to one of the models discussed. While for @« = 0.1 the radial field gets
bounced back only transiently and then is able to settle around the inflection point (see
the red area), when «a is smaller the fields undergo a phase of angular inflation and ¢
is kept away from the inflection point. As displayed in the middle panel, for @ = 0.01
right before the end of inflation ¢ crosses the inflection point (see the vertical, thin, red
line) and a consequent slight change in its velocity can be seen from the plot. Instead,
for the smallest a considered, a = 0.005, inflation ends before the radial field is able
to cross the inflection point. In other words, the effect of the inflection point is washed
out from the evolution of ¢ for small a. Nevertheless, given our parameterisation of
the potential, the value of ¢j,q still has an effect on the large scales observables, as
discussed in section 6.4.4, even in cases where inflation ends before the radial field is
able to cross the inflection point. This is because ¢inq, together with the parameter v,
governs the mass of the angular field 6, as discussed in appendix F. Because of this
¢inf1 determines the position of the transition between the first and second phases of
inflationary evolution, which in turn affects the predictions for large-scales observables.

In figure 6.23 the squared-mass of the isocurvature perturbation is displayed for the
model with a =0.005, together with its three component parts given in eq.(2.143). The
figure shows how the first negative peak in m,2/H? is mainly driven by the geometrical
component, €1 %s;.

In the top-left panel of figure 6.24 we show the evolution of the squared-mass of the
isocurvature perturbation, eq.(2.143), for the three different values of @. As shown in

figure 6.23, the first negative peak in each case is driven by the geometrical contribution
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Figure 6.24: Evolution of the squared-mass (2.143) (top-left panel) and super-horizon
squared-mass (2.146) (top-right panel) of the isocurvature perturbation, together with
the magnitude of the bending parameter (2.137) (bottom-left panel) and numerical scalar
power spectrum (bottom-right panel) obtained for the models with different a. In the
bottom-right panel Py =2.1x 107%. The legend is the same in each plot, see the top-left
panel.

€1%ss, with Z¢ inversely proportional to a. For smaller a the geometrical contribution
to m42/H? is boosted, which explains why m  %/H? shows a larger negative profile with
decreasing a. This has a clear consequence for the curvature perturbations as well;
we expect a larger enhancement for smaller a, as long as the background trajectory is
turning, 1, # 0, which is the case for the models shown, see the bottom-left panel in
the same figure. The top-right panel shows the evolution of the super-horizon effective
squared-mass for the isocurvature modes, eq.(2.146), over the same range of AN as in
the top-left panel. The bending parameter contributes positively in this case, explaining
the difference between the squared-mass and the super-horizon effective squared-mass.
Finally, in the bottom-right panel we show the normalised power spectra P;(k)/P for
the three cases, obtained numerically with a modified version of the mTransport code
[336], where ANcyp = 55 and Py = 2.1 x 1072, The numerical results confirm what was
anticipated from the behaviour of m 2/H?. The field space with the largest curvature

considered, corresponding to a = 0.005, leads to a five orders of magnitude enhancement
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Figure 6.25: Normalised primordial scalar power spectrum for the potential (6.58) with
{a=0.0035, pina = 0.077, 7 = 10, O;, = 77/10}. Here Py =2.1x 1079,

in the power spectrum with respect to CMB scales. Further decreasing a could lead
to even larger enhancements, even the seven orders of magnitude required to possibly
produce PBHs. As an example, we display in figure 6.25 the normalised scalar power
spectrum, P;(k)/Py, obtained for the potential (6.58) with parameters {& = 0.0035, ¢ing =
0.077,y =10, 0, = 7n/10}.

6.4.4 Robustness of single-field predictions

We have explored multi-field effects in the presence of an inflection point in the context of
a—attractor models of inflation® and seen that these models display a rich phenomenology.
Depending on the initial condition, 6;,, and on the curvature of the hyperbolic field space,
the power spectrum, P;(k), can be significantly enhanced on small scales. We now assess
what phenomenology is possible in models which are consistent with large-scale CMB
observations, specifically of the spectral tilt, ng, and the running of the spectral index,
as.

The multi-field potential (6.58) is parametrised by {«a, ¢ing, y}. We will fix a = 0.005
and y = 10, and study the effect of varying the position of the inflection point, ¢inq,
which determines the scale at which the peak in the power spectrum is located and
therefore also affects the CMB observables on large scales. We also fix the initial condition
O;n = T/10, which together with @ = 0.005, implies that the scalar power spectrum can
be amplified on small scales by roughly five orders of magnitude, as discussed in section
6.4.3.

9See [337, 338] for a different multi-field set-up featuring a near-inflection point in the potential.
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Figure 6.26: Evolution of ez7(IN) plotted against AN = Ngyq — N in the last 20 e-folds
of inflation. These results have been obtained numerically for multi-field models with
{a =0.005, y = 10} and different positions for the inflection point, ¢inq.
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Figure 6.27: Left panel: numerically determined power spectrum, P;(k), for multi-field
models with {a = 0.005, y = 10} and different ¢;,q. The two vertical lines correspond to
k ={0.002Mpc 1, 0.5Mpc~!} and highlight the CMB scales. Right panel: zoomed-in plot
of the power spectrum on CMB scales. The spectral tilt of P;(&) is slightly different for
each model.

We show in figure 6.26 the evolution of e (V) against AN in the last 20 e-folds of
inflationary evolution for ¢;,q ={0.07, 0.073, 0.075, 0.08}. Slow roll is violated close to the
end of inflation in each model and this transition moves closer and closer to the end of
inflation for smaller ¢ q. Also, after the angular field starts evolving and ez (V) peaks,
each model displays a transient phase of angular inflation [305], as expected given the
small value of a (large field-space curvature) in these cases.

We numerically evaluate P;(k) with a modified version of mTransport [336] and
represent the results in the left panel of figure 6.27. Equation (3.1)!° allows us to
estimate ANcMB. On large scales the power spectrum is almost scale-invariant, while at
higher frequencies it is enhanced due to multi-field effects and %pcq varies depending on

the value of ¢ina, moving towards smaller scales with decreasing ¢;nq. The amplitude of

OFor simplicity we assume here instant reheating, pi, = Pend-
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Ginfl | ANcmB | ANcMB — ANpeak | kpea/Mpe ™" ng 70.002 s

0.07 || 55.1927 50.32 1.25x10%° | 0.9569 | 2.6 x 107° | -0.00092
0.073 || 55.2318 49.28 4.6x10" [ 0.9560 | 2.7x107° | -0.00096
0.075 || 55.2593 48.56 2.3x10° [ 0.9554 | 2.8 x107° | -0.00099
0.08 || 55.3201 46.59 3.4x10" [09534 | 3x10™° | -0.0011

Table 6.3: Details of multi-field models with {@ = 0.005, y = 10} and different ¢;nq. For all
models the fitted cubic and quartic coefficients are @(10~?) and G(1079) respectively.

the peak is slightly different among the models, which can be explained in light of the
fact that the first negative peak in the squared-mass of the iscocurvature perturbation
is driven by the geometrical contribution €1 %y, see eq.(2.143), as shown in figure 6.23
for a model with {a = 0.005,y = 10, ¢ing = 0.103, O;, = 77/10}. As seen in figure 6.26,
ex peaks at higher values for decreasing ¢;nq, which means in turn that the negative
peak in m¢2/H? is larger in magnitude for smaller ¢ins1 (for fixed field-space curvature),
explaining why the highest peak in P; is reached for the smallest ¢ing.

In the right panel of figure 6.27, we zoom in on the large-scale behaviour of P;(%),
which shows how the presence of a peak on small scales affects the large-scale observ-
ables, in particular the tilt of the power spectrum. We list in table 6.3 key quantities ob-
tained for each of the models considered. We show the predicted values for the spectral tilt,
ns, and running, a, obtained at £cyp = 0.05Mpe ™! by fitting the numerical results for
In (P;(k)) with a quartic function!! of In(k/kcymp) on scales 0.002Mpc ™! < & < 0.5Mpc ™.
The predicted values for the tensor-to-scalar ratio are calculated at % = 0.002Mpc ™~ using
the single-field slow-roll approximation on large scales, (2.87). For all models rg go2 is
well below the current upper bound (3.6).

In analogy with the analysis performed for the single-field inflection-point model,
we can compare the CMB observables listed in table 6.3 with the modified univer-
sal predictions for ng (6.18), rcmp (6.19) and a; versus n; (6.25). In the left panel of
figure 6.28 we plot eq.(6.18) together with coloured points representing numerical re-
sults (AN cMB — ANpeak, 1t 3) for each model considered. Similarly, the right panel shows
eq.(6.19) with a = 0.005 together with coloured points representing the numerical
results (ANCMB — ANpeak, rCMB). We do not explicitly show the results for as versus
ANcMB — ANpeak as the comparison between the universal prediction (6.24) and the
numerical results is qualitatively the same as for the tilt n;. Instead, we show a; versus
ng in figure 6.29, alongside the a—attractors consistency relation (6.25).

As for the single-field case, the modified universal predictions describe well the

1We find that residual noise is minimised when we fit a polynomial that is quartic in In(k/kcMB).
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Figure 6.28: Left panel: the modified universal prediction for n, (6.18) is plotted in grey
together with numerical results obtained from multi-field models with {a = 0.005, y = 10}
and different ¢inq, as shown in the legend. In particular, coloured points represent
numerical results for n; against ANcvB — ANpeak. The empty triangles represent instead
the numerical tilt n; against ANcmB — ANgip, i.e., the scale of the dip in P(k) is taken
as a reference instead of kca. The yellow-shaded area highlights the Planck 95% C.L.
region, see (3.5). Right panel: the approximation (6.19) with a = 0.005 is plotted in grey
together with the numerical results for the tensor-to-scalar ratio against ANcmB —ANpeak
(coloured points) and ANcmB — ANgip (empty triangles). Each colour is associated with a
specific ¢ing, as detailed in the legend. The yellow-shaded area represents the 95% C.L.
region from the bound on rcyg (3.6).

numerical results, with a small offset for the case of the tilt ny and its running a;. The
match between the modified universal predictions and the numerical results can be
further improved by substituting ANcymB — ANpeak — ANcMB — ANgip or, in other words,
by taking as a reference the scale associated with the local minimum in the power
spectrum, kg;p, instead of its local maximum, kpeax. We demonstrate this in figure 6.28
by including the numerical results for ny and rcyp represented with empty triangles
against ANcmB — ANgip. By comparing triangles and circles (of the same colour) with
the grey lines, one can see that the CMB observables (especially ns) can be described
even better by the position of the dip in P;(k). However, it is the peak in P;(%) that could
have potentially observable consequences, such as PBH production and second-order GW
generation. Therefore we focus on the consequences of the modified universal predictions
for kpeak > kaip when it comes to exploring the phenomenology. The numerical results for
the tilt and its running are well described by the a—attractors consistency relation (6.25),
as shown in figure 6.29. As for the single-field case, models which are compatible with
the bound on the spectral index (3.3) predict as about one order of magnitude smaller
than the current observational uncertainty in (3.4). We therefore compare the model

predictions with the CMB constraints for the ACDM model, in particular with the lower
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Figure 6.29: The a—attractors consistency relation (6.25) is plotted in grey together
with the numerical results for the tilt and its running for multi-field models with
{a =0.005, y = 10} and different position of the inflection point ¢;,q, as detailed in the
legend. The yellow region highlights part of the 95% C.L. region when Planck data are
compared with the ACDM + rcms + as model, (3.3), while the purple hatch-shaded area
represents the lower 95% C.L. region of ng for the ACDM model instead. The range of
as shown is within the observational bound (3.4).
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Figure 6.30: Left panel: numerical results of P;(k) for the multi-field model with para-
meters {a = 0.005, y = 10,¢inn = 0.07} and initial condition 6;, = 77/10. We display the
results in the region of the peak, with the pink line representing the scaling of the
infrared tail of it. Right panel: numerical results for the second-order GWs produced
during radiation domination by the enhanced scalar perturbations whose power spec-
trum is displayed in the left panel. The pink line is obtained using eq.(5.16) of [214] with
nig = 12 and nyy — oo and well approximates the spectral shape of the infrared tail of
the numerical Qagw(k).

bound on n given in eq.(6.16) in the absence of running. Given the numerical results
for ng this implies that only configurations with ¢, < 0.7 are consistent with the CMB
observations and the peak is located on scales Zpeak 2 1020 Mpc_l.

In the left panel of figure 6.30 we display the numerical results for the scalar power

spectrum in the region around the peak, for a model which is compatible with large-scale
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(CMB) measurements of ng, ¢ina = 0.07. The pink line shows the scaling of the IR tail of
the peak, nig =~ 12, which by far exceeds the limits on the growth of the power spectrum
possible in single-field models [120, 339, 340]. In [117-119] it has been shown that multi-
field models with strong turns in field space evade the single-field bound on the growth
of P;, and we demonstrate here that the same holds when the growth of the curvature

perturbation is also due to the strong curvature of the hyperbolic field space.

The peak in the scalar power spectrum displays a series of peaks which is due to
the strong and sharp turn in field space characterising the background evolution, see
e.g., the bottom-left panel of figure 6.16 for a model with {a = 0.1, y = 10, ¢;na = 0.542}. In
[121] it is shown that a strong and sharp turn can lead to an exponentially enhanced
amplitude of P;, with an oscillatory modulation. In particular, in [117, 121] the bending
parameter 717, is modelled with a Gaussian profile, see eq.(6.61), and the Hubble rate is
assumed to be smooth and slowly-varying. The multi-field models discussed here are
characterised by a more complicated background evolution, see e.g., eg(N) in figure
6.26, and a profile for the bending parameter which can only be partially described by a
Gaussian function, see e.g., figure 6.16. It is therefore not surprising that the oscillations
in P; displayed in figure 6.30 cannot simply be identified as either sharp or resonant
features [123, 341-343], but are instead more of a combination of the two, similar to

models discussed e.g., in [119].

In the right panel of figure 6.30 we represent the numerical results for the second-
order GWs produced by the enhanced scalar fluctuations after horizon re-entry during
radiation domination. In particular, we display Qgw(k) as numerically calculated using
eq.(3.19) and the scalar power spectrum displayed in the left panel of the same figure.
The sharpness of the peak of P; (see the purple line in the left panel of figure 6.27) results
in a two-peak structure for Qgw(k), with a broader and smaller peak followed by a dip
and a narrower principal peak located approximately at the scale 2/v/3 kpeak, see section
3.5.2. The oscillatory modulation of the scalar power spectrum due to the sharp turn in
the background trajectory is imprinted in Qgw(%) as an oscillatory pattern modulating
the principal peak. The IR tail of the signal can be understood in terms of the IR and UV
scaling of P; around the first peak; substituting the values nig = 12 and nyy — oo into
eq.(5.12) of [214], we get the pink line shown on top of the numerical results. The UV
tail of Qgw(k) (and P;) displays a more complicated scaling, which cannot be understood

in terms of such a simple approximation.

In figure 6.31 the numerical results for Qgw(%) are plotted together with the sensi-

tivity curves of upcoming space- and Earth-based GW observatories. The amplitude of
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Figure 6.31: Numerical results for the second-order GWs produced within the multi-field
model with parameters {a = 0.005, y = 10, ¢inq = 0.07} and initial condition 6;, = 77/10.

the GW signal is determined by the amplitude of the peak of the scalar power spectrum,
which in turn mainly depends on the curvature of the hyperbolic field space, set by the
parameter a, and the initial condition for the angular field, 6;,. In particular, after fixing
all the other model parameters, reducing a enhances P;(kpeax) and therefore the ampli-
tude of the principal peak of Qgw(k). Our numerical results show that the multi-field
model described by {a = 0.005, y = 10, ¢ina = 0.07, 0i, = 7/10} produces Qaw = 10710 at
its peak.

The position of the principal peak in Qgw(k) is set by the position of the largest
peak in P;, which is the first peak displayed in the left panel of figure 6.30. For models

t12 in tension with the large-scale measurements of ng, the second-order GW

which are no
principal peak is located at fpeak 2 50kHz, which is obtained by substituting the lower
bound (6.23) in the position of the principal peak, 2/v/3 kpeak, and is consistent with our
numerical results. Given that the modified universal predictions (in particular, the one
for ng (6.18)) hold also for the multi-field inflection-point potential, the considerations
for PBH production discussed in section 6.3.2 for the single-field case apply also for the

multi-field extension.

In summary, compatibility with the CMB observations of ng place the peak of the

12 A5 an example, for the principal peak of the second-order GWs to be located at LISA (LIGO) scales,
the resulting large-scale spectral tilt is ns; = 0.9344 (n; = 0.9496), well below the lower 95% measurement
(6.16).
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second-order GWs beyond the reach of current and upcoming GW observatories both for
the single- and multi-field inflection-point potentials considered in this work, as well as
bounding the mass of the PBHs that could possibly be produced to values Mpgy < 108g,
which make the PBHs too light to constitute candidates for dark matter in the Universe

today.

6.5 Discussion

In this work we explore the phenomenology of cosmological a—attractor models featuring
an inflection point in the potential for scalar fields evolving in a hyperbolic field space.
We consider both single-field examples and multi-field dynamics.

In all cases we show that the primordial perturbations generated on large (CMB)
scales can be described by a simple modification of the universal predictions of a—
attractors for the scalar spectral index, eq.(6.18), and the tensor-to-scalar ratio, eq.(6.19).
A shift in the universal predictions was previously noted by [89] for the single-field
inflection-point a—attractor potential, and also in a different context by [304]. This
universal behaviour leads to a consistency condition relating the scalar spectral tilt and
its running, eq.(6.25). A consequence of the tight bounds on the scalar spectral index
from CMB observations is that the running of the spectral index must be small, and
any deviations from the standard single-field a—attractor dynamics is constrained to lie
close to the end of inflation. Hence any enhancement in the primordial power spectrum,
Py, is only allowed on small comoving scales, kpeak 2 5 X 10 Mpc~!. By adopting the
tight observational bounds on the spectral index obtained from CMB observations, in
the absence of any running of the spectral index, eq.(6.16), which we emphasise is
constrained by the consistency relation (6.25), we obtain a stronger constraints on the
scale of the peak of P; in comparison to the previous work of Dalianis et al. [89].

The lower bound on the comoving wavenumber, pcqx, implies that any primordial
black holes resulting from enhanced density perturbations on small scales can only be
produced with masses Mppy < 10%g. These PBHs have long since evaporated by the
present time so do not constitute a candidate for dark matter. Nonetheless they could
yet leave interesting signatures if stable Planck mass relics are left behind [321-323], or
resulting from an early black-hole-dominated era [313, 315-318].

Similarly the lower bound on %pcax also has implications for the induced gravitational
waves produced at second order in perturbation theory after inflation, see eq.(3.19). The

peak of the GW signal is constrained to be at very high frequencies, fpeak 2 50kHz, well
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beyond the reach of current Earth-based or future space-based GW detectors. Rather
they could provide a target for future ultra-high frequency detectors discussed in [344].

A key parameter for the inflationary dynamics is the curvature of the hyperbolic field
space, Z¢s = —4/(3a). In single-field models the small-scale P; is enhanced by the presence
of the inflection point in the potential, leading to a phase of ultra-slow-roll dynamics. The
effect of a is primarily to set the relative amplitude of the tensor modes with respect to
scalar perturbations at CMB scales, see eq.(6.19). In multi-field embeddings a far richer
dynamical behaviour is possible. We have seen that a large and negative curvature,
a < 1, can cause a geometrical instability in the inflationary trajectory, as previously
studied in [105, 112]. A strongly-curved field space could also be accompanied by strongly
non-geodesic motion and a tachyonic instability in the isocurvature perturbation, which
gets transferred to the curvature fluctuation, potentially leading to a small-scale growth
of the scalar power spectrum [4, 117, 173]. For these reasons we choose to focus on models
characterised by a < 1, see also [305]. The behaviour we see in this case differs from
that seen in other multi-field a—attractor models studied, for example, in [303] where the
authors consider a potential monotonic in the radial direction, with field-space curvature
a = 1/3. In that case the single-field predictions, eqs.(6.6) and (6.7), were found to be
stable even in presence of a light angular direction. Here we introduce both a feature in
the radial potential (the inflection point) and consider larger curvature (a < 1), both of
which amplify the geometrical destabilisation of the background trajectory, breaking the
slow-roll and slow-turn approximations. While the radial field at early times follows the
standard evolution close to the boundary of the Poincaré disc (r — 1), the dynamics of the
angular field then leads to a second distinct phase of inflation at late times. Nonetheless
on large scales CMB observables can still be explained by means of a simple modification
of the standard universal predictions of single-field a—attractors, see eqs.(6.18) and
(6.19).

We find marked differences in the spectral shape of the scalar power spectrum found
in the single- and multi-field cases. In the single-field case the peak in P; is broad
(n1r = 3.4, nyv = —4), while in the multi-field case it is narrower, with a much steeper
infrared growth (n1g = 12), and oscillations following the principal peak. Figure 6.32
shows a comparison of the scalar power spectra obtained in a single- and a multi-field
inflection-point model. Multi-field effects can explain the oscillatory behaviour of the
green line after the peak, caused by a sharp and strong turn in field space, providing
an explicit realisation of the mechanism discussed in [121, 124] (see also [119]). The

differences in the spectral shape seen in figure 6.32 can be traced back to the mechanisms
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Figure 6.32: Left panel: numerical results of P;(k) for a single-field inflection-point
model, eq.(6.15), with parameters {a = 0.1, ¢;nn = 0.5, £ = 0.0035108} (pink line) and for a
multi-field model, eq.(6.58), with parameters {a = 0.005, y = 10, ¢inn = 0.07} and initial
condition 6;, = 77/10 (green line). These models predict n, = 0.9568 and ns = 0.9569
respectively and are both compatible with the CMB lower bound on ng, (6.16). Right
panel: numerical results for the second-order GWs produced during radiation domination
by the enhanced scalar perturbations whose power spectra are displayed in the left panel,
together with the sensitivity curves of current and upcoming GW observatories. The
colour legend is the same as on the left.

that lead to the fluctuation enhancement in the two cases. More than being specific to
the single- and multi-field potentials, they are linked to the ny evolution across and after
the ultra-slow roll phase in the single-field case and the geometric destabilisation at play
in the multi-field setup.

The differences in the spectral shape of the peak in P; are reflected in the power
spectrum of the induced GWs, as shown in the right panel of figure 6.32. In particular,
the narrower, oscillatory peak in the multi-field P; leads to second-order GWs with a
two-peak structure and an oscillatory modulation of the second (principal) peak, see
the green line in the right panel of figure 6.32. In the single-field set-up, the two-peak
structure is almost wiped out as a consequence of the broadness of the scalar power
spectrum peak and the oscillations are absent, see the pink line in the right panel of
figure 6.32.
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CHAPTER

CONCLUSIONS

n this thesis we have studied models of inflation beyond single-field slow roll
and explored ways of testing the extra particle content on small scales, especially

considering their effects in the gravitational wave sector.

In chapter 4 we examined the case of light spin-2 fields non-minimally coupled with
the inflaton. We described them within an effective field theory approach and found that,
upon allowing time-dependent sound speed for the helicity-2 component, the spin-2 field
can deliver blue-tilted GWs, growing towards interferometer scales. After ruling out a
considerable region of the effective theory parameter space by using current bounds on
the scalar and tensor sectors and by requiring that the dynamics does not run into a
gradient instability, we have singled out the regions of parameter space which can be

potentially constrained in the future by LISA.

As well as sourcing the tensor power spectrum, the helicity-2 component of the
light spin-2 fields also mediates the tensor bispectrum. We studied the properties of
this signal in chapter 5, and investigated its shape and amplitude in the squeezed and
equilateral limit. We found that the mediated bispectrum interpolates between the local
and equilateral configurations depending on the mass of the spin-2 particle. Since a direct
detection of the tensor bispectrum on small scales is in general not expected, we explored
ways of testing the ultra-squeezed limit of the bispectrum through the anisotropies
induced by the long tensor mode on the short-scale GWs power spectrum. We provided
two examples, exploring the ability of LISA and SKA to indirectly test ultra-squeezed

non-Gaussianities from light spin-2 fields.
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CHAPTER 7. CONCLUSIONS

In chapter 6 we worked in the framework of cosmological a—attractors and considered
the effect of an additional field in the scalar sector. These models include a radial and an
angular field, living on a hyperbolic field space whose curvature is set by the parameter a.
We focused on the case of strongly curved field spaces, @ < 1, and considered both single-
and multi-field potentials endowed with an inflection point. We explored values of the
model parameters leading to large scalar fluctuations on small scales. In the single-field
set-up, ultra-slow-roll dynamics at the inflection point is responsible for the growth of
the scalar perturbations, while in the multi-field case geometrical effects related to the
field-space curvature are at play. We found that the predicted values of the large-scale
observables are well described by modified versions of the universal predictions for a—
attractors, both in the single- and multi-field cases. Enhanced scalar power spectra can
lead to the formation of primordial black holes and generation of GWs at second-order in
perturbation theory which are potentially detectable on small scales. We explored the
small-scale phenomenology of these models and connected it with the modified universal
predictions on large scales. We found that current measurements of the scalar spectral
tilt constrain the masses of the PBHs produced to be very small, M < 108 g, and the peak
of the second-order GWs to be at very high frequencies, f = 10kHz.

Our work shows how the future detection (and characterisation) of a cosmological

background of GWs on small scales could shed light on the inflationary particle zoo.

As a consequence of the results described above, many future work directions are

worth pursuing. In the following we discuss the most relevant ones.

The effective field theory formalism [98] we have employed in chapters 4 and 5 is
the ideal framework to extend the analysis to different and additional particle content,
including higher-spin fields. Also, while the effective field theory approach allows us to
survey all the possible observational signatures associated with extra fields, it would be
interesting to explore the parameter space of a full Lagrangian formulation, similarly to

what was done, for example, in [245, 247].

While in chapter 6 we worked under the assumption of Gaussian scalar fluctuations
when exploring the small-scale phenomenology of a class of a—attractors, a strong
enhancement of the scalar perturbations is expected to be associated with significant
non-Gaussianity. This can have an important impact on both the production of PBHs
[90, 196, 345-356] and induced second-order GWs [214, 326, 335, 357-360]. It would be
interesting to explore the scalar non-Gaussianities produced in these models, e.g. using
the publicly available numerical codes [361-363], and understand their possible effects

on the small-scale phenomenology.

166



The enhancement of the scalar power spectrum from multi-field effects discussed
in chapter 6 does not rely on the presence of an inflection point. We have seen that in
some cases where the enhancement is significant the fields do not meet the inflection
point during their evolution. While the position of the inflection point, ¢inq, still has
an effect on the large-scale predictions, this is due to the fact that ¢i,a, together with
the parameter y in the multi-field potential (6.58), sets the mass of the angular field,
as discussed in appendix F. This has very important consequences in widening the
applicability of the results of chapter 6. We are currently exploring the wider parameter
space of the multi-field a—attractor model of [303], in the limit of strongly-curved field
spaces. We are studying potentials which include a term explicitly breaking the rotational
symmetry, but are featureless in the radial direction. Our analysis is aimed at exploring
the phenomenology ensuing from different areas of the parameter space, including the
possibility of having large scalar perturbations on small scales.

While performing the numerical analysis of the single-field a—attractor models of
chapter 6, we noticed that the number of e-folds elapsed between the horizon crossing of
the CMB scale and the end of inflation, AN\, calculated assuming instant reheating,
depends (logarithmically) on the value of a, see e.g. table 6.2. This implies that not
only the tensor-to-scalar ratio, but also the scalar spectral tilt predicted within these
models is sensitive to the value of a, see e.g. the related work [364]. We are currently
working to understand the full dependence of the observables on a, as well as quantifying
constraints on the models parameter space from future CMB surveys [143, 147].

We believe that tests of cosmological inflation are one of the most promising ways for
us to understand physics at high energies. We have made progress in illustrating the
potential of small-scale GWs to test the inflationary field content beyond the simplest
single-field models. The advent of a network of GWs detectors, which will be able to probe

different frequency ranges, makes the future of early-universe physics very exciting.
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Seq[v=0.4, c2(k)]
Seqlv=0.8, c2(K)]

Seqlv=1.1, c2(K)]
Seq[v=1.48, c2(K)]

RESULTS FOR THE Sgq(V) AND sgq(v) COMPUTATIONS

hile in section 5.2 our main focus was on the bispectrum mediated by spin-2
light fields with v = 1.4, we report here some of our findings for the numerical

computation of s¢q(v) and sgq(v) for the mass values v =1{0.4, 0.8, 1.1, 1.48}. The
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Figure A.1: Numerical results and fitting functions of seq[v,c2(k)] for v
{0.4,0.8,1.1, 1.48}. The plot corresponding to v = 1.4 can be found in the left panel
of figure 5.3.

APPENDIX




APPENDIX A. RESULTS FOR THE sgq(v) AND sgq(v) COMPUTATIONS
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Figure A.2: Numerical results and fitting functions of sgy[v, ca(kL), ca(kg)] for v =
{0.4,0.8,1.1,1.48}. In each plot, the sound speed on large scales has been fixed,
co(kr) = 0.346. The plot corresponding to v = 1.4 can be found in the left panel of
figure 5.6.

results in the equilateral and squeezed configurations are displayed in figures A.1 and
A.2 respectively. In particular, for each case analysed we fit the numerical values with
the power law in eqs.(5.15) and (5.20) for the equilateral and squeezed configurations
respectively. The fitting functions are plotted with a purple line, while the numerical
results are represented with black dots. For completeness, we include also a fit with

generic power laws, i.e. leaving the power of cao(k) free,

a

co(k)’
a

co(kp)leo(ks)’

(A.1) Seq [v, ca(k)] =

(A.2) Ssqlv,c2(kL),co(ks)] =

which are plotted in figures A.1 and A.2 with a green-dashed line.

The fitting functions with v fixed, see eqs.(5.15) and (5.20), work better and better
towards smaller values of the spin-2 mass (v — 3/2). In the equilateral configuration, the
overlap is slightly worse for heavier masses (v — 0). This must be considered in light
of the fact that numerical results for small v should not be used for strict quantitative
conclusions, as already pointed out in [286]. In table A.1, we list the fitted values of a .

and b, defined in eqs.(5.15) and (5.20) respectively.
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’ v ‘m/H H ax b4

04 | 1.44 2.7 2.8
0.8 | 1.27 1.6 0.9
1.1 | 1.02 3.3 2.9

1.4 | 0.54 324.4 482.8
1.48 | 0.24 || 46 876.3 | 19 545.5

Table A.1: Values of the fit parameters a4 and b, see eqs.(5.15) and (5.20) respectively,
obtained for different mass values, v=/9/4—(m/H)2.
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APPENDIX

ADDITIONAL DETAILS ON THE SQUEEZED BISPECTRUM

e report here on the squeezed bispectrum computation, see chapter 5, showing

how eq.(5.18) has been obtained, and why the leading contributions come

from the A and B terms as spelled out in eqs.(5.10)-(5.11), whereas the other
permutations and the C term (5.12) are subleading.

Let us start with the A term (5.10), and take the squeezed limit k3 =k < k1 ~
ko = kg. For practical purposes, let us consider the large scale to be around the CMB
scales, by, ~ 1072 Mpc_l, and the small scale to be located, for example, at LISA scales,
kg ~102Mpc~!. Upon the change of variable y4 = (k1/kg) x4, q.(5.10) can be rewritten

as

(B.1)

kS 12 r0 x1 X9 kr/ks x3 Xa
%A(v,ks,kL):(—) f dxlf dxzf dng dysy/ sin(—x1)
kL -0 -0 —00 —o0o X1X3Y4

i k
S [HP (—eqke)en) HP (~calhs)z)| S e lﬂHi”(—cz(kL)yyH(f’(—cz(kmk—Lxg)

S

3 [e% HD (—eaks)es) HP (—ealks)rs)] -

The Hankel function in the last line, H (vz)(—C2(ks)x3), oscillates and, as a result, sup-
presses the integral for c¢o(kg)lxs| > 1. On small scales the sound speed is of order 1073,
see the left panel of figure 5.1, therefore only values |x3| < 103 are relevant for the
integral computation. As a consequence, the upper limit of the integral in y4 is effectively

zero for the reference scales considered.
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APPENDIX B. ADDITIONAL DETAILS ON THE SQUEEZED BISPECTRUM

Inspecting the Hankel function H(Vl)(—cz(ks)xz), one can infer that only values
|xg| < 103 contribute to the integral. In addition, on large scales the sound speed is
co(kr) = 0.1, see the right panel of figure 5.1, so the argument of the Hankel function
H§,2)(—02(kL)kL/ks x2) is very small, G(107'2). For this reason, we approximate the Han-
kel function in the small argument limit, lim,_.oH 5,2)(x) =12'T(v)x~V/n. As a result of

these approximations, eq.(B.1) reduces to

2T'(v) kg 1/2+vf /» f
M ks,kr)= d d d
AV, kg, k)= Teathr) (kL) x1 x2 x3

x (—x2) 27V (1) V2 (—x3) V2 sin(—x1) S |HP(—co(kg)ay) HP(—co(kg)xs)

(B.2)

x

e/ H(P(=co(ks o) HP (~caks)xs)|
0 .
<[ dyey R [e B eathriy]

where S[x] and R[x] are the imaginary and real part of x respectively.

A similar analysis can be performed for the B term in eq.(5.11), yielding
v F(V) ks)1/2+vf f f
M ks, k d d d
B(V, ks, kL) = TeabL) (kL x1 x2 x3

x (—3) V27V (—x1) Y2 (—x9) ™2 sin(—x1) sin(—x)

(B.3)
S| HP(~ca(kg)xz) HP(—calks)xz) HP(—colks)x)) HP (~caks)xa)

0 .
Xf dy4(—y4)‘1/23%[e"y4H(vl)(—cz(kL)y4)] .

The sum of these two contributions results in eq.(5.18), where the overall explicit! scaling
behavior is

1

(B.4) —— -
9/2-v1,3/2
kL VkS +v

We proceed in a similar fashion to study the squeezed limit of the C term, eq.(5.12),
and all the permutations in eq.(5.9) (here we refer to the permutations k3 — k9 and
k3 — k1, while k1 — kg contributes with a factor 2). The resulting scalings are listed in
table B.1. The contribution of each term relative to the those spelled out in eqs.(B.2)-
(B.3) is classified by looking at the ratio of the scaling with respect to that in (B.4). For

INote that in eq.(5.19), as well as for each term in eq.(5.9), there is also an additional hidden scaling
due to the scale dependence of the sound speed ca(%), see section 5.2. For completeness, we have explicitly
numerically evaluated all the contributions in eq.(5.9) for masses v ={0.4, 0.8, 1.1, 1.4, 1.48} with {cg; =
1,k =0.05Mpc™!, kg =102 Mpc ™!} and confirmed the conclusions described in the main text: looking at
the explicit scaling of each term is enough to establish whether it contributes or not.
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’ Term ‘ Permutation ‘ Scaling

as spelled in eq.(B.2) k§9/2+v k£3/2‘v

A k3 — k1 kg®
k3~ ko k§5k£1 and k§6+2vki2v
as spelled in eq.(B.3) k§9/2+v ki3/2—"
B ks ki k§6+2vki2v
ks < ko k§6+2vk£2v
as spelled in eq.(5.12) k§6+2vkizv
C ks — ki k§6+2vk£2v
ks — ko k§6+2vk52v

Table B.1: Scaling behavior of the different contributions. For A (k3 < ko) the scaling is
different depending on the value of the mass: the first one is valid for v < 1/2 and the
second for 1/2 < v < 3/2.

10

— (kulks)¥2 10-1" — (kulks)"2*
10_4 r (kL/kS)3/2+v
10-21
10-9 :
10-141 1 1073
10797 ‘ ‘ ‘ ‘ ‘ L1 10741
0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4

v 4

Figure B.1: Plots representing the functions in eqs.(B.5) (left) and (B.6)-(B.7) (right) with
respect to the mass v, with kg = 1012Mpc ! and k7, = 10"2Mpc L.

kz =0.056Mpc~! and kg = 102Mpc~!, we plot on the left panel of figure B.1 the function

1 1 kL 3/2—v
(B.5) =\l
kg—ka%v /k%/Z—vk%&H/ (kS )

and on the right panel the functions

(B.6) 1 / 1 _ (k_L)3/2+v

16/ 1,9/2—v1,3/2+v
R RZFTVRY ks
1 1 kL 1/2+v
(B.7) AL
kgkL /k%/z—vki/2+v (kS)
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APPENDIX B. ADDITIONAL DETAILS ON THE SQUEEZED BISPECTRUM

We conclude that the A term (k3 — k1) is always subleading for all masses. For v < 1/2
also the k3 — k9 permutation can be safely neglected. For 1/2 < v < 3/2 the k3 < ko
permutation of A can be safely neglected for most of the mass values, whereas must be
considered for v — 3/2 as the scaling is no more suppressed with respect to that in (B.4),
see left panel figure B.1. The same consideration holds for B(kg — k1), B(kg < k2) and
the C term.
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APPENDIX

UNIVERSALITY OF a—ATTRACTORS

osmological a—attractors correspond to a class of inflationary models which
provide robust observational predictions despite having apparently different
formulations (see [127] and references therein). In particular, the large-scale
CMB spectral index and tensor-to-scalar ratio are given by eqgs. (6.6) and (6.7) at leading
order in the expansion in terms of 1/ANcyp. We review here how the a—attractor models
form a universality class and derive the observables (n;, rcums, @) for single-field a—
attractor models given by a monomial potential in terms of the radial distance from the

centre of the Poincaré disc (6.4)

¢
C.1 V(p)=Vyt hp( )
(C.1 (¢) =Vptan N

In canonical single-field slow-roll inflation, (n, r, @) can be given in terms of poten-

tial slow-roll parameters as [365]
(C.2) ns=1-6ey +2ny, romp = 16ev, as=16eyny —24ey?—2¢y2,

where ey, ny and ¢y are expressed in terms of derivatives of the inflaton potential, see

(2.15). Given the explicit form of the potential in eq. (C.1), it is possible to write these
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APPENDIX C. UNIVERSALITY OF a—ATTRACTORS

potential slow-roll parameters in terms of ¢,

2
_p° o 2¢ )
(C.3) €y = 3aCSCh (—Ga ;
= gaesef( o) (o -cosn 725
(C.4) nv = 3aCSCh 5 p —cosh il
2p® 2¢ 2¢ 4¢
(C.5) f%zﬁcsch‘l(ﬂ) (3+2p2—6pcsch(\/ﬁ +csch(ﬁ)) .

Substituting the above into eq. (C.2) yields the large scales observables in terms of ¢.
They are evaluated when the CMB scales left the horizon, i.e., at ¢ = ¢cmB. In order to do
so, we use the inflaton equation of motion, eq. (2.14), which in the slow-roll approximation

can be simplified to give

dp  Vp
(C.6) FT A

Integrating the equation above yields the number of e-folds elapsed between the two

field values ¢cvB and ¢end,

$cMB Vv
(C.7) ANcMB Zf d¢p —.
Pend V(/)

Performing the integration above for the potential in eq. (C.1) yields

3a 2¢cmB 2¢pend
(C.8) AN =~ — cosh( ) - cosh( ) ,
OMB 2p Véa V6a

where the value of ¢epq is fixed by the condition €(¢eng) = 1, corresponding to

. 2Qbend p2
(C9) sinh? (—) ~P
Voa 3a

Substituting eq. (C.9) into eq. (C.8) and expressing the equation in terms of ¢cyp yields

(C.10) sinh? ((pCMB) ~ pANcws + - Sa+p? - 1
' V6a 3a 2v3a 2
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In this way the CMB observables in eq. (C.2) can be written as

(C.11)
2ANcMB + V3a(Ba +p2)/p + 3a/2
ng=1- ,
ANgyp +ANcvB vV 3a(3a +p2)/p + 3a/4
(C.12)
12«
rcMB = 2 ,
ANZ, . + ANompv/3a(3a +p2)/p + 3a/4
(C.13)
g 18a%+ p(3a + 4ANcmp)v/3aBa + p2) + p? [4ANZ, 1 + 3a(1 + 2ANcwp)]
ag = — .

2
(8pa+4ANcwsv/3aBa+ p?) +4pANZyy )

In the large ANcMB expansion, these expressions reduce to eqs. (6.6) and (6.7) for the
observables ng and rcyp respectively on large (CMB) scales, while we can relate the

running of the spectral index to the spectral index itself

2 (ns—1)7

-~
ANGys 2

(C.19) as = ,
regardless of the parameters of Vy and p appearing in the potential (C.1). The spectral
index n; and running as are dependent only on ANcmB, while royvp depends only on
ANcumB and a, such that

(C.15) rems = Sa(ng —1)2.

This is due to the potential (C.1) remaining finite at the boundary of the moduli space
(r = tanh (¢/ Véa ) — 1), which is a key feature of a—attractor models. The transformation
to the canonical field ¢ (6.4), renders the potential a function of tanh (</)/ véa' ), which en-
sures the flatness of the potential for large field values (¢ — co) and makes observational
predictions on large scales approximately independent of the precise form of the function
describing the potential dependence on tanh (¢/v6a).
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APPENDIX

NUMERICAL COMPUTATION OF THE SINGLE-FIELD
SCALAR POWER SPECTRUM

n this appendix we present in detail how we compute the scalar power spectrum,

P(k), for the single-field inflation models considered in section 6.2. Our procedure

is closely related to similar strategies described in the literature, see for example
[87, 91].

The inflaton potential in eq.(6.15) features an approximate stationary inflection point
located at ¢;nn whose effect is to introduce a transient ultra-slow-roll phase. The slow-roll
approximation breaks down and a full numerical analysis of the Mukhanov—Sasaki
equation is needed. As an example, we refer to the power spectrum resulting from
the specific model {a = 0.1, ¢;nn = 0.5, £ = 0.0035108}, whose background evolution is
displayed in figure 6.2. For illustrative purposes we consider here the case of instant

reheating, which implies ANcumB = 55 (see table 6.1).

In the slow-roll approximation, valid on large scales, far from the inflection point, it
is possible to estimate the scalar power spectrum using the expression for P;(IN) given
in (2.69), by substituting in the background quantities H(N) and eg(N). P¢(N) can be
transformed into P;(k) by means of eq.(6.21) for £(IN). We normalise the amplitude of
the scalar power spectrum at kcyp = 0.05 Mpe ™! by using the Planck 2018 measurement
of </ [67], see (3.2), which in turns identifies the amplitude of the potential as V =
7.7 x 10710, Egs.(2.76), (2.77) and (2.87) predict for this configuration the large-scale
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APPENDIX D. NUMERICAL COMPUTATION OF THE SINGLE-FIELD SCALAR
POWER SPECTRUM

observables
(D.1) ng=0.9569, a,=-0.00092, rgoo2 =4.956 x 1074 ,

consistent with the latest Planck data release [67], see section 3.1, where the spectral
tilt and its running are evaluated at kcys.

While eq.(2.69) is reliable when the evolution is well described by slow roll, a full
numerical analysis of the perturbations is necessary in order to compute the exact scalar
power spectrum including non-slow-roll evolution, as occurs through the inflection point
and approaching the end of inflation. The Mukhanov—Sasaki equation describes the
evolution of the scalar curvature perturbation associated with the comoving wavenumber

k, see eq.(2.52), which we rewrite here as [366]

k2
(D.2) v+ (L=emvy, + |~z + (L ten —nm)nm —2) = e —n) | vx =0,

where ' = d/dN and the Hubble slow-roll parameters, ez and ng, are defined in (2.18).
We note that this equation does not assume slow roll.

We solve eq.(D.2) for modes ranging from £cyp = 0.05Mpe ™! t0 keng = 2.6 x 1022 Mpe ™!
and follow the evolution of v;, for each wavemode from the sub-horizon regime (£ > aH,
where canonical quantum commutation relations give the normalisation for the mode
function, Ivil =1/2k, see eq.(2.64)) to super-horizon scales (k¢ << aH). These solutions then

enable us to calculate the scalar power spectrum on super-horizon scales, see eq.(2.69),

k3 Vg |2
D.3 P/(k)=—|—
(D.3) (k)= 5|2

where each mode is evaluated well after horizon crossing (k¢ < aH), when (;, = v/z

K

approaches a constant value.

There are a few practical considerations regarding the strategy used to solve eq.(D.2):

* when numerically solving eq.(D.2), it is useful to express ey and 1y in terms
of derivatives of the field ¢(INV), instead of using their definitions in terms of
derivatives of H(N). In particular, the relevant terms in eq.(D.2) reduce to [367]

2

(D.4) 1—€H:1—%,

¢// (PW ¢/2 (,b’ (P”
(D5) (1+€H_77H)(T]H_2)_(€h—'r][—[),:—2—3W—W+?4- 5 R
see eqs.(2.20). Here the second and third derivatives of the field are given by the
Klein—Gordon equation (2.14) for the field, re-written in terms of ¢p(IV),

(D.6) H?¢" + HH'¢/ +3H?¢' + V=0,
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Figure D.1: Mode evolution, v;(N)/z, for the CMB scale, £cymp. The real and imaginary
parts, and modulus correspond to the pink- and green-dashed lines, and the black-solid
line respectively. The vertical thin line signals the moment in which the CMB scale
crosses the horizon ANcyp ~ 55 e-folds before the end of inflation.

and its derivative;

e the factor k/aH can be normalised by noting that the scale kcyp = 0.05Mpe ™!
crossed the horizon AN¢ymp e-folds before the end of inflation;

* in order to minimise numerical errors, one should evolve the background solution
for a sufficiently long time before the relevant scales cross the horizon. This can be

achieved by choosing a large enough initial value of ¢;

* instead of solving directly for the complex perturbation, v, it is simpler to solve
separately for its real and imaginary parts [368]. For each mode, the integration of
eq.(D.2) is started 5 e-folds before horizon crossing, where Bunch—Davies initial
conditions are applied, see eq.(2.64), and is integrated up until the end of inflation.
In terms of the real and imaginary part of vy, the initial conditions are

1 vk
—— , Re{v)} =0, Im{v;} =0, Im{v,} =—i ,
"Zk * * k \/Ekin

where ki, is the mode that crossed the horizon when the integration is started;

(D.7) Refv} =

* the correct normalisation on CMB scales for the power spectrum in eq.(D.3) at
k = kcms is set by fixing Vy and hence the Hubble scale when kcyp leaves the

horizon.

As an example, we solve eq.(D.2) for £cyp and plot in figure D.1 the mode evolution,
vr(IN)/z. The mode starts off in the Bunch—Davies vacuum, oscillates in the sub-horizon

regime and freezes to a constant value after crossing the horizon.
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APPENDIX D. NUMERICAL COMPUTATION OF THE SINGLE-FIELD SCALAR
POWER SPECTRUM
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Figure D.2: Left panel: comparison between different modes’ evolution in the last 10
e-folds of inflation. The region between the two thin vertical lines is characterised by
nu > 3. Right panel: numerical results for the scalar power spectrum, P;(k), compared
with the slow-roll approximation in eq.(2.69).

In the left panel of figure D.2, the evolution of three different modes is represented
for comparison in the last 10 e-folds before the end of inflation. The continuous line
is associated with the mode kcnp, which for the range of e-folds represented is well
outside of the horizon and frozen at a constant value. The dashed line describes the scale
kaip = 1017 Mpc~!, which corresponds to the dip in the scalar power spectrum. Finally,
the mode corresponding to the peak in the scalar power spectrum, &peax =9 x 109 Mpc1,
is plotted with the dotted line. The mode associated to kyea €xperiences the largest
growth as it crosses the horizon close to the onset of the ultra-slow-roll phase. See [91]
for a detailed discussion of the mechanism of growth (suppression) which shapes the
modes’ evolution and the scalar power spectrum.

In the right panel of figure D.2 we show a comparison of the numerical results for P;(k)
compared with the slow-roll approximation in eq.(2.69). On large scales the numerical
results agree very well with the slow-roll approximation, showing that the slow-roll CMB
predictions in (D.1) are reliable on these scales. On the other hand, on small scales the
exact power spectrum differs substantially from the slow-roll approximation, both in
terms of the position and the height of the peak. For the configuration under analysis,

the power spectrum features a peak of ©(0.01) at the comoving scale & peak.
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APPENDIX

LIMITING BEHAVIOUR OF THE SINGLE-FIELD POTENTIAL

n sections 6.2 and 6.3 we considered the phenomenology of the inflection-point
potential in eq.(6.15) with the aim of realising an ultra-slow-roll phase and enhanc-
ing the scalar perturbations on small scales. For completeness we discuss here the
limiting behaviour of the same potential when the inflection point is located at small
or large ¢ values. For simplicity we restrict our discussion to the case { =0 and choose
a=0.1.
In the limit ¢ g — 0, the dominant contribution to the potential in eq.(6.15) comes
from the term proportional to tanh®(¢/v/6a),

. - 1 (Pinﬂ 2 6 (P
(E.1) ilnlffEOV((p)_VO gcoth(m) tanh (F)

It is therefore interesting to analyse the inflationary predictions of the inflection-point
potential with ¢;,q small and compare them with those obtained from the a—attractor
T-model potential [299]

(E.2) U(¢) = Up tanh® (i) .

Vba
On the other hand, when ¢;,q is large tanh(¢;nn/v6a) — 1 and there is no simple

limiting behaviour for the inflection-point potential, as illustrated in figure E.1. For large
¢ values (¢ 2 2 for the configuration plotted in figure E.1) the dominant contribution
comes from the tanh?(¢/v6a) term (since fi = —f2 in (6.14) and the tanh(¢/v6a) and
tanh?(¢/v6a) terms approximately cancel), but for smaller ¢ the potential receives

contributions from all the terms.
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APPENDIX E. LIMITING BEHAVIOUR OF THE SINGLE-FIELD POTENTIAL
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Figure E.1: Behaviour of the inflection-point potential in the large ¢;nq limit. The plot
is produced with the parameters {a = 0.1, ¢ing = 10, ¢ = 0}. The potential V(¢)/Vy in
eq.(6.15) (black-dashed line) is plotted together with the contributions coming from the
single terms.

We consider two benchmark values, ¢i,q = {0.1, 10} in eq.(6.15), in order to study
their background evolution and compare it with that obtained from the potential in
eq.(E.2). The evolution of the Hubble slow-roll parameter, €z, and the inflaton field,
¢, are plotted in the top row of figure E.2 against the number of e-folds to the end of
inflation, AN = Ng,q — N. As expected, the background evolution for the inflection-point
potential with ¢;pn = 0.1 is almost identical to that produced by the a—attractor T-model
potential (E.2). The evolution corresponding to ¢i,aq = 10 is instead quite different and
the reason why this is the case is clear from the bottom-left panel of figure E.2, where the
potentials and the field values corresponding to scales observed in the CMB are shown.
For the model with ¢;nq = 10, the inflationary evolution observable in the CMB is located
at ¢ < 2 where the potential is not well-approximated by the function tanh® (¢/v6a), as
discussed above and illustrated in figure E.1. The bottom-right panel in figure E.2 shows
the CMB observables (ns, rcmp) at the scale 0.002Mpe™! predicted by each potential.
One sees that the predictions obtained with ¢;,q = 0.1 are not distinguishable from
those produced by the T-model for ¢i,a < 0.4. The slightly lower value of n; predicted
by ¢inn = 0.5 could in future allow us to distinguish it form the a—attractor T-model. As
expected, the predictions of the model with ¢i,q = 10 differ from the T-model ones and
the two could potentially be distinguished by the predicted value of r¢ o2, lower for the
inflection-point potential with ¢i,g = 10.
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Figure E.2: Top Row: comparison between the background evolution of the inflection-
point model with ¢i,q = {0.1, 10} and the a—attractor T-model in eq.(E.2). The bullet
points in the right-hand plot indicate the field values when the CMB scale crossed the
horizon. Bottom Row: in the left panel the potentials are plotted together with bullet
points indicating the field values corresponding to the CMB scale (right bullet) and
the end of inflation (left bullet). The legend identifying each line is the same as in the
top-left panel. In the right panel the predictions of the CMB observables are represented
together with the marginalised joint 68 % and 95 % C.L. regions in the (ng, r) plane at
k =0.002Mpc~! as obtained from Planck + BK15+BAO data assuming the ACDM +rcyB
cosmological model [67]. The black star corresponds to the a—attractor T-model potential
(E.2), the pink triangle corresponds to the inflection-point potential with ¢j,q = 10 and
the remaining coloured circles correspond to different choices of small ¢;,q indicated in
the legend.
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APPENDIX

PARAMETER STUDY OF THE MULTI-FIELD POTENTIAL

he multi-field potential (6.58) is parametrised by {a, ¢ina, y}. While in the main

text we discuss the effect of varying a, we consider here the dependence on ¢i,q

and v, for trajectories with a fixed initial value 0;, = 77/10. The models discussed

in this appendix are not necessarily compatible with the CMB measurements on large

scales, but instead they are selected because they demonstrate the impact of changing
$innt and y.

First we numerically solve the background equations (6.45)—(6.47) for a model with

{a =0.1,y =10}, testing ¢inn = {0.54, 0.542, 0.544}, and show the resulting ez (V) against

A nA A AR
0.01r 0.01r
& &
1075+ 10°%H v
Ginfl ms
M 054 M 10
[ 0.542 [ 100
10781 M 0.544 1078+ W 500
50 40 30 20 10 0 50 40 30 20 10 0
AN AN

Figure F.1: Left panel: effect of varying the position of the inflection point in the multi-field
potential (6.58) with parameters {a = 0.1, y = 10} and initial conditions {0, = 77/10, B{H =
0, pin = 3.1, (P{n = 0}. Right panel: effect of changing the parameter y in the potential
(6.58) with parameters {a = 0.1, ¢pina = 0.542} and same initial conditions as in the left
panel.
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APPENDIX F. PARAMETER STUDY OF THE MULTI-FIELD POTENTIAL

AN = Ngpq — N in the left panel of figure F.1. We see that the value of ¢ q affects the
time the fields spend around the inflection point and therefore the duration of the second
slow-roll phase (which is itself an attractor solution regardless of the value ¢i,q). In other
words, ¢inn determines the time at which the transition between the two inflationary
phases happens.

Next, we test y = {5, 10, 100, 500} for the multi-field potential (6.58) with parameters
{a =0.1, ¢pinag = 0.542}. We consider y > 3 so that the turn in field space happens within
the last 60 e-folds of inflationary evolution, i.e. the second slow-roll phase lasts less
than 60 e-folds. The resulting profile for ez (V) is displayed in the right panel of figure
F.1 and demonstrates that the value of y affects the duration of the second phase of
inflation, similar to the effect of varying ¢inq. Also, increasing y beyond y ~ 100 does not
significantly change the background evolution.

In order to understand the numerical results displayed in figure F.1 it is useful to
calculate the effective squared-mass of the angular field, my? = 6°U(r, ) / 062. Using
the multi-field potential (6.58), written in terms of the (non-canonical) radial field r, and
assuming H? = U(r, 6)/3, yields

mg? (rz + 3r12nﬂ - ?’;+;ﬂ) cosf — erTerﬂ cos 20
(F.1) — =18rrina ,
2 2
H 1+)/ 2,3 2 —3rr 1+y cosf
r Tinfl I"T'infl 1+y

where ring = tanh (pina/v6a). In the large y limit, the mass (F.1) for a given r is indepen-

dent of y,
2 r2+3r.2 cos@ —38rr: ﬂCOSZ@
(F2) tim 70~ 18y L o) 0526
y—oo H (r2+ 3ri2nﬂ —3rrinacost)

which explains why the background evolution remains unchanged for sufficiently large
values of y, as observed in the right panel of figure F.1.

During the first phase of inflation the angular field is frozen, 0 = 6;,,, and the radial
field satisfies r =~ 1, see eq.(6.4), therefore the effective squared-mass of the angular field
(F.1) is completely determined by y and ¢inq. This explains why variations of the position
of the inflection point or changes in y have the same effect on the background evolution,
i.e. both change the time at which the transition between the first and second phases of
inflation happens. In this sense, the potential parameters ¢i a1 and y are degenerate and,
for fixed a and 6;,, what really determines the duration of the second slow-roll phase

overall is the effective mass of the angular field.
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Figure F.2: Comparison between two models with same hyperbolic field-space curvature
and the same initial value of the squared-mass of the angular field. The models parame-
ters are listed in (F.3) and (F.4) and the same initial conditions {0, = 7/10 7, ¢;, = 1.05}
are considered in both cases. We show the numerical evolution of the slow-roll parameter
on the left and the squared-mass (F.1) on the right. The two multi-field models display
the same background evolution, which is due to selecting the values of y and ¢inq such
that the angular mass is the same at the beginning of the evolution.

We demonstrate this by considering two different models formulated on the same
hyperbolic field space, but whose potential parameters y and ¢;nq are selected such that
the initial mass of the angular field (F.1) is the same, mg%/H? = —0.762108. The two

models we consider are described by the parameters

(F.3) model; — {a = 0.005, Ping = 0.07, y = 10},
(F.4) models — {a = 0.005, Ping = 0.066682, y = 100} .

The slow-roll parameter ez(N) and the angular field mass m2/H? are represented
respectively in the left and right panels of figure F.2. The comparison between the lines
shows that the background evolution stemming from the same initial angular mass is
the same in the two models and that y and ¢j,a are not independent parameters.
Given the degeneracy between y and ¢;inq, in section 6.4.4 we choose to fix y and
study the effect of changing the position of the inflection point and thus the initial mass
of the angular field. The value of ¢;,q affects the position of the transition between the
first and second phases of evolution, and therefore it affects the CMB predictions of the
model, so needs to be adjusted in order to produce a model which is not in tension with

the CMB measurements, as we study in section 6.4.4.
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APPENDIX

2D HYPERBOLIC FIELD SPACE: POLAR vs PLANAR
COORDINATES

ifferent coordinate maps can be chosen to describe the (non-trivial) field space

of multi-field models, where in this field space the coordinates are the fields

themselves. The kinetic Lagrangian of a—attractor models displayed in eq.(6.5)

employs polar coordinates on the hyperbolic field space, with radial and angular fields,
(¢, 0), and the curvature of field space is Z¢, = —4/(3a).

Other coordinate maps have been used in the literature to describe hyperbolic field

spaces with constant, negative curvature, see e.g. [369—371] where planar coordinates

have been selected. In this case, the kinetic Lagrangian reads
1 1
(G.1) Lytanar = =5 (0w) = Se*"(0v)*,

where we label the set of planar coordinates as (u, v) and the curvature of field space is
Res = —2b2. Provided the curvature is the same, i.e. b = v/2/(3a), the field-space geometry
is the same as in eq.(6.5), while the coordinate map selected is different.

Planar coordinates were used in [4] to show how the hyperbolic geometry of field
space could play a key role in enhancing the scalar power spectrum on small scales. In

[4] the fields (u, v) have a separable potential

2
u 1
U02—2 + —m%vz 5
ug+u? 2

where u has a plateau-type potential at large values of u, and the second field, v, has

(G.2) U(u,v)=

an apparently simple mass term. The authors of [4] demonstrate that the background
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APPENDIX G. 2D HYPERBOLIC FIELD SPACE: POLAR VS PLANAR COORDINATES

Figure G.1: Background evolution of the fields u and v represented on top of the potential
profile, eq.(G.2). We are here reproducing the background evolution of a model originally
discussed in [4]. The model parameters and initial conditions considered are {ug =
V6, m2 =Uy/500,b =17.84, ujy, =7, vin = 7.31}.

evolution and the geometry of field space following from (G.1) and (G.2) could result in a
transient tachyonic instability of the isocurvature perturbation, m s,eff2/H 2 <0, which
can lead to an enhancement of the scalar perturbation (see the discussion in section 2.4).

Among all the possible combinations of model parameters discussed in [4], we focus
here on the inflationary potential described by {ug = V6, m% =Uy/500}, with b = 7.84
and initial conditions {uj, = 7, vin, = 7.31}, and refer the reader to the original work
[4] for the equations describing the background evolution in planar coordinates. As
demonstrated in [4], this set of parameters and initial conditions produces a peak in the
scalar power spectrum P; = 0(1072) located at the scales where the Laser Interferometer
Space Antenna (LISA) [222] operates. In this case the PBHs generated could potentially

account for all of the dark matter in our Universe.

In figure G.1 the fields evolution is superimposed on top of the potential (G.2). The
field u drives a first stage of inflation, while v is effectively frozen, with v’ suppressed

~2bu 95 long as u > b1, i.e. u takes values larger than the

by the geometrical factor e
curvature length of the field space. When u ~ b~! the suppression is lifted and v starts
evolving, driving a second stage of inflation as u settles into its effective minimum. At
the transition between the two inflationary stages, slow roll is violated and the effective
squared-mass of the isocurvature perturbation briefly becomes negative, see the top-right
panel of figure 1 in [4].

We compare here the planar and polar coordinates description of an hyperbolic field
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G.1. MAPPING BETWEEN POLAR AND PLANAR COORDINATES

space. Although different coordinate choices in field space are physically equivalent, once
the form of the kinetic Lagrangian of the model is fixed, a specific choice for the potential,
such as the one in eq.(G.2), distinguishes between different physical models. Our aim is
to place the inflationary model discussed in [4] (and therefore potentially other models
formulated using planar coordinates, eq.(G.1)) in the context of multi-field a—attractors
described using polar coordinates, and hence understand better the mechanism that
allows for the enhancement of the curvature perturbation in that model.

In section G.1 we derive a coordinate transformation which allows us to transform
from one coordinate map to the other. We re-analyse the model described in [4] employing
polar coordinates in section G.2. We find that the potential is singular in polar coordinates,
sharing the same singularity as the kinetic Lagrangian, and initial conditions close to
the singularity are necessary in order to enhance the scalar perturbation. This explains
why the second field v can lead to observable effects in this model, contrary to what was

found in [303] for a—attractor models, i.e., for models with non-singular potentials.

G.1 Mapping between polar and planar coordinates

2D hyperbolic spaces with constant negative curvature (Hgy) can be identified with
spacelike hyperboloids embedded in a 3D Minkowski spacetime [372]. This embedding
procedure provides an intermediate step to map between polar and planar coordinates

in the field space. Using the 3D Minkowski spacetime line element

(G.3) ds? = —de? + dx® + dy?,

surfaces with a fixed timelike displacement from the origin, are given by
(G.4) t>—x*-y*=R%.

These surfaces have hyperbolic (Hg) geometry, while hyperboloids with a fixed spacelike
displacement from the origin have dSo geometry [372, 373].

Using polar coordinates, the line element of the hyperbolic field space is

(G.5) ds? . =d¢? +R%sinh®(¢/R)d0? (0<¢p < +00,0<0<27),

polar

where the curvature length of field space is R = v3a/2. Choosing coordinates (¢, 6) on
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the hyperboloid (G.4) such that

(G.6) t = R cosh(¢/R),
(G.7) x = R sinh(¢/R)cos@ ,
(G.8) y = R sinh(¢)/R)sin0 ,

the line element (G.3) yields the Hy line element in polar coordinates, eq.(G.5). The polar
coordinates cover the whole upper (¢ > 0) hyperboloid for 0 < ¢ < +o0.

The line element of the hyperbolic field space using planar coordinates is

(G.9) ds?

2, ,2bug 2
planar = du” +e77“dv” (0o <u < +00, —00 <V < +00),

where the curvature length of field space is R = 5~ 1. It is useful to first rewrite the line
element (G.9) in a conformally-flat form,
(G.10) ds? = 0% (dw?® + dv?) .

planar, conf —

This is achieved by means of the transformation

(G.11) w=-

which leads to Q2 = 1/(—bw)?. Note that we have chosen integration constants such that
for —oo < u < oo we have —oo < w < 0. Choosing coordinates (w,v) on the hyperboloid
(G.4) such that

R2 v w?
(G12) t:—% 1+I§+ﬁ 5
R2 v w?
G.13 = |1-=—_-=
( ) X 2w( R? Rz)’
R
(G.14) y=——v,
w

the line element (G.3) yields the Hy line element (G.10), with R =571
Using (G.12)—(G.14) to express the conformal planar coordinates (w, v) in terms of

those in Minkowski spacetime gives

RZ
(G.15) w=———,
t+x
(G.16) v BV
t+x



G.2. AHYPERBOLIC MODEL WITH A SINGULAR POTENTIAL
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Figure G.2: Left panel: profile of the potential (G.19) as a function of the angular field
0 for different fixed values of ¢. The selected range of ¢ values shows the potential’s
divergence at 6 = 7. Black dots show the background evolution of the fields superimposed
on the potential. Earlier stages of inflation correspond to larger values of ¢. Right panel:
profile of the potential (G.19) for fixed values of 6 as a function of the radial field ¢. The
range of 6 corresponds to the values taken by the field during the background evolution
displayed in figure G.3 and discussed in the main text.

Substituting (G.6)—-(G.8) in the above expressions gives the conformal planar coordinates
in terms of the polar coordinates. Finally expressing the conformal planar coordinates

(w, v) in terms of the planar coordinates (u, v) yields

(G.17) u = R1In[cosh(¢/R) + sinh(¢/R) cos 0] ,
R sinh(¢/R)sin6

(G.18) ¥~ Cosh(¢/R) + sinh(¢/R)cosf

G.2 A hyperbolic model with a singular potential

In order to analyse the model of [4] using polar coordinates, we use the kinetic Lagrangian
(6.5) and we express the potential (G.2) in terms of polar coordinates (¢, 8) by means of
the coordinate map (G.17)—(G.18),

(R1n [cosh(¢/R) + sinh(¢/R)cos 6])”
6+ (R In [cosh(¢p/R) + sinh(¢//R) cos 6 | )2

L1 R sinh(¢/R)sin@ )2}
2 x 500 \ cosh(¢/R) + sinh(¢p/R) cos 8

(G.19) U(¢p,6)= Uo{

In equation (G.19), R = v3a/2 and the model parameters have been substituted accord-
ing to the parameters chosen in figure G.1. In particular, for the hyperbolic field space to
be the same, Zss polar = Zfs, planar = —123, we set a = 2/(362)~0.01.
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Figure G.3: Left panel: evolution of the background fields over the final 60 e-folds of
inflation driven by the potential (G.19) in polar coordinates. Right panel: evolution of
ex over the last 60 e-folds of inflation for the same potential. The black line shows €y,
while the coloured lines show the contributions from the radial (green-dashed line) and
angular (pink-dotted line) fields.

While being fairly simple in planar coordinates, the potential looks much more compli-
cated when transformed to polar coordinates. The second term in eq.(G.19) corresponds
to the mass term for v in the original potential (G.2) and is singular at 8 — 7 for large
values of ¢. We visualise the two-field potential as a function of ¢» and 6 in figure G.2;

from the left panel one can see that the potential diverges at 8 = for ¢ = 1.

We numerically solve eqs.(6.45)—(6.47) to obtain the background evolution for ¢» and 6.
We select the initial conditions {¢i, = 7.1504, 0, = 3.1067} and slow-roll initial conditions
for the velocities of the fields. We choose this set of initial conditions as they produce the
same background evolution in terms of u and v shown in figure G.1. The corresponding
evolution of the fields in polar coordinates, ¢ and 6, and the slow-roll parameter, ey,
is shown in figure G.3. In particular, in the left panel we plot the trajectory in field
space, showing how ¢ drives a first stage of inflation, after which there is a turn in
field space and 0, previously frozen, starts evolving. In the right panel of the same
figure, the evolution of the slow-roll parameter €z and its components are shown against
the number of e-folds to the end of inflation, AN = Ng,q — N. As expected, the major
contribution to ez in the first phase of inflation comes from the kinetic energy of ¢, while
the evolution of & dominates a second stage of inflation. Between the two phases, the

slow-roll approximation is violated (ezr = 1).

The numerical solutions obtained with the polar coordinates description with the
potential (G.19) is identical to that employing planar coordinates with the potential (G.2),

as expected given the one-to-one correspondence between the two models. To show this,
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Figure G.4: Numerical solutions for the slow-roll parameter ez for the same model
evolved using polar coordinates (black line) or planar coordinates (red-dashed line). The
numerical solutions, using the corresponding potentials in polar (G.19) or planar (G.2)
coordinates, are identical.

we compare the slow-roll parameter €. Using polar coordinates, ez (V) is

1 3 [2
(G.20) enN) == [ ¢2+ ZLsinn? [/ Z ¢ |072],
2 2 3a

see eq.(6.45). When employing planar coordinates, we have instead
1 12 2bu 12
(G.21) eg(N) = §(u +e“"%u ) .

Substituting in the corresponding numerical solutions for the fields, we show ¢ obtained
from eq.(G.20) and (G.21) in figure G.4. As expected the two lines coincide exactly.
While we have been focusing on a configuration which was chosen in [4] to produce a
peak in the scalar power spectrum (and consequently in the induced second-order GWs)
at LISA scales, a range of different initial conditions in field space are discussed in [4]
(see table 1 therein). In particular, varying the initial condition v;, allows them to move
the peak in the scalar power spectrum to scales where other future GW detectors could
operate, e.g., SKA, BBO and ET. Inverting (G.17) and (G.18) enables us to convert a set
of initial conditions (ui,, vin) into the corresponding set in polar coordinates (¢ip, Oin).
We have checked that the initial conditions listed in table 1 of [4] are all within 1.5% of
Oin = . Thus we see that the configurations associated with enhanced scalar fluctuations
on small scales stem from initial conditions very close to the singularity in the potential
at 0 = 7. As already pointed out in [105], when the potential and the kinetic Lagrangian
share the same singularity, large-scale observables are sensitive to the specific shape of

the potential and to the initial conditions.
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APPENDIX G. 2D HYPERBOLIC FIELD SPACE: POLAR VS PLANAR COORDINATES

It is straightforward to show that the kinetic Lagrangian (6.3) and the potential
(G.19) share the same pole in the conformal polar coordinates (r, 8), where r is defined
in (6.4). By following a similar procedure to what was done in deriving eqs.(G.17) and

(G.18), we obtain the coordinate transformation

1+7r2+2rcosf
1-r2 ’
_ 2Rrsinf
T 1421 2rcos0

(G.22) u=RIn

(G.23)

In order to assess the behaviour of the fields close to 8 = n, we define § = 7—6 and expand
eqs.(G.22) and (G.23) to obtain

1- 52
(G.24) limu=R1In A ,
5—0 1+r 1-r2
2Rrod
(G.25) limov = d

5—0 1=r)2+rd2’

From the expression above it is clear that as § — 0 the term m2v?/2 in the potential (G.2)

has a pole at r = 1, as does the kinetic Lagrangian (6.3).
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