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ABSTRACT - 

The principal features of classical Kaluza-Klein theories for scalar, vector, 

and gravitational fields are reviewed and summarized. It is then argued that 

existing forms of the Kaluza-Klein ansatz are potentially inconsistent on the 

-quantum level due to functional measure discrepancies. The canonical functional 

measures for integer spin fields, derived elsewhere, are used to demonstrate the 

partial quantum consistency of toroidally compactified Kaluza-Klein theories of 

scalar, vector, and gravitational fields in an arbitrary number of dimensions. It 

is shown that the use of any of the other popular functional measures found in 

the literature would lead to the inconsistency of Kaluza-Klein compactifications. 

It is argued that the quantum consistency of field theories based on the canonical 

functional measure is an automatic consequence of the transformation properties 

of that measure under field redefinitions, with the full quantum consistency of all 

Kaluza-Klein theories following as a special case of this general rule. Finally it is 

suggested that non-trivial measure factors may act to stabilize the Kaluza-Klein 

Casimir effect. 



1. Introduction -- 

In its modern incarnation, the unification of gravity with the other forces 

originally proposed by Theodor Kaluza and Oskar Klein [l] has attracted an 

enormous amount of interest. The fundamental idea involved iz simple and pow- < - 
erfully compelling: spacetime is assumed to possess more than four dimensions, 

and the higher dimensional analogue of pure Einsteinian gravitation is found to 

contain ordinary gravitation together with vector and scalar field theories once 

the higher dimensional theory is reduced to four dimensions. 

This process of dimensional reduction to a four dimensional effective field 

theory occurs automatically if we assume that the physical groundstate of our 

extra space dimensions is a compact manifold of microscopic size, in contrast to 

the non-compact Minkowski space groundstate for our four observed spacetime 

dimensions. Given an appropriate choice for the structure of this compact man- 

ifold, the four dimensional vector fields which appear after compactification can 

be arranged to transform under the adjoint representation of any desired compact 

symmetry group [2]. Those non-gravitational forces in nature which were actu- 

ally portions of dimensionally-reduced gravitation would have coupling constants 

which were simply related to the geometrical size and shape of our compact man- 

ifold [3]. General considerations (as well as several quantum calculations [4-61) 

would lead us to believe that the characteristic size of the compact manifold must 

not be much larger than the characteristic length scale of gravitation, namely the 

Planck Length. 

In Sec. 2, I briefly review the principal features of classical Kaluza-Klein 

theory, as applied to dimensionally-reduced theories of scalar, vector, and tensor 

(i.e. gravitational) fields. For simplicity and ease of discussion, I shall confine 

most of my attention to the case of a single compact dimension added to n 

dimensional Minkowski space (i.e. theories based on a full spacetime groundstate - 
topology of Mn x S’). This approach generalizes trivially to the case of an 

arbitrary number of toroidally compactified dimensions (i.e. theories based on a 
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groundstate topology of Mn x (Sr)m). S UC h a review is necessary both in order 

to establish a framework for the following discussion and because of the errors 

and confusions found in much of the previous literature. 

In Sec. 3, I shall suggest that although all the various Kaluza-Klein ansatzes 

described in Sec. 2 (and widely assumed in the literature)-are azceptable as clas- 

sical theories, they are potentially inconsistent on the quantum level because of 

discrepancies in the functional measure associated with the path integral formula- 

tion of the theory in its dimensionally reduced form. Although such discrepancies 

would be removed by several popular regularization techniques (which formally 

set all non-trivial measure factors equal to unity), it is argued that these regu- 

larizations are inappropriate in situations in which the underlying background 

topology of spacetime is not flat, most notably in Kaluza-Klein theories. A gen- 

eral criterion by which a quantum theory based on a Kaluza-Klein ansatz can be 

judged consistent is pointed out. 

In Sec. 4, I show that toroidally compactified Kaluza-Klein theories of scalar 

and vector fields are self-consistent on the quantum level. Next, I show that 

toroidally compactified Kaluza-Klein theories of scalar and vector fields cou- 

pled to quantized gravitation are also self-consistent, at least with regard to 

the purely zero modes of the functional measure factors. Finally, I demonstrate 

that toroidally compactified Kaluza-Klein theories of gravitation which are based 

on the canonical functional measure are self-consistent in this same way, but 

that such theories based on other functional measures for gravitation are not 

self-consistent. I note that these results partially rely on an interesting relation 

between massive and massless scalar, vector, and spin two fields. 

In Sec. 5, I use formal arguments to demonstrate that the specific quan- 

tum consistency results derived in Sec. 4 are actually automatic consequences of 

the structure of the canonical functional measure for integer spin fields, which - 
guarantees the quantum consistency of all such theories connected by field re- 

definitions. This fact strongly suggests that the canonical functional measure 

4 



is actually the correct measure for a quantum field theory, and indicates the 

quantum consistency of all Kaluza-Klein compactifications, as well as the Higgs 

mechanism, the background field method, and other common procedures in mod- 

ern quantum field theory. I also show that the canonical functional measures for 

half-integer spin fields and for auxiliary fields also ensure this automatic quantum 

consiste&y-for those theories as well. 

- 

In Sec. 6, I suggest that the non-trivial functional measure factors in Kaluza- 

Klein theories of gravitation may serve to stabilize the Casimir effect in the one- 

loop effective potential, preventing the compact manifold from shrinking to zero 

size. A direct computation seems to indicate that this stabilization does occur 

for the 4+1 dimensional case. 

Throughout this paper, I shall use units in which ti = c = k = 1 and 

all quantities are measured in GeV. My metric convention will be spacelike, 

qpv = diag(-l,+l, +l,. . .,-l), which is most convenient in Kaluza-Klein theo- 

ries. I will adopt usage of the rationalized Newton’s Constant, c = 87rG, with 

the n dimensional (rationalized) Planck Mass being given by Mplanck = (c)A. 

In general, Greek letters will range over the non-compact spacetime coordinates, 

written as z’s, small Latin letters will range over the compact spacetime coor- 

dinates, written as y’s, and capital Latin letters will range over all spacetime 

coordinates, written as z’s; tildes will denote the higher dimensional fields. 

2. Classical Features of Kaluza-Klein Theories 

Consider the classical theory of a massless scalar field in n + 1 dimensions. 

The action is 

s = J d”zdy[-&..&c3”~)] = J d”zdy [-;(a,&?‘& - ;(a&a~i)l, 

(24 

with 4 = J(z,y). N ow suppose that our (n+l)st spacetime dimension is compact, 

namely that the physical groundstate of our space (about which all of our field 
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configurations represent small perturbations) is not Mn+‘, the n + 1 dimensional 

Minkowski space, but instead M” x S’, the direct product of n dimensional 

Minkowski space with the circle. If the value of our scalar field is to consistently 

defined, it must be periodic in the spatially periodic y coordinate, i.e. &zQ, y) = 

&zQ, y + 27rL), where 27rL is-the circumference of the-compact-space S1.* Now 

if d(z, y) is hiecewise regular in the y coordinate, it can be expanded in a Fourier 

series 

&a?, y) = e q5(k)(sp)ezpiky~L. 
k=-oo 

(24 

It is important to note that each of the Fourier modes c$~)(z”) in the decompo- 

sition of rJ(zQ, y) is a completely independent field. Under this Fourier decompo- 

sition, our scalar action in (2.1) takes the form 

k2 
s = 2?rL J d’z(-~(a~~(o))(a’lO(o)) + 2 +,~(k))(@~(-k)) + 34(k)d(-k)] 3 

k=l 

(2.3) 

since JO 2rL dy ,,J+(k+k’)y/L = 2~L&..k,,&,+ 

Aside from the (classically) irrelevant factor of 27rL multiplying the action 

(which can be absorbed by a field redefinition), this is identical to the kinetic 

action for an infinite set of massive four dimensional charged scalar fields, with 

masses given by m2 = k2/ L2 and charges proportional to k. If we are confining 

our attention to energies low compared to the compactification energy scale l/L, 

all of the scalar modes except the zero mode would contribute negligibly to our 

results and can usually be ignored. This turns out to be a general result: in 

all Kaluza-Klein theories, whether involving interactions or not, the full kinetic 

term of the theory in n + 1 dimensions reduces in n dimensions to a kinetic 

term and a mass operator, with the masses of the eigenmodes being proportional 

-* Actually, we could also choose to define our scalar field as being “periodic with a twist” in 
the compact dimension, e.g. choosing J(zQ, y) = -J(F, y + 2sL). However, such twisted 
boundary conditions lead to the absence-of zero modes in the dimensionally-reduced version 
of the theory, resulting in a lack of low energy dynamics. 
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to the mode number and being inversely proportional to the compactification 

length scale. Assuming a sufficiently small compactification scale (on the order 

Of MPlanek) 3 we are usually justified in neglecting all but the zero mode portions 

of the Fourier expansion in our effective field theory at normal energies. 

Now consider the more complicated case of a massless v&tor field t?~ in - 

n + 1 dimensions. The full n + 1 dimensional action is 

S = J dmxdy[-;i’MNiMN] 

= d”zdy[-;(&.&r)(c+‘%iN) + &3,a,)(i%i”)], J (2.4 
where FMN = drip - ~NAM. Dimensionally reducing by deleting all but the 

zero mode (y independent) portions of our fields and absorbing the extra factor 

of 27rL into a classical field redefinition, we obtain (after suppressing the zero 

mode marker) our modified action 

S= dnx J - &i#ti~) + +i,)(Ki~). (2.5) 

Since our n + 1 dimensional vector field transforms under the n dimensional 

Lorentz group as 

rameterize it as 

the combination of an n-vector and an n-scalar, we may pa- 

AM = @(Ap, db), (2.6) 

with 4 being a scalar and a,b being arbitrary constants. Inserting this Kaluza- 

Klein ansatz into our n + 1 dimensional action (2.5) yields 

L = -:(a + b)2rj2as2b-2(i3,qS)(c3~~) - i(a,A, - &A,)(8‘AV - i?‘A’) 

+ ~&#,24-2(~,r$)(AP~v~ - A”a“4) ’ 
2 

+ aAyqbfLuml (i3pr$)(c3VAp - PA”) 

(2.7) - 
Since a, b are arbitrary, they may be chosen for purposes of convenience, and the 

most convenient choice is clearly a = 6 and b = 1, which eliminates scalar-vector 
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mixings and produces a particularly simple for the dimensionally-reduced action, 

namely 

J d%dy [--+&MN ] H / dnz[-fqpv - +$)(aqb)]. (2.8) 

Thus, the theory of a free, massless (n + l)- vector particle reduces to the theory 

of a free, massless n-vector particle and a free, massless n-scalar particle. This is 

a very neat and elegant result. 

Similar results can be found in the case of the 

spin two field such as gravitation. Let us begin with 

for gravitation in n + 1 dimensions 

dimensional reduction of a 

the Einstein-Hilbert action 

S = se& dnxdy (-@2ii. 
J 

(2.9) 

The most general possible parameterization of our n+l dimensional metric tensor 

in terms of n dimensional generally covariant fields of rank two, one, and zero (i.e. 

fields which transform under the n dimensional general coordinate transformation 

group) is 

(2.10) 

where A(a), B(a), C(O), and D(a) are arbitrary scalar functions. Each compo- 

nent of the n + l-metric tensor may be expanded in harmonics of the compact 

dimensions, in this case a Fourier series 

(2.11) 

- 
Now if we substitute this expansion into (2.9), apply the orthonormality con- 

dition for the Fourier modes, and delete all but the zero mode terms from our 
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effective action, we will obtain the dimensionally-reduced form of the gravita- 

tional action. In general, this will be a very complicated expression, involving 

a wide range of mixings and interactions between the scalar, vector, and tensor 

fields. However, certain choices of our four arbitrary scalar functions will simplify 

this result considerably. ,- - T 
_ 

First, if we choose scalar functions which satisfy the condition D(a)B(a) = 

(C(O))~, our zero mode n+ 1 dimensional volume measure factorizes conveniently 

as 

jj G  det(&fN) = (A(a))n+‘D(a)det(gp,) G  (A(a))n+lD(o)g. (2.12) 

Without this factorization, our n dimensional action would contain an infinite 

number of field interactions of arbitrarily high order.* Next, we can eliminate 

explicit scalar-graviton mixings by choosing to impose the condition 

b - lM4 + +I = 0. 
44 WJ) 

Finally, we can eliminate explicit vector-scalar mixings by choosing to set 

W) cw -=- B(4 w - 

(2.13) 

(2.14) 

These three conditions combine to yield the unique relationships (modulo two 

unimportant constant factors which can be absorbed into field redefinitions) 

(A(o))+-‘) = B(a) = C(a) = D(o). (2.15) 

If we choose to relabel B(a) = C(a) = D( Q as IJ, we obtain the uniquely ) 
- 

* This important condition is maintained in most recent papers on Kaluza-Klein theories, 
but unfortunately is carelessly ignored in one of the most influential [2]. 
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convenient gravitational Kaluza-Klein ansatz 

which yields the relations Y - e 

i s det(iMN) = usdet(g,,), 

and 

-MN = aA PLY -A” 
9 

-Ap ;+A,A” > ’ 

These produce the dimensionally-reduced action 

(2.16) 7 

(2.17) 

(2.18) 

S = $/dnz (-g)i/2[-R - aoF,,F’Y - ~(~)“p$pu]s (2.19) 

This is the actual justification for the n = 4 gravitational ansatz presented in (41, 

and gradually becoming more popular in the literature. 

Thus, on the cZassicuZ level, we may choose a form of the Kaluza-Klein ansatz 

in which a field theory of pure gravitation in n + 1 dimensions looks like a field 

theory of gravity, electro-magnetism, and a massless scalar field, all in n dimen- 

sions. 

The above results were based on the dimensional reduction of pure n + 1 

gravitation around an Mn x S’ physical groundstate, but use of the preceding 

procedures for the reduction of scalar and vector field theories, along with simple 

iteration and field redefinition allows us to similarly obtain the dimensionally- 

reduced form of gravitation around an Mn x (S1), groundstate. Such a toroidally 

compactified Kaluza-Klein theory yields n dimensional gravitation, m free n di- 

mensional abelian vector fields, and v free scalar fields. It should be noted 

that all of these theories actually do involve implicit scalar-tensor mixings in the - 
field equations. The scalar fields correspond to dilation operations on the field 

theory. 
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3. Quantum Kaluza-Klein Theories 
and the Functional Measure 

Most of the above results for classical Kaluza-Klein theories were based on 

the special features of classical field theory, not least of which is the ability 

to make arbitrary field redefinitions of our canonical variables. In a quantum 

field theory, such field redefinitions must be matched by corresponding changes 

in the functional measure associated with the path integral formulation of the 

theory, and, in general, do not merely change the form of the naive action alone. 

Extra terms in the measure (or equivalently in the effective action) must be 

taken into account if the quantum versions to the two theories connected by field 

redefinitions are to be identical [7]. 

This very important feature of quantum field theories-the issue of the func- 

tional measure and its behavior under field redefinitions-has been ignored in 

the vast majority of discussions concerning quantum field theory. This is for 

two very simple reasons. First, the functional measure for most ordinary field 

theories is trivial, with the measure factor being equal to unity. Second, and 

more importantly, any non-trivial measure factors are formally set equal to unity 

under several very popular regularization schemes such as dimensional regular- 

ization or zeta function regularization. The dominance of these regularizations 

has virtually eliminated functional measure factors from the recent, thoughts of 

most theorists. 

However, as has been argued elsewhere [8,9], d imensional regularization may 

be inappropriate in situations in which the underlying background topology of 

spacetime is not flat. This is because the dimensionality of such a spacetime 

may be extended in several different ways, with the regularized values of diver- 

gent quantities being dependent on the extension chosen, and hence ambiguously 

defined. For example 

M4 x S’ I-+ MW x S’ or M4 x SW or M4 x (S1)w, (34 
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or any combination of these. Furthermore, dimensional regularization does not 

respect the chiral or conformal symmetries of our theory. Zeta function regu- 

larization may be understood to suffer from these same difficulties because of 

its underlying similarity to dimensional regularization [9], and is anyway self- 

consistent to only one loop. For these reasons, weshould hesitate to ignore 

divergent terms which are equated to zero under these regularizations, but which 

survive under other, more intuitively simple regularizations such as working on 

a lattice or using a simple cut-off. Maintaining such a cautious approach, terms 

derived from the functional measure of a quantum field theory should be retained. 

Following this line of reasoning, let us consider the Lagrangian path integral 

formulation of a quantum field theory based on some field 6 in n+m dimensions. 

Formally, we have 

J [d&v 
i 

Z= J dnzdmyi[ (j] , P-2) 

with 2 being the generating functional for our theory and with [ds] being the 

correct functional measure to be used (we will discuss its form later on). Now 

suppose that we compactify our theory to one in n dimensions via the Kaluza- 

Klein approach (i.e. enforce periodic boundary conditions on m of the spatial 

coordinates in the argument of 6, changing our background space to Mn x Bm, 

with Bm being some m dimensional compact manifold). Under this compactifica- 

tion scheme, our original field 6, which transformed under some representation 

of the appropriate symmetry group in n + m dimensions will decompose into 

some combination of independent fields Qk, each of which transforms under the 

same symmetry group in n dimensions, namely 

Q= Q[Q~,...,Q~. 

I)epending on the symmetry properties of the compact space Bm, these new 

fields Qk may also transform under additional “gauge symmetries.” All of this 
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corresponds to the factorization of ~MN into a combination of gPv,Alr, and4 

which we saw in our previous section. 

Now if the process of Kaluza-Klein compactification is to be consistent, the 

quantum theory based on the generating functional in (3.2) should be identical 

to the quantum theory obtained by inserting the field redefinition ansatz (3.3). 

This requirement is simply that 

2 = [dg]ezp 
i dnzdmyf[o] 

J = [dQk]ezp J i dnzdmyL[Qk] J , (3.4 
with [dQk] being the functional measure for the quantum field Qk. In this ex- 

pression, L [ Qk] is simply defined by 

l[Qk] = f[@&]], (3.5) 

and, as discussed in our preceding section, our field redefinition ansatz Q[Qk] 

is chosen in order to yield a convenient form for L (or more precisely, for the 

dimensional reduction of Z).* 

However, this classical consistency requirement that (3.5) be satisfied is not 

sufficient to assure that (3.4) is satisfied; the functional measures must also be 

equal. That is, [dd] must factorize into 

Id] = [dQl] - - - [ dQi] . (3.6) 

Unless this condition is satisfied, the classically correct dimensional reduction 

of a Kaluza-Klein theory will be destroyed by extra terms in the effective action 

corresponding to discrepancies in the functional measure. Such terms would enter 

at one loop, and since they derive from the functional measure can presumably 

be interpreted as quantum anomalies of the theory [12]. 

* Actually, this statement is not quite right. Contrary to popular wisdom, and the claims 
- of Coleman [7] and ‘t Hooft [lo], there are actually extra terms appearing the effective 

Lagrangian after such a change of variables, as was shown in a paper by Gervais and 
Jervicki [ll] which has received insufficient notice. However, these additional terms enter 
only at two loops and higher, so I will neglect them in the context of this paper. 
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Next, the behavior of the functional measure under the process of dimensional 

reduction itself should be examined. Our new fields Qk can be expanded in 

harmonics of the compact manifold, which are eigenfunctions of the compact 

portion of our kinetic operator 

- &b&Y) = c Q :(+%i- - 
s 

(3.7) - 
R 

with fi labelling the particular harmonic h(y). D imensional reduction is achieved 

by performing a functional integration over all the non-zero modes, and discard- 

ing the additional terms produced in the effective action, which are suppressed 

by powers of the compactification length scale. The surviving portion of the 

Lagrangian will contain terms involving only the y-independent zero mode fields 

and which are of mass-dimension n or lower, n being the dimension of our non- 

compact manifold. 

Now since the harmonics on Bm constitute a complete orthonormal basis set 

of functions, the expansion in (3.7) is perfectly legitimate for all configurations 

Qk (z, y) which are piecewise regular in y. Furthermore, our functional measure 

ranging over all coordinate points can be rewritten as a functional measure rang- 

ing over all non-compact coordinate points and over all eigenmodes ?i. That 

is 

However, for the dimensional reduction scheme to produce our desired zero mode 

theory without being destroyed by anomalies corresponding to functional measure 

discrepancies, our functional measure must factorize into 

[do] = n[dQt] = l--&Q:]. 
k k,fi 

(3-g) 

x should be noted that the functional measure for one field mode can (and 

generally does) contain other modes and other fields. 
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Although it is most reassuring if our functional measure factorizes exactly, 

any discrepancies in the non-zero mode field factors should not be viewed as 

being as serious as discrepancies in the zero mode field factors. This is because 

attempts at realistic Kaluza-Klein theories are invariably based on compactifi- 

cation scales close to the Planck Length. Therefore, the effects of higher mode 

fields in-the action becomes significant only at energy scales for which the (com- 

pletely unknown) higher mass-dimension terms of full quantum gravity are also 

becoming significant, and our existing field theory is becoming unreliable. Fur- 

thermore, most of the specific functional measures derived in Ref. [9] which will 

be utilized below are only valid for energy scales low compared to MPianck, and 

hence low compared to our compactification scale. 

4. The Quantum Consistency of Kaluza-Klein Theories 

The abstract results presented above will become much more clear once we 

investigate the consistency of specific Kaluza-Klein theories. Let us begin with 

the simplest possible theory, a massless scalar field in n + 1 dimensional space, 

the quantum version of our first example in Sec. 2. We have 

with 

J i dndy&$] 
Z = [d&q J . 

(4.1) 

(4.2) 

Now the functional measure for a scalar field (in the absence of quantized gravi- 

tation) is trivial, being the flat measure [9] 

[dcj] = n d&z, y) = n d4(k)(Z) = n[dd’k’]- 
24’ z,k k 

(4.3) 

- 
Thus, the functional measure for a compactified n + 1 dimensional massless scalar 

field factorizes exactly into the correct functional measures for each of the massive 

15 



n dimensional scalar field modes. The Kaluza-Klein procedure is perfectly con- 

sistent on the quantum level, being unbroken by functional measure discrepancies 

in this case. 

The analysis is only slightly more complicated for the case of the compacti- 

fication of a massless vector -field in n + 1 dimensions. As shCwn in Sec. 2, we 

have - -- 

with the most convenient parameterization of 2~ being 2~ = (A,, 4). Now the 

functional measure for a massless vector field is once again flat [9], being given 

by* 

[d&l = n d,iM = n dA,dq5 = n dAp)dq5(‘) = n[dAf1][dq5(k’]. (4.5) 
Z,Y w 0 k 

Again, the functional measure factorizes perfectly, this time into the product of 

the measures for each mode of the n dimensional vector and scalar fields obtained 

by the Kaluza-Klein procedure. This demonstrates the quantum consistency of 

the Kaluza-Klein compactification of a massless vector field in n + 1 dimensions. 

Taken together, the preceding two results may be combined and iterated to 

prove the quantum consistency of the toroidal compactification of a massless 

vector theory in n + m dimensions. 

Now let us turn to the somewhat more complicated case of the compact- 

ification of a massless scalar field coupled to quantized gravitation. (For the 

moment, we are simply interested in checking the quantum consistency of the 

compactification procedure for the scalar field, postponing the question of the 

- * Actually, the functional measure is more precisely given by ns,y d&dqdq, with q and 
‘1 being the Faddeev-Popov ghost fields. However, for abelian gauge fields uncoupled to 
quantized gravitation, the functional integrations over the ghost fields are trivial and can 
be absorbed into our overall normalization factor. 
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quantum consistency of the gravitational compactification)..- Our Lagrangian in 

n + 1 dimensions is 

with the functional measure for the scalar field given by _ _ 
- 

[dJ] = fl(i00)‘/2(j)1/4d& 

(4.6) 

If we expand out 2 using the parameterization derived in Sec. 2, we obtain 

Now the functional measure for our compactified theory depends only on those 

terms in the Lagrangian which are quadratic in time derivatives. Therefore, only 

the first term in (4.8) contributes, and this term can be rewritten in an eigenmode 

basis as 

The functional measure for these scalar modes should be given by [9] 

[fl dd(k)] = Il(detk,k,(g00g1/2)(k+k’))1/2 n dqdk) 
k z k 

(4.10) 

Determining whether the expression in (4.10) is equal to (4.7) appears some- 

what difficult because of the complications involved in transforming (4.7) into 

an eigenmode basis. Therefore, for now let us merely check the equivalence of 

the two expressions in their zero mode sector, i.e. show that the dimensionally - 
reduced theory has the correct zero mode functional factors (later on, we shall 

demonstrate their exact equality). 

(4.7) 
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To check this equality in purely zero mode functional factors, we simply apply 

the process of dimensional reduction to those fields in the Lagrangian which give 

rise to the functional measure factors, in this case the metric tensor, retaining 

only the purely zero mode components. The functional measure in (4.7) assumes 

the form T - s 

[dJ] = n(gm)1/2g114dq5(k), (4.11) 
z,k 

where we have suppressed the zero mode indices of our metric field. Likewise the 

remaining portion of (4.10) is 

[J-pd’k’l = TJl(J-J( goog1/2)‘/2)(n d4ck)) = ~(g00)1/2g1/4dqS(k) = [dJ], (4.12) 
k 2 k k z,k 

and the two functional measures are equal, implying the quantum consistency 

of a scalar Kaluza-Klein theory, at least with regard to the purely zero mode 

portion of its functional factor. 

The reason for this equality is very simple. If we simply discard all but the 

zero mode portion of our metric field in (4.6) and (4.8), it is easy to see that 

the crucial requirement for our n + 1 dimensional functional measure to factorize 

properly is that the functional measure factor for a massless scalar field theory in 

n + 1 dimensions be equal to the functional measure factor for a massless scalar 

field theory in n dimensions and also equal to the functional measure factor for 

a massive scalar field theory in n dimensions. That is, if 

then our consistency requirement is that 

(n+l) (n) 
M4;M=0 

(n) 
= M&M=O = M+;M#O- (4.14) 

snce Mthzo = M$$+o = (goo)1/2g’/4 fo r all dimensions n, this consistency 

condition is satisfied. Thus the functional measure factor for our n+l dimensional 
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massless scalar field factorizes into the product of the functional measure factors 

for our massless zero mode and massive higher mode scalar field theories in n 

dimensions. 

Simply iterating the above procedure demonstrates the quantum consistency 

of a toroidally compactified- n + m dimensional scahw fleld theory coupled to 

quantized gravitation. 

Similar relations demonstrate the quantum consistency (in the zero mode 

metric sector) of a compactified massless vector field coupled to gravitation. The 

canonical functional measures for massless and massive vector fields in n dimen- 

sions are given by [9] 

Mt)M=~ w; 
= (gca)~g~ and M~~iMzo = (goo)ygT, 

implying that 

Mt+-vo #A; - = (Mt’ M-0) (Mr’=,) = Mtn) r; - ; A,;iU#O' 

(4.15) 

(4.16) 

These relations ensure that the zero mode portion of the n dimensional metric 

field factor in the functional measure for a massless n + 1 dimensional vector field 

factorizes into the product of the factors for the functional measures of each of 

the n dimensional modes. (The zero mode portion of the action contains separate 

massless and scalar vector fields, while all the non-zero modes consist of massive 

vector fields, produced by a Higgs mechanism, just as in the case of Kaluza-Klein 

gravitational non-zero modes [4].) Th e zero mode portion of the (n + 1,n + 1) 

component of the n + 1 metric tensor (the u of Sec. 2) also factorizes correctly. 

Iterating these results for the quantum consistency of the compactifications 

of vector and scalar fields demonstrates the quantum consistency of all toroidally 

compactified massless vector fields in n + m dimensions. 

Now let us turn to the slightly more complicated process of checking the 

quantum consistency (with regard to purely zero mode functional factors) of a 
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compactified gravitational field. Using the parameterization of the n + 1 dimen- 

sional metric tensor derived in Sec. 2, our full action has the form 

- 

s= dnzdy ; -$(-#12ii 
7 - 

= J d”xdy - -&-g)l/2B - --&(-g)1~2F~vFpv 
(4.17) 

+ terms linear or lower in ~1 derivatives. 

Now since we are only interested in checking the equality of purely zero mode 

functional measure factors, we may assume that all fields except those acted 

upon by derivatives are purely zero mode, i.e. are reduced to their zero mode 

components. By using the techniques in 191, we find that the purely zero mode 

functional measure factors for each mode field are given by 

[&rtk)] = ~(g~)1/2g1/4u-l&,(k) 
2 

(4.18) 

(Actually, just as in the vector case, the non-zero modes of u and A, are eaten 

by the gauge components of the non-zero gPV modes, which become massive, in a 

Kaluza-Klein version of the Higgs mechanism as pointed out in 141; but this has 

no effect on the functional measure factors.) On the other hand, the zero mode 

canonical functional measure factor for the n + 1 dimensional gravitational field 
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is given by 

(4.19) 

where the second line incorporates the functional measure factors obtained from 

the Jacobian of our change of functional variables (with only the zero mode 

portion of the Jacobian being retained). Now the functional measure factor 

in (4.19) is equal to the product of the functional measure factors in (4.18), 

implying the quantum consistency of the compactification of an n+ 1 dimensional 

gravitational field. 

Once again, combining and iterating the above results for gravitational, vec- 

tor, and scalar fields demonstrates the quantum consistency of toroidally com- 

pactified n + m dimensional gravitation. 

It is interesting to note that the above consistency results are partly a conse- 

quence of the very strong similarity between massless integer spin fields in n + 1 

dimensions and massive fields of the same spin in n dimensions. For scalar, 

vector, and spin two fields, the functional measure factors in the two cases are 

identical, as are the number of physical polarizations, i.e. on shell states. This 

appears to be a general consequence of the structure of the Lagrangian and the 

form of the canonical functional measure for integer spin fields. 

It is important to point out that the above quantum consistency proof for 

a compactified gravitational field is not a trivial result, nor is it an automatic 

consequence of any functional measure we might choose. It is a direct consequence 

of the form of the canonical functional measure for gravitation, and if we had 

instead chosen to use any of the other functional measures for gravitation which 

are given in the literature, we would have discovered the quantum inconsistency 

of Kaluza-Klein theories based on a compactified higher dimensional gravitational 
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field. For example, the gravitational functional measure suggested by Fujikawa 

[l3] has the form 

(4.20) 

- - 
and is derived by naively assuming the absence of any non-trivial point permuta- 

tion Jacobian under the BRST extension of a general coordinate transformation. 

Even if we removed the g O” functional measure factors from our vector and scalar 

functional measures, this Fujikawa measure would still yield discrepancies in the 

functional factors of Q after compactification, resulting in the quantum inconsis- 

tency of Kaluza-Klein theories. The gravitational functional measure sketched 

out by Dewitt [14] 

(4.21) 

would also produce discrepancies in the functional measure of Kaluza-Klein com- 

pactifications of gravitation. It is important to emphasize that these discrepancies 

are in the zero mode sectors of the compactified theories, and hence would be 

present at low and medium energies; they cannot be argued away as being offset 

by the new physics entering at Planck Mass energy scales. 

5. The Canonical Functional 
Measure and Field Redefinition 

We have just seen that the choice of the canonical functional measure for 

gravitation appears to result in the quantum consistency (at least with regard 

to purely zero mode functional factors) of toroidally compactified Kaluza-Klein 

theories, while using for example the Fujikawa or Dewitt gravitational functional 

measures does not. We have also seen that the canonical functional measures for 

scalar and vector field theories result in the quantum consistency of their toroidal 

compactifications as well. 
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This is no accident. As we are about to see, these results follow as special 

cases of the general transformation properties of the canonical functional measure 

under field redefinitions, which formally ensure the quantum consistency of any 

two theories connected by field redefinition. This general conclusion will also 

establish the quantum consistency of Kaluza-Klein theories with regard to non- F - s 
zero mode functional measure factors and non-toroidal compactifications as well. 

In this section, capital Latin letters will represent completely general field indices. 

Consider a Lagrangian f! containing quantum fields QA (which may be either 

bosonic or fermionic) . If these quantum fields QA have integer spin and are 

physical (i.e. propagating), the canonical functional measure for this theory has 

the form 

(54 

with sdet being the superdeterminant. Now suppose that we choose to write our 

theory in a new form by using the field redefinition QA = QA[QB]. The new 

Lagrangian for our theory is simply defined by ~[QB] E E [QA[ QB]] ,* and the 

canonical functional measure for our new theory is given by 

Since the Lagrangian of our two theories connected by field redefinitions are 

defined to be identical, our two quantum theories are identical, i.e. have the 

same generating functionals 

if and only if the two functional measures (5.1) and (5.2) are identical. Such a 

quantum consistency condition is automatically satisfied by the canonical func- 

tional measure. 

* Actually, as noted previously, this naive change of variables procedure is not quite right, 
and extra terms must be added to the effective action at two loops and higher. 
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This is very easy to show. If our quantum field redefinition is to be well- 

defined, it must be non-singular, implying that the superdeterminant of its Jaco- 

bian is non-zero, and the change of functional variables may be inverted to yield 

QB = QB[~A]- Th ere ore, f using the chain rule, the functional measure factor in 

(5.1) can be rewritten as ,- - m 

= sdet(f%)sdet( &j2’ 
+oQc>WoQd 

)sdet(f%) 

(5.4 
On the other hand, the remaining piece of the functional measure in (5.1) trans- 

forms as 

with the new measure factor produced being the superdeterminant of the field 

redefinition Jacobian. Combining these two results, we find that 

[doA] = ~[sdet(6~aoQ~~~a0QB~)]1’2sdet(~)sdet(~)dQA 

=;I[ ( 
112 

sdet 
s2L: 

~(~oQA)~(~oQB) )I Q d A 
z 

F-6) 

= [@A], 

With the two extra Jacobian factors exactly cancelling out. 

This automatic consistency of the canonical functional measure under change 

of field variables ensures that any two field theories connected by field redefini- 

tions both have the same functional measure and are hence identical on the 

quantum level. Among other results, this formally establishes the quantum con- 

sistency of the Higgs mechanism, the background field method, the Kaluza-Klein 

ansatz, non-linear sigma models, and many other standard procedures in modern - 
quantum field theory which either implicitly or explicitly rely upon field redefi- 

nition. 
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Exactly similar arguments may be used to demonstrate the quantum consis- 

tency of the canonical functional measures under field redefinitions for the cases 

of half-integer spin fields and non-propagating auxiliary fields. For these cases, 

the relevant identities are [9] 

- - (&A] = n [sdet ( &foGB))] 1’2d& 
=;I[ ( sdet 

s2t l/2 

~QA~(~oQB) )I Q  d A’ 
2 

= [dQA] 

and 

(5.7) 

(5.8) 

= [&?A] 

Taken together, these results strongly suggest that the canonical functional mea- 

sure, besides being the most elegant and simplest to derive, is also the correct 

functional measure for a quantum field theory [9]. 

Although the above manipulations are purely formal and abstract, they are 

buttressed by the special case of the quantum consistency of various toroidally 

dompactified Kaluza-Klein theories which was worked out and checked at length 

in Sec. 4 above. Furthermore, purely formal arguments are necessitated by the 

absence of any completely satisfactory means of regulating the Feynman path 

integral, and as noted by Dewitt [14], they tend to acquire a consistency and 

logic of their own. 

- 
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6. Stabilizing the Kaluza-Klein Casidr Effect 

As previously mentioned, realistic Kaluza-Klein theories require that the com- 

pact manifold have an extremely small size. This is because the coupling con- 

stants 9 for the gauge forces produced by the compactification are each given by 

the ratio of 27ra to a particular mean root squareicircumfefence of the com- - 
pact manifold [3]. In order for Kaluza-Klein theories to yield any of the coupling 

constants observed in nature, the circumferences of the compact manifold must 

be no more than one or two orders of magnitude longer than the Planck Length. 

A plausible explanation for the extremely small size of the compact manifold 

follows as one of the most interesting results of an analysis of the quantum dy- 

namics of Kaluza-Klein theories. As Appelquist and Chodos first demonstrated 

[4], the one loop effective potential for a Kaluza-Klein theory of gravity exhibits 

the Casimir effect, causing any compact manifold to shrink in size. In particular, 

for a 4 + 1 dimensional compactification, they obtained the expression 

G vcff(Qc) = 8R + 5p 
(2xa:‘3R5)5 ’ 

(6-l) 

with L = 27rc~~‘~& being the effective circumference of the compact dimension, 

p = -0.394, and he being our momentum-space cut-off. The first term of this 

potential has the form of a large induced cosmological constant, while the second 

term represents an attractive potential, causing the size of the compact manifold 

to shrink down to a minimal value. This is merely a form of the well-known 

Casimir effect, caused in this case by the vacuum fluctuations between the two 

“plates” y = 0 and y = 27r&. 

While this result is desirable in some ways, it does present certain difficul- 

ties. The large induced cosmological constant term is endemic to all theories of 

quantized gravitation, and must simply be “renormalized” to the observed value 
- 
of zero. However, the attractive potential itself also presents a problem since 

its value is minimized only when the radius of the compact manifold has shrunk 
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completely to zero. This may simply be an artifact of our one loop quantum 

gravitational calculation, and it is possible that higher loop terms in the effective 

potential would serve to stabilize the theory at a finite size radius. But such 

higher loop contributions would only become non-negligible at energy scales for 

which the full theory of quantum gravity becomes important, and this raises se- 

vere problems. First, the resulting size for the stabilized compact radii would 

presumably be equal to or smaller than the Planck Length, resulting in gauge 

coupling constants much too large to correspond to those observed in nature. 

More importantly, our entire Kaluza-Klein analysis would probably break down 

at such energy scales. We do not yet possess a full theory of quantum gravity, 

and the additional Planck Mass suppressed terms in the effective action expan- 

sion of full quantum gravitation are completely unknown to us; these additional 

terms would contribute significantly to Kaluza-Klein theories at Planck Mass 

energy scales and above. Therefore, our Kaluza-Klein picture should only be 

taken seriously at length scales for which the higher loop quantum effects can be 

ignored. 

The instability of the one loop effective action appears to be a problem en- 

demic to Kaluza-Klein theories, whether based on toroidal compactification or 

not [4-51. Attempts [6] h ave been made to cure this instability through the ad- 

dition of large numbers of scalar or spinor matter fields to the theory. The one 

loop contributions of these additional fields can stabilize the effective potential at 

a compact circumference greater than the Planck Length. But the sheer number 

of these additional fields which must be “put in by hand” to balance the one 

loop attractive gravitational contribution is prohibitively huge, ranging in the 

hundreds or thousands. * The need for so many extra matter fields completely 

negates the principles of simplicity and elegance which were the chief motivations 

for Kaluza-Klein theory in the first place. 

* This fact has led to Mark Rubin’s aphoristic observation that “one graviton is worth ten 
thousand scalars.” 
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However, all the above derivations of the one loop effective potential com- 

pletely ignore contributions from the functional measure,’ and it is possible that 

such contributions may serve to stabilize the Casimir effect at a circumference 

longer than the Planck Length. This possibility is quite easy to understand. Our 

quantum generating functional (or partition function)hm the fDrm 

(6.2) 

If the functional measure contains positive powers of the dilaton scalar Q which 

parameterizes the size of our compact manifold, this will reduce the relative 

weighting for those total field configurations in which u is small, partly off-setting 

any contrary effect from the action itself. 

This intuitive argument can be made precise by calculating the additional 

terms in the one-loop effective potential which derive from the functional mea- 

sure. Since the functional measure is independent of ti, it enters the effective 

action as a one-loop effect; this can equally be seen by using measure ghost 

fields to bring the functional measure into the effective action [4], and by noting 

that the resulting diagrams (with no external ghosts) enter at one loop. For the 

definition of the one-loop effective potential used in Ref. [4], we have 

Z[a,] = exp 
-V,~,(U,)U;“~ 

(6.3) 

Now if we use the canonical functional measure for gravitation in 4+ 1 dimensions 

which was given in (4.1), we can follow the exact procedure of Ref. [4] to calculate 

t Appelquist and Chodos [4] examine the measure only to dismiss it (partly because of the 
conflicting functional measures suggested by Fradkin and Vilkovisky, ‘t Hooft, and Dewitt 
(14-151); this dismissal is justified by the use of dimensional or zeta function regularizations, 
which eliminate any measure factors. Yasuda [16] claims to show that no terms from the 
functional measure appear in the effective potential for quantum gravity, but his analysis is 

- based on the use of Fujikawa’s gravitational functional measure, which we have seen above 
is probably not correct. In most of the remaining papers on the Kaluza-Klein Casimir effect, 
the functional measure is never even mentioned. 
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the contribution of this measure factor to the one-loop effective potential. Just 

as in Ref. (41, the zero mode fields and ghosts do not contribute (their apparent 

contribution is exactly cancelled by their meaSure factor contribution). The non- 

zero field modes contribute a factor of ezp[6 Cn CL Zna,] to Z[o,], partly coming 

from the initial measure and- partly from a change ofvariables Jacobian factor. 

Finally, the- non-zero ghost modes contribute a factor of ezp[ - f En Ck Zna,] to 

Z[a,]. Thus, the total additional factor contributed through measure effects is 

16 c c ln(c~,“~) 
exp n k . (6.4 

We can freely multiply this factor by a numerical constant if we wish (since such 

a constant can always be absorbed into the normalization of Z) yielding 

16 c c lr~(27ra,“~R~) 
exp n k 

Next, we can use the relation (s d4x)&$ = 1 to rewrite our factor as 

16 c & / -f%n(21&/~R~) 1 d4xdy 
exp n 5 (27g4 

, 

which corresponds to an additional term in our effective potential of 

AV,,,(a,) = -16x g / d4k: 
5 (27g4 

ln(27n~;‘~R~). 
n 

(6.5) 

w-3 

Now if we cut-off our momentum at A = o,“~Ao, with A0 being the cut-off in 

our standard coordinate system (a, = l), we have [4] 

(6.7) 

and if we cut-off our infinite mode sum at mode numbers N whose masses are 
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equal to this energy scale, N = 2~Rsai'~Ao, we obtain -. 

A’a-2/3 W,f(oc) = (-l~)(d’3~o)($) ( i2i2 
5 

)Zn(27r0~‘~R~) 

A5 
= --&z(27ra, 

9r2 
1’3R5). F - m 

(6.8) 

Therefore, the total one-loop effective potential, including both the new term 

and the terms previously derived in Ref. [4] is 

v,ff (4 
A: w AzZnL 

=&+L5-*2 ’ (6.9) 

with ,0 = -0.394 and with L = 27r0i’~R5 being the effective circumference of the 

compact manifold. This potential has its minimum at 

L = (-25~~p)l/~L 
Ao 

w 2.50&. (6.10) 

Our Casimir effect does stabilize, but the stability point is cut-off dependent. 

Such a cut-off dependent result is not as bad as it might seem. Since we lack a 

full theory of quantum gravity, we must anyway cut-off all our calculations around 

the Planck Mass in order to avoid having to deal with the higher-mass-dimension 

terms in the effective action expansion of quantum gravity. Furthermore, Hawk- 

ing has speculated that the formation of quantum black holes might provide a 

natural Planck Mass cut-off for quantum gravity [17]. In any event, it is encour- 

aging that the above calculation yields a stability length which is (somewhat) 

longer than our cut-off lengthscale; if it had been shorter, our approximation 

would have been inconsistent and the result completely untrustworthy. Even for 

the above stability length, our entire calculation should not be taken too seri- 

ously. This is because our gravitational functional measure was only derived for 

Ggth scales long compared to the Planck Length, and we are extending its use 

to scales of comparable length. 
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If we were to choose our cut-off at A0 = (8zG)- li2, the (rationalized) Planck 

Mass, which is the natural mass scale for quantum gravity, the value of the gauge 

coupling fine-structure constant o(g) = g which results is almost exactly one. 

This is not too close to the realistic value of e.g. cy(g) w 0.02 for our known 

forces at the GUT scale, but such a wide discrepancy is not-surprising given 

the toy model nature of our 4 + 1 dimensional theory and our speculative choice 

of a gravitational cut-off energy. Calculations based on a more realistic choice 

of compact manifold might yield larger values for the numerical coefficient in 

(6.10), and hence smaller coupling constants for the theory. Still, the coupling 

constant obtained by the simple analysis above is generally more realistic than 

those obtained in Ref. [6] through the addition of 1000 extra species of spinor 

matter fields into the theory. This is highly encouraging. 

- 
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