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ABSTRACT

The principal features of classical Kaluza-Klein theories for scalar, vector,
and gravitational fields are reviewed and summarized. It is then argued that
existing forms of the Kaluza-Klein ansatz are potentially inconsistent on the
_quantum level due to functional measure discrepancies. The canonical functional
measures for integer spin fields, derived elsewhere, are used to demonstrate the
partial quantum consistency of toroidally compactified Kaluza-Klein theories of
scalar, vector, and gravitational fields in an arbitrary number of dimensions. It
is shown that the use of any of the other popular functional measures found in
the literature would lead to the inconsistency of Kaluza-Klein compactifications.
It is argued that the quantum consistency of field theories based on the canonical
functional measure is an automatic consequence of the transformation properties
of that measure under field redefinitions, with the full quantum consistency of all
Kaluza-Klein theories following as a special case of this general rule. Finally it is
suggested that non-trivial measure factors may act to stabilize the Kaluza-Klein

Casimir effect.



1. Introduction

In its modern incarnation, the unification of gravity with the other forces
originally proposed by Theodor Kaluza and Oskar Klein [1] has attracted an
enormous amount of interest. The fundamental idea involved is simple and pow-
erfully compelling: spacetime is assumed to possess more than four dimensions,
and the higher dimensional analogue of pure Einsteinian gravitation is found to
contain ordinary gravitation together with vector and scalar field theories once

the higher dimensional theory is reduced to four dimensions.

This process of dimensional reduction to a four dimensional effective field
theory occurs automatically if we assume that the physical groundstate of our
extra space dimensions is a compact manifold of microscopic size, in contrast to
the non-compact Minkowski space groundstate for our four observed spacetime
dimensions. Given an appropriate choice for the structure of this compact man-
ifold, the four dimensional vector fields which appear after compactification can
be arranged to transform under the adjoint representation of any desired compact
symmetry group [2]. Those non-gravitational forces in nature which were actu-
ally portions of dimensionally-reduced gravitation would have coupling constants
which were simply related to the geometrical size and shape of our compact man-
ifold [3]. General considerations (as well as several quantum calculations [4-6))
would lead us to believe that the characteristic size of the compact manifold must

not be much larger than the characteristic length scale of gravitation, namely the
Planck Length.

In Sec. 2, I briefly review the principal features of classical Kaluza-Klein
theory, as applied to dimensionally-reduced theories of scalar, vector, and tensor
(i.e. gravitational) fields. For simplicity and ease of discussion, I shall confine
most of my attention to the case of a single compact dimension added to n
Emensional Minkowski space (i.e. theories based on a full spacetime groundstate

topology of M™ x S!). This approach generalizes trivially to the case of an

arbitrary number of toroidally compactified dimensions (i.e. theories based on a



groundstate topology of M™ x (§1)™). Such a review is necessary both in order
to establish a framework for the following discussion and because of the errors

and confusions found in much of the previous literature.

In Sec. 3, I shall suggest tha.t although all the various Kaluza—Klem ansatzes
described in Sec. 2 (and widely assumed in the lxterature) are acceptable as clas-
| theories, they are potenti
discrepancies in the functional measure associated with the path integral formula-
tion of the theory in its dimensionally reduced form. Although such discrepancies
would be removed by several popular regularization techniques (which formally
set all non-trivial measure factors equal to unity), it is argued that these regu-
larizations are inappropriate in situations in which the underlying background
topology of spacetime is not flat, most notably in Kaluza-Klein theories. A gen-
eral criterion by which a quantum theory based on a Kaluza-Klein ansatz can be

judged consistent is pointed out.

In Sec. 4, I show that toroidally compactified Kaluza-Klein theories of scalar
and vector fields are self-consistent on the quantum level. Next, I show that
toroidally compactified Kaluza-Klein theories of scalar and vector fields cou-
| pled to quantized gravitation are also self-consistent, at least with regard to
the purely zero modes of the functional measure factors. Finally, I demonstrate
that toroidally compactified Kaluza-Klein theories of gravitation which are based
on the canonical functional measure are self-consistent in this same way, but
that such theories based on other functional measures for gravitation are not
self-consistent. I note that these results partially rely on an interesting relation

between massive and massless scalar, vector, and spin two fields.

In Sec. 5, I use formal arguments to demonstrate that the specific quan-
tum consistency results derived in Sec. 4 are actually automatic consequences of
the structure of the canonical functional measure for integer spin fields, which
guarantees the quantum consistency of all such theories connected by field re-

definitions. This fact strongly suggests that the canonical functional measure



is actually the correct measure for a quantum field theory, and indicates the
quantum consistency of all Kaluza-Klein compactifications, as well as the Higgs
mechanism, the background field method, and other common procedures in mod-
ern quantum field theory. I also show that the canonical functional measures for
half-integer spin fields and for auxiliary fields also ensure this automatic quantum

consistency for those theories as well.

In Sec. 6, I suggest that the non-trivial functional measure factors in Kaluza-
Klein theories of gravitation may serve to stabilize the Casimir effect in the one-
loop effective potential, preventing the compact manifold from shrinking to zero
size. A direct computation seems to indicate that this stabilization does occur

for the 441 dimensional case.

Throughout this paper, I shall use units in which A = ¢ = k = 1 and
all quantities are measured in GeV. My metric convention will be spacelike,
Ny = diag(—1,+1,+1,...,—1), which is most convenient in Kaluza-Klein theo-
ries. I will adopt usage of the rationalized Newton’s Constant, G = 87G, with
the n dimensional (rationalized) Planck Mass being given by Mpigncx = (C_;’)v':l_2
In general, Greek letters will range over the non-compact spacetime coordinates,
~ written as z’s, small Latin letters will range over the compact spacetime coor-
dinates, written as y’s, and capital Latin letters will range over all spacetime

coordinates, written as 2’s; tildes will denote the higher dimensional fields.

2. Classical Features of Kaluza-Klein Theories

Consider the classical theory of a massless scalar field in n + 1 dimensions.

The action is

5= [@say[-5 o) 0Md)] = [ Pody[-50,8)(*9) - 3(0,9)(@*3),
(2.1)

with ¢ = ¢7(x, y). Now suppose that our (n+1)st spacetime dimension is compact,

namely that the physical groundstaté of our space (about which all of our field



configurations represent small perturbations) is not M™*!, the n+ 1 dimensional
Minkowski space, but instead M™ x S1, the direct product of n dimensional
Minkowski space with the circle. If the value of our scalar field is to consistently
defined, it must be periodic in the spatially periodic y coordinate, s.e. 4;(:1:", y) =
é(z", y + 27 L), where 27 L is the circumference of thecompactspace S 1* Now
if qt;(:z, y) is piecewise regular in the y coordinate, it can be expanded in a Fourier
series

-~ w .

$(f,y) = Y ¢ (zP)exp™v/L. (2:2)

k=—o00

Tt is important to note that each of the Fourier modes ¢(*)(z®) in the decompo-
sition of $(a:°‘, y) is a completely independent field. Under this Fourier decompo-

sition, our scalar action in (2.1) takes the form

1 = k?
S =2rL / d'z[ 2 (9ué(0))(8"4(0)) + Y —(Oudr) (0% (k) + 79w (-8)];
k=1
(2.3)

since f021rL dy expiE+K /L = 27 Lék—k' 0.

Aside from the (classically) irrelevant factor of 2xL multiplying the action
(which can be absorbed by a field redefinition), this is identical to the kinetic
action for an infinite set of massive four dimensional charged scalar fields, with
masses given by m? = k? / L? and charges proportional to k. If we are confining
our attention to energies low compared to the compactification energy scale 1/L,
all of the scalar modes except the zero mode would contribute negligibly to our
results and can usually be ignored. This turns out to be a general result: in
all Kaluza-Klein theories, whether involving interactions or not, the full kinetic
term of the theory in n + 1 dimensions reduces in n dimensions to a kinetic

term and a mass operator, with the masses of the eigenmodes being proportional

—* Actually, we could also choose to define our scalar field as being “periodic with a twist” in
the compact dimension, e.g. choosing r;(z“, y) = —¢(z*,y + 27 L). However, such twisted
boundary conditions lead to the absence of zero modes in the dimensionally-reduced version
of the theory, resulting in a lack of low energy dynamics.



to the mode number and being inversely proportional to the compactification
length scale. Assuming a sufficiently small compactification scale (on the order
of Mpisnck), we are usually justified in neglecting all but the zero mode portions

of the Fourier expansion in our effective field theory at normal energies.
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S = /d"xdy[—lﬁMNﬁ'MN]
‘: ) ) L ) (2.4)
= / dnzdy[-§(aMAN)(aMAN ) + 5(3MAN)(6N AM)],

where F 'MN = aMAN — aNAM. Dimensionally reducing by deleting all but the
zero mode (y independent) portions of our fields and absorbing the extra factor
of 2rL into a classical field redefinition, we obtain (after suppressing the zero

mode marker) our modified action
S = / dz — 2 (0uAn)(* An) + 3 (3pAs) (8 4¥). (2.5)

Since our n + 1 dimensional vector field transforms under the n dimensional
"~ Lorentz group as the combination of an n-vector and an n-scalar, we may pa-

rameterize it as
AM = ¢a(Au, ¢b)a . (2'6)

with ¢ being a scalar and a,b being arbitrary constants. Inserting this Kaluza-

Klein ansatz into our n + 1 dimensional action (2.5) yields

L= —3{a+ 247 B2(3,6)(0%9) — 7(0uAv — Dy Ay) (9% 4" — 5 4¥)

+ %Avdﬁ“'z(amﬁ)(#aw — AY9*¢)

+ aA, ¢ (8,4)(8” A — 84 A”)
(2.7)
Since a, b are arbitrary, they may be chosen for purposes of convenience, and the

most convenient choice is clearly @ = 0 and b = 1, which eliminates scalar-vector



mixings and produces a particularly simple for the dimensionally-reduced action,

namely

1~ ~ 1 1
/ d"zdy[—zFMNFMN] — / d*z[— 2 Fu F* — E(a,‘4>)(¢3w¢)]. (2.8)
Thus, the theory of a free, massless (n + 1)-vector particle reduces to the theory
of a free, massless n-vector particle and a free, massless n-scalar particle. This is

a very neat and elegant result.

Similar results can be found in the case of the dimensional reduction of a
spin two field such as gravitation. Let us begin with the Einstein-Hilbert action

for gravitation in n + 1 dimensions
1 .
S=-—— / dzdy (—§)/*R. 2.9
= (-3) (2:9)

The most general possible parameterization of our n+1 dimensional metric tensor
in terms of n dimensional generally covariant fields of rank two, one, and zero (s.e.
fields which transform under the n dimensional general coordinate transformation

group) is

(2.10)

iraw = Al0) ( guv + B(0)ALA, C(a)A.,) ’

C(0)A, D(o)

where A(c), B(o),C(c), and D(o) are arbitrary scalar functions. Each compo-
nent of the n + 1-metric tensor may be expanded in harmonics of the compact

dimensions, in this case a Fourier series

©0
gmn(zB) = > Ghen(aP)exp™/L. (2.11)

k=—00

Now if we substitute this expansion into (2.9), apply the orthonormality con-

dition for the Fourier modes, and delete all but the zero mode terms from our



effective action, we will obtain the dimensionally-reduced form of the gravita-
tional action. In general, this will be a very complicated expression, involving
a wide range of mixings and intéractions between the scalar, vector, and tensor
fields. However, certain choices of our four arbitrary scalar functions will simplify

this result considerably. ' o T -

First, if we choose scalar functions which satisfy the condition D(o)B(o) =

(C(0))?, our zero mode n+1 dimensional volume measure factorizes conveniently

g = det(gmn) = (A(a))"HD(a)det(g,w) = (A(o))"HD(a)g. (2.12)

Without this factorization, our n dimensional action would contain an infinite
number of field interactions of arbitrarily high order.” Next, we can eliminate

explicit scalar-graviton mixings by choosing to impose the condition

(n—1)A'(c) , D'(o) _
i@ T D@ = (2.13)

_ Finally, we can eliminate explicit vector-scalar mixings by choosing to set

B'(o) _ C'(o)
Blo)  Clo)’

(2.14)

These three conditions combine to yield the unique relationships (modulo two

unimportant constant factors which can be absorbed into field redefinitions)
(4(0)) "V = B(o) = C(0) = D(0). (2.15)

If we choose to relabel B(0) = C(o) = D(o) as o, we obtain the uniquely

* This important condition is maintained in most recent papers on Kaluza-Klein theories,
but unfortunately is carelessly ignored in one of the most influential [2].



convenient gravitational Kaluza-Klein ansatz

-1 +0ALA, OA
gMN = oﬁ (g“” e V) ’ (2-16)’
oA, o
which yields the relations - - - - -
~ - =2
g = det(Gpn) = or-idet(gu,), (2.17)
and
uv —AY
GMN = gt ( g Y ) . (2.18)
These produce the dimensionally-reduced action
1 1/2 1 1, n—2 3“0’3“0
S = 2—é-/d"z (—g)Y/ [-R - 4—0F,‘,,F“" - Z(n— 1) = ]- (2.19)

This is the actual justification for the n = 4 gravitational ansatz presented in [4],

and gradually becoming more popular in the literature.

Thus, on the classical level, we may choose a form of the Kaluza-Klein ansatz
in which a field theory of pure gravitation in n + 1 dimensions looks like a field
theory of gravity, electro-magnetism, and a massless scalar field, all in n dimen-

sions.

_ The above results were based on the dimensional reduction of pure n + 1
gravitation around an M"™ x S! physical groundstate, but use of the preceding
procedures for the reduction of scalar and vector field theories, along with simple
iteration and ﬁeid redefinition allows us to similarly obtain the dimensionally-
reduced form of gravitation around an M"™ x (S1)™ groundstate. Such a toroidally
compactified Kaluza-Klein theory yields n dimensional gravitation, m free n di-
mensional abelian vector fields, and '—nﬂnf—ll free scalar fields. It should be noted
_that all of these theories actually do involve implicit scalar-tensor mixings in the
field equations. The scalar fields correspond to dilation operations on the field

theory.

10



3. Quantum Kaluza-Klein Theories
and the Functional Measure

Most of the above results for classical Kaluza-Klein theories were based on
the special features of classical field theory, not least of which is the ability
to make arbitrary field redefinitions of our canonical variables. In a quantum
field theory, such field redefinitions must be matched by corresponding changes
in the functional measure associated with the path integral formulation of the
theory, and, in general, do not merely change the form of the naive action alone.
Extra terms in the measure (or equivalently in the effective action) must be
taken into account if the quantum versions to the two theories connected by field

redefinitions are to be identical [7].

This very important feature of quantum field theories—the issue of the func-
tional measure and its behavior under field redefinitions—has been ignored in
the vast majority of discussions concerning quantum field theory. This is for
two very simple reasons. First, the functional measure for most ordinary field
theories is trivial, with the measure factor being equal to unity. Second, and
- more importantly, any non-trivial measure factors are formally set equal to unity
under several very popular regularization schemes such as dimensional regular-
ization or zeta function regularization. The dominance of these regularizations
has virtually eliminated functional measure factors from the recent thoughts of

most theorists.

However, as has been argued elsewhere [8,9], dimensional regularization may
be inappropriate in situations in which the underlying background topology of
spacetime is not flat. This is because the dimensionality of such a spacetime
may be extended in several different ways, with the regularized values of diver-
gent quantities being dependent on the extension chosen, and hence ambiguously

defined. For example

M4 x S'— MY x 8 or M*x5Y or M* x (S")¥, (3.1)

11



or any combination of these. Furthermore, dimensional regularization does not
respect the chiral or conformal symmetries of our theory. Zeta function regu-
larization may be understood to suffer from these same difficulties because of
its underlying similarity to dimensional regularization [9], and is anyway self-
consistent to only one loop. For these reasons, we_should hesitate to ignore
divergent terms which are equated to zero under these regularizations, but which
survive under other, more intuitively simple regularizations such as working on
a lattice or using a simple cut-off. Maintaining such a cautious approach, terms

derived from the functional measure of a quantum field theory should be retained.

Following this line of reasoning, let us consider the Lagrangian path integral
formulation of a quantum field theory based on some field C} in n+m dimensions.
Formally, we have

) / d"zd™y[[Q)

Z = /[d@]exp (3.2)

with Z being the generating functional for our theory and with [dQ~] being the
correct functional measure to be used (we will discuss its form later on). Now
suppose that we compactify our theory to one in n dimensions via the Kaluza-
Klein approach (i.e. enforce periodic boundary conditions on m of the spatial
coordinates in the argument of é, changing our background space to M™ x B™,
with B™ being some m dimensional compact manifold). Under this compactifica-
tion scheme, our original field é, which transformed under some representation
of the appropriate symmetry group in n + m dimensions will decompose into
some combination of independent fields Qy, each of which transforms under the

same symmetry group in n dimensions, namely

Q=0Q[Q1,-.., Q1) (3-3)

T)epending on the symmetry properties of the compact space B™, these new

fields Q; may also transform under additional “gauge symmetries.” All of this

12



corresponds to the factorization of gy into a combination of g,,,A,, and¢

which we saw in our previous section.

Now if the process of Kaluza-Klein compactification is to be consistent, the
quantum theory based on the generating functional in (3.2) should be identical
to the quantum theory obtained by inserting the field redefinition ansatz (3.3).

This requifement is simply that

7= / [dé]ezpi/ 2d"yLQ] / [ko]e:t:pi/ Fed™ylod oy

with [dQx] being the functional measure for the quantum field Q%. In this ex-
pression, £{Qy] is simply defined by

L[Qx] = LIQIQxl), (35)

and, as discussed in our preceding section, our field redefinition ansatz Q[Qk]
is chosen in order to yield a convenient form for £ (or more precisely, for the

dimensional reduction of £).”

However, this classical consistency requirement that (3.5) be satisfied is not
sufficient to assure that (3.4) is satisfied; the functional measures must also be

equal. That is, [dQ] must factorize into

[dQ] = [d@1] - - [dQu). ‘ (3.6)

Unless this condition is satisfied, the classically correct dimensional reduction
of a Kaluza-Klein theory will be destroyed by extra terms in the effective action
corresponding to discrepancies in the functional measure. Such terms would enter
at one loop, and since they derive from the functional measure can presumably

be interpreted as quantum anomalies of the theory [12].

» Actually, this statement is not quite right. Contrary to popular wisdom, and the claims
— of Coleman [7] and 't Hooft [10], there are actually extra terms appearing the effective
Lagrangian after such a change of variables, as was shown in a paper by Gervais and
Jervicki [11] which has received insufficient notice. However, these additional terms enter

only at two loops and higher, so I will neglect them in the context of this paper.

13



Next, the behavior of the functional measure under the p¥ocess of dimensional
reduction itself should be examined. Our new fields Q; can be expanded in
harmonics of the compact manifold, which are eigenfunctions of the compact

portion of our kinetic operator
S ,y) Z QY (z)h™(v) (3.7)

with 7 labelling the particular harmonic h(y). Dimensional reduction is achieved
by performing a functional integration over all the non-zero modes, and discard-
ing the additional terms produced in the effective action, which are suppressed
by powers of the compactification length scale. The surviving portion of the
Lagrangian will contain terms involving only the y-independent zero mode fields
and which are of mass-dimension n or lower, n being the dimension of our non-

compact manifold.

Now since the harmonics on B™ constitute a complete orthonormal basis set
of functions, the expansion in (3.7) is perfectly legitimate for all configurations
Qi (z,y) which are piecewise regular in y. Furthermore, our functional measure
ranging over all coordinate points can be rewritten as a functional measure rang-
ing over all non-compact coordinate points and over all eigenmodes fi. That

is

[[d@x(z,v) = [] 4@} (). | (3-8)
z,y z,i

However, for the dimensional reduction scheme to produce our desired zero mode
theory without being destroyed by anomalies corresponding to functional measure

discrepancies, our functional measure must factorize into
[dQ] = H[dczkl [Tle@z). (3.9)
kR

Tt should be noted that the functional measure for one field mode can (and

generally does) contain other modes and other fields.

14



Although it is most reassuring if our functional measure factorizes exactly,
any discrepancies in the non-zero mode field factors should not be viewed as
being as serious as discrepancies in the zero mode field factors. This is because
attempts at realistic Kaluza-Klein theories are invariably based on compactifi-
cation scales close to the Planck Length. Therefore, the effects of higher mode
fields in-the action becomes significant only at energy scales for which the (com-
pletely unknown) higher mass-dimension terms of full quantum gravity are also
becoming significant, and our existing field theory is becoming unreliable. Fur-
thermore, most of the specific functional measures derived in Ref. [9] which will
be utilized below are only valid for energy scales low compared to Mpignck, and

hence low compared to our compactification scale.

4. The Quantum Consistency of Kaluza-Klein Theories

The abstract results presented above will become much more clear once we
investigate the consistency of specific Kaluza-Klein theories. Let us begin with
the simplest possible theory, a massless scalar field in n + 1 dimensional space,

the quantum version of our first example in Sec. 2. We have

£= -3 (0ud)(Md), (4.1
with
i/ TayLigl (4.2)

Z= / [déezp

Now the functional measure for a scalar field (in the absence of quantized gravi-

tation) is trivial, being the flat measure [9]
28] = [] dé(z,v) = [[ d6® (=) = [ [[d6*)]. (4.3)
z,Y Z,k k

Thus, the functional measure for a compactified n+1 dimensional massless scalar

field factorizes exactly into the correct functional measures for each of the massive

15



n dimensional scalar field modes. The Kaluza-Klein proceduure is perfectly con-
sistent on the quantum level, being unbroken by functional measure discrepancies

in this case.

fication of a massless vector field in n + 1 dimensions. As shown in Sec. 2, we
have

. 1 - M2 1 - N AM

L = —5(0mMAN)(87 AN) + 5(OMAN) (87 A7), (4.4)

with the most convenient parameterization of A)s being Aps = (Au, ¢). Now the

functional measure for a massless vector field is once again flat [9], being given
by *

[dAp] = [ dAm = [ d4udé = [] daWds® = [[[daLP)d6®).  (4.5)

z,y z,y z.k k

Again, the functional measure factorizes perfectly, this time into the product of
the measures for each mode of the n dimensional vector and scalar fields obtained
~ by the Kaluza-Klein procedure. This demonstrates the quantum consistency of

the Kaluza-Klein compactification of a massless vector field in n + 1 dimensions.

Taken together, the preceding two results may be combined and iterated to
prove the quantum consistency of the toroidal compactification of a massless

vector theory in n + m dimensions.

Now let us turn to the somewhat more complicated case of the compact-
ification of a massless scalar field coupled to quantized gravitation. (For the
moment, we are simply interested in checking the quantum consistency of the

compactification procedure for the scalar field, postponing the question of the

__* Actually, the functional measure is more precisely given by Hz,y dj“dﬁdq, with # and
n being the Faddeev-Popov ghost fields. However, for abelian gauge fields uncoupled to
quantized gravitation, the functional integrations over the ghost fields are trivial and can
be absorbed into our overall normalization factor.

16



quantum consistency of the gravitational compactification) . Our Lagrangian in

n + 1 dimensions is
. 1 —. - .
L =—2v-35"" (0m4)(0n9), (4.6)

with the functional measure for the scalar field given by _ -

[dg] = [] (™) *(5)"/*d4. (4.7)
z,y

If we expand out Ji using the parameterization derived in Sec. 2, we obtain

. 1 .. . -
L=- EV _gguua“¢au¢ + —gA”au¢ay¢

1 - - 1 o (4.8)

— —2;6yd>6,¢ - EﬁA“A”ay¢3y¢
Now the functional measure for our compactified theory depends only on those
terms in the Lagrangian which are quadratic in time derivatives. Therefore, only
the first term in (4.8) contributes, and this term can be rewritten in an eigenmode
basis as

L= Z(g°°gl/2)(—k—k')aod,(k)aoqg(k') (4.9)
K,k

The functional measure for these scalar modes should be given by [9)
[H dgW] = H(detk,k'(90091/2)(k+k'))1/2 1] d¢® (4.10)
k z k

Determining whether the expression in (4.10) is equal to (4.7) appears some-
what difficult because of the complications involved in transforming (4.7) into
an eigenmode basis. Therefore, for now let us merely check the equivalence of
the two expressions in their zero mode sector, i.e. show that the dimensionally

reduced theory has the correct zero mode functional factors (later on, we shall

demonstrate their exact equality).

17



To check this equality in purely zero mode functional factors, we simply apply
the process of dimensional reduction to those fields in the Lagrangian which give
rise to the functional measure factors, in this case the metric tensor, retaining

only the purely zero mode components. The functional measure in (4.7) assumes

the form

— - -

S 48] = T (¢*)/2g"/4dg®), (4.11)
z,k

where we have suppressed the zero mode indices of our metric field. Likewise the

remaining portion of (4.10) is

[T 2¢®) = TIAT ™95 ) ([ dé®) = [T(*) /26" 4ds® = 4], (4.12)
k z k k

z,k

and the two functional measures are equal, implying the quantum consistency
of a scalar Kaluza-Klein theory, at least with regard to the purely zero mode

portion of its functional factor.

The reason for this equality is very simple. If we simply discard all but the
zero mode portion of our metric field in (4.6) and (4.8), it is easy to see that
the crucial requirement for our n + 1 dimensional functional measure to factorize
properly is that the functional measure factor for a massless scalar field theory in
n + 1 dimensions be equal to the functional measure factor for a massless scalar
field theory in n dimensions and also equal to the functional measure factor for

a massive scalar field theory in n dimensions. That is, if

[d¢]§¢'34=o.= HMi?RJ=od¢ and [d‘ﬁ]gs':z)\f;eo = H M.fs?}#odcb, (4.13)

z z

then our consistency requirement is that

Mf&?}\;l:)o = M4(:134=0 = i?lz/{;éO' (4.14)

Since M(;(;,IIL=0 = Miﬂl;&o = (g%)1/2¢'/4 for all dimensions n, this consistency

condition is satisfied. Thus the functional measure factor for our n+1 dimensional

18



massless scalar field factorizes into the product of the functional measure factors
for our massless zero mode and massive higher mode scalar field theories in n

dimensions.

Simply iterating the above procedure demonstrates the quantum consistency
of a toroidally compactified n + m dimensional scalar fleld theory coupled to

quantized gravitation.

Similar relations demonstrate the quantum consistency (in the zero mode
metric sector) of a compactified massless vector field coupled to gravitation. The
canonical functional measures for massless and massive vector fields in » dimen-

sions are given by [9]

Mo = (6°)F g™ and M0 = (6%)F 97, (4.15)
implying that
Ml(;:-;\l'f)=0 = (M,(;:),M:O) (ng]z{:o) = M,S{:),M#o- (4.16)

These relations ensure that the zero mode portion of the n dimensional metric
field factor in the functional measure for a massless n+ 1 dimensional vector field
factorizes into the product of the factors for the functional measures of each of
the n dimensional modes. (The zero mode portion of the action contains separate
massless and scalar vector fields, while all the non-zero modes consist of massive
vector fields, produced by a Higgs mechanism, just as in the case of Kaluza-Klein
gravitational non-zero modes [4].) The zero mode portion of the (n + 1,n + 1)

component of the n + 1 metric tensor (the o of Sec. 2) also factorizes correctly.

Iterating these results for the quantum consistency of the compactifications
of vector and scalar fields demonstrates the quantum consistency of all toroidally

compactified massless vector fields in n + m dimensions.

Now let us turn to the slightly more complicated process of checking the

quantum consistency (with regard to purely zero mode functional factors) of a
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compactified gravitational field. Using the parameterization of the n + 1 dimen-

sional metric tensor derived in Sec. 2, our full action has the form

1
d*zdy — —(-§)/*R
AN

— - -

- - n dy — — 1/2 - = 1/2F F;lll
/d zdy ( 9)/°R 0( 9) (4.17)
_ __( ) 1/2 ,,03 i
8G '‘n — ol

+ terms linear or lower in u derivatives.

Now since we are only interested in checking the equality of purely zero mode
functional measure factors, we may assume that all fields except those acted
upon by derivatives are purely zero mode, t.e. are reduced to their zero mode
components. By using the techniques in [9], we find that the purely zero mode

functional measure factors for each mode field are given by

[do.(k)] — H(QOO)1/2gl/4a—1da(k)

[dAP)] = T](6%) 5" ¢ 05" d AP a5V dn®)

z

[dgl)] = [[(¢%) g™+ =322 4 ) g (#) g (k) (4.18)

z

(Actually, just as in the vector case, the non-zero modes of ¢ and A, are eaten
by the gauge components of the non-zero g,, modes, which become massive, in a
Kaluza-Klein version of the Higgs mechanism as pointed out in [4]; but this has

no effect on the functional measure factors.) On the other hand, the zero mode

canonical functional measure factor for the n + 1 dimensional gravitational field
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is given by

. . (n+1)(n—=3) n3—8n-8 __ - -
[diren) = [JG®) "« 6+ domndindi™
z,y

n—38 (n+1)(n=3) n?—3n-8
=H° T ()« g o dguydA,udodij,dn” didn,.
z,y

(4.19)

where the second line incorporates the functional measure factors obtained from
the Jacobian of our change of functional variables (with only the zero mode
portion of the Jacobian being retained). Now the functional measure factor
in (4.19) is equal to the product of the functional measure factors in (4.18),
implying the quantum consistency of the compactification of an n+1 dimensional

gravitational field.

Once again, combining and iterating the above results for gravitational, vec-
tor, and scalar fields demonstrates the quantum consistency of toroidally com-

pactified n + m dimensional gravitation.

It is interesting to note that the above consistency results are partly a conse-
- quence of the very strong similarity between massless integer spin fields in n +1
dimensions and massive fields of the same spin in n dimensions. For scalar,
vector, and spin two fields, the functional measure factors in the two cases are
identical, as are the number of physical polarizations, #.e. on shell states. This
appears to be a general consequence of the structure of the Lagrangian and the

form of the canonical functional measure for integer spin fields.

It is importaht to point out that the above quantum consistency proof for
a compactified gravitational field is not a trivial result, nor is it an automatic
consequence of any functional measure we might choose. It is a direct consequence
of the form of the canonical functional measure for gravitation, and if we had
iistead chosen to use any of the other functional measures for gravitation which

are given in the literature, we would have discovered the quantum inconsistency

of Kaluza-Klein theories based on a compactified higher dimensional gravitational
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field. For example, the gravitational functional measure suggested by Fujikawa
[13] has the form

n2—5n—8 _
[dgl“’]g"ljikawa = H g s dg[l.l/dnpdny, (4.20)
- - -z

s - -

and is derived by naively assuming the absence of any non-trivial point permuta-
tion Jacobian under the BRST extension of a general coordinate transformation.
Even if we removed the ¢°° functional measure factors from our vector and scalar
functional measures, this Fujikawa measure would still yield discrepancies in the
functional factors of o after compactification, resulting in the quantum inconsis-
tency of Kaluza-Klein theories. The gravitational functional measure sketched
out by DeWitt [14]

n3—3n—4a

[dgw]g:)wm =[[¢s"" dow (4.21)

would also produce discrepancies in the functional measure of Kaluza-Klein com-
pactifications of gravitation. It is important to emphasize that these discrepancies
are in the zero mode sectors of the compactified theories, and hence would be
present at low and medium energies; they cannot be argued away as being offset

by the new physics entering at Planck Mass energy scales.

5. The Canonical Functional
Measure and Field Redefinition

We have jusﬁ seen that the choice of the canonical functional measure for
gravitation appears to result in the quantum consistency (at least with regard
to purely zero mode functional factors) of toroidally compactified Kaluza-Klein
theories, while using for example the Fujikawa or DeWitt gravitational functional
measures does not. We have also seen that the canonical functional measures for
scalar and vector field theories result in the quantum consistency of their toroidal

compactifications as well.
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This is no accident. As we are about to see, these results follow as special
cases of the general transformation properties of the canonical functional measure
under field redefinitions, which formally ensure the quantum consistency of any
two theories connected by field redefinition. This general conclusion will also
establish the quantum consistency of Kaluza-Klein theories with regard to non-
zero mode functional measure factors and non-toroidal compactifications as well.

11

In this section, capital Latin letters will represent completely general field indices.

Consider a Lagrangian £ containing quantum fields é A (which may be either
bosonic or fermionic). If these quantum fields é 4 have integer spin and are
physical (i.e. propagating), the canonical functional measure for this theory has

the form

- 2L
[dQ4] = 1:[ [Sdet(g(aoéA)s(BoéB))

with sdet being the superdeterminant. Now suppose that we choose to write our

1/2 .
] A, (5.1)

theory in a new form by using the field redefinition Oas=0 Al@B]. The new
Lagrangian for our theory is simply defined by £|Qp] = £(Q4[@B])," and the

canonical functional measure for our new theory is given by

2 /
1494} = H[Sdet(fs(aij)f(aoQB) )]1 2dQA' (52)

Since the Lagrangian of our two theories connected by field redefinitions are
defined to be identical, our two quantum theories are identical, s.e. have the

same generating functionals

i/dxﬁ[QA],

2= [aues oo

if and only if the two functional measures (5.1) and (5.2) are identical. Such a
quantum consistency condition is automatically satisfied by the canonical func-

tional measure.

% Actually, as noted previously, this naive change of variables procedure is not quite right,
and extra terms must be added to the effective action at two loops and higher.
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This is very easy to show. If our quantum field redefinition is to be well-
defined, it must be non-singular, implying that the superdeterminant of its Jaco-
bian is non-zero, and the change of functional variables may be inverted to yield
Q=@ B[Q 4)- Therefore, using the chain rule, the functional measure factor in

(5.1) can be rewritten as - . .

6L B 6Qc 6L 6Qp
sdet(5(30@,4)5(¢9oC§B)) - Sdet((ﬁé )(5(30Qc)5(30QD))(5QB))
5L §Qp
_sdet( ) de t(6(60Qc)6(80QD)) sde t( QBz |
54

On the other hand, the remaining piece of the functional measure in (5.1) trans-

forms as

déA = sdet(ig

with the new measure factor produced being the superdeterminant of the field

)d@s, (5.5)

redefinition Jacobian. Combining these two results, we find that

_— 82L 1/2 6Qc 6QE
[dQA]—-l;[[sdet( TENOATICT QB))] sdet (35 Ysdet (3 o)

82L 1/2 (5.6)
=1:I[sdet(6(aOQA)5(aoQB))] Q.
= [dQA]a

with the two extra Jacobian factors exactly cancelling out.

This automatic consistency of the canonical functional measure under change
of field variables ensures that any two field theories connected by field redefini-
tions both have the same functional measure and are hence identical on the
quantum level. Among other results, this formally establishes the quantum con-
sistency of the Higgs mechanism, the background field method, the Kaluza-Klein
ansatz, non-linear sigma models, and many other standard procedures in modern
;antum field theory which either implicitly or explicitly rely upon field redefi-

nition.
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Exactly similar arguments may be used to demonstrate the quantum consis-
tency of the canonical functional measures under field redefinitions for the cases
of half-integer spin fields and non-propagating auxiliary fields. For these cases,

the relevant identities are [9]

— - —

P - - 2p .
T [dQA] = H [SdCt(’—.-a—‘c—.f—)]l/deA

6Q46(80QB)
2L 2, (5.7)
_H[sdet 5QA6(80QB))] dQ 4
=[dQA]

and
62 12 -
—_— T~ d
5QA5QB)] Q4
e 1/2 )
»—H[sdct 5QA5QB)] d0a
=[dQA]

Taken together, these results strongly suggest that the canonical functional mea-

[dQ4] = H [sdet(

(5.8)

~ sure, besides being the most elegant and simplest to derive, is also the correct

functional measure for a quantum field theory [9)].

Although the above manipulations are purely formal and abstract, they are
buttressed by the special case of the quantum consistency of various toroidally
éompactiﬁed Kaluza-Klein theories which was worked out and checked at length
in Sec. 4 above. Furthermore, purely formal arguments are necessitated by the
absence of any cbmpletely satisfactory means of regulating the Feynman path
integral, and as noted by DeWitt [14], they tend to acquire a consistency and

logic of their own.
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6. Stabilizing the Kaluza-Klein Casimir Effect

As previously mentioned, realistic Kaluza-Klein theories require that the com-
pact manifold have an extremely small size. This is because the coupling con-

stants g for the gauge forces produced by the compactification are each given by

e dd /o P SaAad __,,_‘A'/_!.__,,A, ,-:._V_A, . A A AT
Ene ram 0 VaY% zu toa parucular mean rooy square cxrcumference Of the coin-

pact manlfold [3]. In order for Kaluza-Klein theories to yield any of the coupling
constants observed in nature, the circumferences of the compact manifold must

be no more than one or two orders of magnitude longer than the Planck Length.

A plausible explanation for the extremely small size of the compact manifold
follows as one of the most interesting results of an analysis of the quantum dy-
namics of Kaluza-Klein theories. As Appelquist and Chodos first demonstrated
[4], the one loop effective potential for a Kaluza-Klein theory of gravity exhibits
the Casimir effect, causing any compact manifold to shrink in size. In particular,
for a 4 + 1 dimensional compactification, they obtained the expression

A} 58

Veff(o'c) = 8—

v s (27r01/3R5) (61

with L = 27rac/ Rs being the effective circumference of the compact dimension,
f = —0.394, and Ao being our momentum-space cut-off. The first term of this
potential has the form of a large induced cosmological constant, while the second
term represents an attractive potential, causing the size of the compact manifold
to shrink down to a minimal value. This is merely a form of the well-known
Casimir effect, caused in this case by the vacuum fluctuations between the two

“plates” y =0 and y = 27 Rs.

While this result is desirable in some ways, it does present certain difficul-
ties. The large induced cosmological constant term is endemic to all theories of
quantized gravitation, and must simply be “renormalized” to the observed value
of zero. However, the attractive potential itself also presents a problem since

its value is minimized only when the radius of the compact manifold has shrunk
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completely to zero. This may simply be an artifact of our one loop quantum
gravitational calculation, and it is possible that higher loop terms in the effective
potential would serve to stabilize the theory at a finite size radius. But such
higher loop contributions would only become non-negligible at energy scales for
which the full theory of quantum gravity becomes important, and this raises se-
vere problems. First, the resulting size for the stabilized compact radii would
presumably be equal to or smaller than the Planck Length, resulting in gauge
coupling constants much too large to correspond to those observed in nature.
More importantly, our entire Kaluza-Klein analysis would probably break down
at such energy scales. We do not yet possess a full theory of quantum gravity,
and the additional Planck Mass suppressed terms in the effective action expan-
sion of full quantum gravitation are completely unknown to us; these additional
terms would contribute significantly to Kaluza-Klein theories at Planck Mass
energy scales and above. Therefore, our Kaluza-Klein picture should only be
taken seriously at length scales for which the higher loop quantum effects can be

ignored.

The instability of the one loop effective action appears to be a problem en-
- demic to Kaluza-Klein theories, whether based on toroidal compactification or
not [4-5]. Attempts [6] have been made to cure this instability through the ad-
dition of large numbers of scalar or spinor matter fields to the theory. The one
loop contributions of these additional fields can stabilize the eﬁ'ective‘potential at
a- compact circumference greater than the Planck Length. But the sheer number
of these additional fields which must be “put in by hand” to balance the one
loop attractive gfa.vitational contribution is prohibitively huge, ranging in the
hundreds or thousands.” The need for so many extra matter fields completely
negates the principles of simplicity and elegance which were the chief motivations

for Kaluza-Klein theory in the first place.

* This fact has led to Mark Rubin’s aphoristic observation that “one graviton is worth ten
thousand scalars.” i
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However, all the above derivations of the one loop effective potential com-
pletely ignore contributions from the functional measure,t and it is possible that
such contributions may serve to stabilize the Casimir effect at a circumference
longer than the Planck Length. This possibility is quite easy to understand. Our

quantum generating functional (or partition function) has the form

Z= /[déMN]ezpiS[gMN]. (6.2)

If the functional measure contains positive powers of the dilaton scalar o which
parameterizes the size of our compact manifold, this will reduce the relative
weighting for those total field configurations in which o is small, partly off-setting

any contrary effect from the action itself.

This intuitive argument can be made precise by calculating the additional
terms in the one-loop effective potential which derive from the functional mea-
sure. Since the functional measure is independent of %, it enters the effective
action as a one-loop effect; this can equally be seen by using measure ghost
fields to bring the functional measure into the effective action [4], and by noting
~ that the resulting diagrams (with no external ghosts) enter at one loop. For the

definition of the one-loop effective potential used in Ref. [4], we have

- ,ff(oc)a:lls/d4zdy

Zlo,) = exp (6.3)

Now if we use the canonical functional measure for gravitation in 4+1 dimensions

which was given in (4.1), we can follow the exact procedure of Ref. [4] to calculate

t Appelquist and Chodos [4] examine the measure only to dismiss it (partly because of the
conflicting functional measures suggested by Fradkin and Vilkovisky, ’t Hooft, and DeWitt
[14-15]); this dismissal is justified by the use of dimensional or zeta function regularizations,
which eliminate any measure factors. Yasuda [16] claims to show that no terms from the
functional measure appear in the effective potential for quantum gravity, but his analysis is
based on the use of Fujikawa’s gravitational functional measure, which we have seen above
is probably not correct. In most of the remaining papers on the Kaluza-Klein Casimir effect,
the functional measure is never even mentioned.
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the contribution of this measure factor to the one-loop eﬂ'eétive potential. Just
as in Ref. [4], the zero mode fields and ghosts do not contribute (their apparent
contribution is exactly cancelled by their measure factor contribution). The non-
zero field modes contribute a factor of ezp(6 )", >_; Ino.] to Z[o.], partly coming
from the initial measure and partly from a change of variables- Jacobian factor.
Finally, the non-zero ghost modes contribute a factor of ezp[—2 3", 3", Ino.] to

Z|o.|. Thus, the total additional factor contributed through measure effects is

165" in(ai’?)
n k .

exp (6.4)

We can freely multiply this factor by a numerical constant if we wish (since such

a constant can always be absorbed into the normalization of Z) yielding

162 Zln(Zwa,l;/sRs)
n k ]

exp

Next, we can use the relation (f d*z) g;"‘ = 1 to rewrite our factor as

16 E / 4ln(27roc Rs)/d zdy
exp " 2nRs J (2m) , (6.5)

which corresponds to an additional term in our effective potential of

AV, = 0l [ty 6.6
erp(0) = =16 7 | @miinenee Bs). (6.6)
) n

Now if we cut-off our momentum at A = o, 1 6Ao, with Ap being the cut-off in

our standard coordinate system (0. = 1), we have [4]

d'k At A} s
= = 0 oc ’
- (27)4 3272 3272

(6.7)

and if we cut-off our infinite mode sum at mode numbers N whose masses are
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equal to this energy scale, N = 21rR5ag / 3Ao, we obtain

/3 4 _—2/3

1
, O Ago
AVess(oe) = (~16) (4 Rso:*Ao) (575-) (~55

)ln(21ra§/3R5)
(6.8)

Ad 1/3
= —W—gln(27rac/ Rs).
Therefore, the total one-loop effective potential, including both the new term
and the terms previously derived in Ref. [4] is
AS 58 A}

Veff(oc) = — + -

87 5 ;r—zlnL, (6.9)

with § = —0.394 and with L = 27ra: / 3R5 being the effective circumference of the
compact manifold. This potential has its minimum at
1

1
L= (—25728)/° — ~ 2.50—. 6.10
( B) 1 i (6.10)

Our Casimir effect does stabilize, but the stability point is cut-off dependent.

Such a cut-off dependent result is not as bad as it might seem. Since we lack a
full theory of quantum gravity, we must anyway cut-off all our calculations around
the Planck Mass in order to avoid having to deal with the higher-mass-dimension
terms in the effective action expansion of quantum gravity. Furthermore, Hawk-
ing has speculated that the formation of quantum black holes might provide a
natural Planck Mass cut-off for quantum gravity [17]. In any event, it is encour-
aging that the above calculation yields a stability length which is (somewhat)
longer than our cut-off lengthscale; if it had been shorter, our approximation
would have been inconsistent and the result completely untrustworthy. Even for
the above stability length, our entire calculation should not be taken too seri-
ously. This is because our gravitational functional measure was only derived for
fength scales long compared to the Planck Length, and we are extending its use

to scales of comparable length.
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If we were to choose our cut-off at Ao = (87G)~1/2, the (rationalized) Planck
Mass, which is the natural mass scale for quantum gravity, the value of the gauge
coupling fine-structure constant d(g) = {—; which results is almost exactly one.
This is not too close to the realistic value of e.g. a(g) ~ 0.02 for our known
forces at the GUT scale, but such a wide discrepancy is not~surprising given
the toy model nature of our 4 + 1 dimensional theory and our speculative choice
of a gravitational cut-off energy. Calculations based on a more realistic choice
of compact manifold might yield larger values for the numerical coefficient in
(6.10), and hence smaller coupling constants for the theory. Still, the coupling
constant obtained by the simple analysis above is generally more realistic than
those obtained in Ref. [6] through the addition of 1000 extra species of spinor
matter fields into the theory. This is highly encouraging.
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