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Abstract

Progress in fundamental physics requires new experimental data. The point of view of this thesis is

that there are a finite, manageable number of signals that new physics could produce in the laboratory,

and that each of them can be precisely searched for by dedicated experiments using modern technology.

For example, axions only have three qualitatively different leading couplings, to photons, gluons, and

fermions. I will discuss a new way to probe axion dark matter through each of these couplings, using

excited superconducting cavities for the axion-photon coupling, nuclear spin-polarized haloscopes for

the axion-gluon coupling, and magnetized multilayers for the axion-fermion coupling. Dark matter

could also exist in the form of macroscopic clumps, or light particles. In the former case, I show that

collisions of these clumps with stars produce distinctive transients, which can be effectively searched

for with ultraviolet telescopes. In the latter case, I show that production of dark matter particles

through the decays of light vector mesons can be detected in “missing energy” experiments. In all of

the cases discussed, it is possible to improve sensitivity to these effects by orders of magnitude, using

only existing technology. Finally, I will discuss the intriguing possibility that the known massless

particles in nature actually have “continuous” spin. Though most effects of new physics emerge in

the ultraviolet, I will show that this particular question can only be settled by looking in the far

infrared, motivating an entirely new class of experiments.
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Chapter 1

Introduction

1.1 Progress and Stagnation

What is the root cause of progress in fundamental physics? We imagine a balding professor sunk deep

in an armchair. Hours pass with no discernable motion until – suddenly – the moment of inspiration

arrives. At an instant, a totally new conception of reality is born, fully formed, owing nothing to

anything but the physicist’s own creativity. He knows, from its mathematical perfection, that his

idea must be right. All that’s left to do is to collect the Nobel prizes.

Such a corny picture would be offered by the vast majority of laypeople, and even the majority

of physics students. The wiser students might offer a more refined story: creativity comes from

collaboration. In this more modern picture, we imagine several physicists from around the world,

with hair, huddling together while sipping espresso in a beautiful sunlit room. Chalk dust flies until

the true description of Nature appears on the board. The new friends triumphantly elbow bump and

submit a paper to arXiv with an alphabetically ordered author list.

In my opinion, both of these pictures miss the true root cause of progress, which has more to do

with the electricians installing power lines and solar panels outside the physics building. The problem

is that it is very, very difficult to guess laws of nature, because of the combinatorial explosion of

the number of possibilities, and the mental effort required to investigate each one. When we look

at the history of physics we find (with perhaps the sole exception of general relativity) that every

correct guess came only when it was forced by experiment. Experimental null results rule out entire

classes of theories, anomalies sharply focus attention on a place existing theories broke down, and

when the way forward is unclear, a large collection of new data presents patterns to explain. After a

huge number of incorrect guesses, now forgotten, the correct theoretical guess is finally made once it

becomes one of the two or three simplest remaining options. (And of course, it isn’t even identified

as the correct one until later experimental data arrives.) This is the story of the Standard Model,

which was assembled by dozens of theorists, one particle at a time.

1



CHAPTER 1. INTRODUCTION 2

So we have experimentalists to thank, but experimentalists in turn rely on the level of technology

and industrial production in their society [89], and external financial support. This is illustrated by

countless examples from the history of physics. The Carnot cycle came from the mind of Carnot

in 1824, but it was a consequence of exposure to a variety of steam engines, funded by the French

government to compete with the British. Maxwell’s derivation of the speed of electromagnetic waves

was brilliant, but it was inspired by Faraday’s physical picture of retardation in telegraph cables,

which had been laid at great expense to connect the British empire. Special relativity was motivated

by experiments by Fizeau, Michelson and Morley, Lodge, and Trouton and Noble; Michelson and

Morley’s experiment, which cost a significant fraction of their department’s entire budget, required

tons of stone and mercury, fitted with the finest optical equipment. More generally, many advances in

physics are rooted in improvements in optics. Quantum mechanics owes a debt to atomic spectroscopy,

and for centuries, our changing view of our place in the universe has come from telescopes with ever

larger mirrors. Certainly, experiments can stimulate advances in technology, but more commonly

technology is developed for economic or military ends, and applied to experiment.

One might object that this viewpoint is too broad to be useful, but I believe it gives the best

explanation of the incredible pace of progress in particle physics in the mid-20th century, and its

present situation. Discoveries in that era were made with better particle colliders, and colliders are big

infrastructure, requiring enormous amounts of concrete, steel, magnets, coolant, and electrical power.

In the United States, the maximum attainable particle energy rose exponentially in the postwar

period, from the Bevatron in the 1950s to the Tevatron in the 1980s, ending with the cancellation

of the Superconducting Super Collider (SSC) in 1993 [90]. At the same time, the United States

became the preeminent industrial power in the world, its government invested heavily in R&D, and

particle physics received a larger share of that funding partly due to its proximity to the prestigious

Manhatten Project. But after the cancellation of the SSC, particle colliders ceased to grow larger,

and improvements in particle energy dramatically slowed. The European particle physics community,

scrambling to make up for the loss of the SSC, designed the Large Hadron Collider to fit in a tunnel

originally dug for another collider in the 1980s. That tunnel is now 40 years old, and remains the

longest used for particle physics in the world.

Why hasn’t another tunnel been dug? On paper, there seems to be no obstacle. The costs for

larger colliders are higher, but the American GDP (adjusted for inflation) has tripled since 1980.

By now, we should be able to afford the Superconducting Super Collider! But the more important

limiting factor is that measures of industrial production, such as American energy consumption and

steel production, have stayed flat or declined since 1980. It is unrealistic to expect particle physics to

claim an ever increasing share of a society’s material budget. As a result, our field predominantly

reuses old infrastructure, and when their use is exhausted, further scientific advances seem unlikely.

No amount of new thinking can replace getting new data, and new data can only be gathered when

we gain the ability to make measurements we couldn’t before.
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This “materialist” explanation of progress and stagnation in particle physics works far better

than the common narratives one finds in popular science. For example, one often hears a “vitalist”

argument that progress in particle physics ceased because of a depletion of bold ideas sprung from

creative genius. But in the golden age of particle physics, correct new ideas were incremental. They

relied on the same principles of relativistic quantum field theory, introduced only one or two new

particles or interactions at a time, and often were discovered by many workers simultaneously, as was

the case for the Englert–Brout–Higgs–Guralnik–Hagen–Kibble (now just “Higgs”) mechanism. If

anything, theoretical ideas have been steadily growing bolder since the golden age, introducing more

parameters at once, discarding more cherished principles, or requiring higher energies to test.

There is also the “metaphysical” argument that the entire endeavor of fundamental physics is

intrinsically doomed, for some reason beyond human comprehension. For example, some claim that

anthropic arguments can explain the mass of the Higgs boson, removing any pressing need for new

particles. That might be true at the TeV scale, but anthropic arguments can’t explain most of the

Standard Model’s open questions, such as the nature of dark matter, the origin of baryons, the strong

CP problem, or the detailed structure of fermion masses. Furthermore, even in the absence of such

problems, it would still be surprising for new particles to be roughly evenly distributed in mass on

a logarithmic scale, only to abruptly and permanently stop at the TeV scale; that in itself would

require a compelling explanation.

One such explanation is the “great desert” hypothesis. In order to speculate about grand

unification, a phenomenon which might occur at energies a trillion times above experimental reach,

one must know the properties of all particles coupled to Standard Model gauge fields up to that

scale. A priori, this is as difficult as trying to guess the entirety of the Standard Model (up to

mH ∼ 102 GeV) in the 1800s, when the highest energy particles we were aware of were visible light.

The traditional assumption is that many supersymmetric particles sit at the TeV scale, followed by a

desert containing no particles all the way up to the unification scale. This is a reasonable first guess,

for which there is no strong evidence. But it is thought that since we’ve passed the TeV scale and

found nothing, we are presumably now in the desert and can’t find anything else. This feeling isn’t

just unjustified, it’s logically self-contradictory: the failure of models of weak-scale supersymmetry

decreases our confidence in traditional grand unification and the great desert, increasing the chance

that new particles exist above the TeV scale.

Still, the materialist narrative seems even more pessimistic than the others. Under the metaphysical

narrative, we have done excellently, and found all there is to find. According to the vitalists, we

simply need to adjust how we think, or tweak the academic funding system. But if progress requires

ever larger quantities of steel and electricity, there seems to be nothing a particle physicist can do.

A common comforting response is simply to declare that this isn’t a theorist’s problem, and retreat

to the study of toy models, or thought experiments centuries beyond experimental test. (Indeed, I

have been told that if a theorist does not work on untestable physics, then that theorist is “merely”
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My focus is finding new experimental methods to probe beyond the Standard Model.

high masses, short distances

weak coupling

known physics new colliders

neutrino detectors

particle DM

ultraheavy DM

continuous spin

ultralight DM

Figure 1.1: A schematic of known physics, and several directions to search for new physics.

an experimentalist – as if this were an insult!) But in my view, physics is interesting precisely because

it can relate abstract mathematics to the real world. Quantum fields certainly exhibit some tricky

mathematical subtleties, but they’re fascinating because nature apparently “breathes life” into some

of them. Without its connection to reality, physics would just become an undistinguished branch of

pure mathematics.

Fortunately, there is a way forward. Though our capacity to build larger colliders has stagnated,

other aspects of technology have advanced rapidly since the 1980s. We can now prepare and control

particles to much greater precision than before. Detectors are more sensitive, with some using

quantum mechanical effects to go beyond the standard quantum limit. Telescopes are larger, and can

measure a broader range of radiation than ever before – including, for the first time, gravitational

radiation. The key question is to find a way to put this technology to work, in the search for new

fundamental physics.

1.2 The Landscape of New Physics

But where might this new fundamental physics be hiding? A rough schematic of the situation is

shown in Fig. 1.1. Known particles, encapsulated in the Standard Model, feature a reasonably strong

coupling to other known particles, as well as a mass within reach of the Large Hadron Collider.

Smaller masses correspond to longer distances, and long-distance physics is tested through precision

terrestrial and astrophysical experiments.

If funded, new large-scale colliders would extend the energy frontier upward in mass. However,

the largest American particle physics experiment currently being built is the Deep Underground

Neutrino Detector (DUNE), which seeks to measure the properties of neutrinos more precisely. If

one doesn’t count telescopes, the next-largest effort is the search for Weakly Interacting Massive
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Particles (WIMPs), which are particles with masses comparable to nuclei, that could comprise the

dark matter that seems to account for most of the universe’s matter content.

These are well-motivated efforts which explore important places where new physics could be

hiding, but far from exhaustive. For example, one of the main motivations to search for WIMPs was

the fact that they emerged naturally in theories of weak-scale supersymmetry, which have since failed

experimental test. Without this anchor, the possibilities are much broader. For example, dark matter

could exist in the form of macroscopic clumps. If they are comparable in mass to asteroids, then

they would be too rare to detect via impacts on Earth, and too light to detect at a distance through

gravitational lensing. Alternatively, dark matter could consist of discrete particles lighter than a

WIMP, which would deposit too little energy in each impact to be detectable in existing experiments.

Furthermore, in the “ultralight” limit, each field mode is occupied by many dark matter particles, so

that they collectively act on detectors like a classical field. The resulting experimental signatures

look nothing like discrete impacts. Instead, they are extremely weak, but persistent signals, which

penetrate conventional shielding.

Particle physics also has an underappreciated frontier, associated with low energies and long

distances. It is usually assumed that if one understands a perturbative theory at some energy

scale, then one automatically understands it at all lower energy scales; it is only at higher energies

that unknown interactions and particles can enter. This is true for many familiar examples, but

it breaks down dramatically for theories containing massless particles with “continuous spin”.

Counterintuitively, such particles can behave like the known photon or graviton at high energies,

but also carry additional degrees of freedom, which are only revealed by interactions at very low

energies. This immediately raises the question of whether the photon and graviton actually have

continuous spin. Answering this question requires probing them in the exact opposite regime that

particle physics experiments traditionally focus on.

A common theme of the above discussion is the diversity of possible signals of new physics, and

their often unexpected nature. Discovering these kinds of signals requires a plan. Sometimes new

effects are discovered through serendipitous accident – the cosmic microwave background, superfluidity,

and superconductivity come to mind – but this generally only happens when a new technology makes

it possible to rapidly explore a previously unknown frontier. By contrast, the Standard Model is very

well-tested, and experiments that probe well beyond it generally need to be designed intentionally.

As a historical example, the sensitivity of the Michelson–Morley experiment was not surpassed for

40 years, when a series of new experiments were performed to test special relativity. It is therefore

completely plausible that, if not for Michelson and Morley, the first ether wind null result would

only have come decades later. By performing a careful search for a well-motivated signal, using the

maximum available sensitivity from the technology of their time, these experimentalists accelerated

the development of modern physics. We may hope that the same strategy employed today can

accelerate the discovery of physics beyond the Standard Model.
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1.3 Searching for Signals

One key challenge of such an approach is to know where and how to look. How can we know what

we don’t know? For instance, should we entertain the possibility that a distant star isn’t there when

nobody is looking at it? If not, what separates that hypothesis from more reasonable ones?

I once received a kindly worded, nicely illustrated letter from a gentleman who wanted to explain

why the universe seems to have more matter than antimatter. He reasoned that by symmetry, the

amounts of matter and antimatter were actually equal. However, stars made of antimatter would

emit anti-photons which, compared to ordinary photons, would “anti-refract” upon entering a lens.

Since telescopes are designed to focus the light from ordinary stars, they would defocus light from

antimatter stars, rendering them invisible. To test this theory, one simply has to build a single

telescope with an inverted lens.

To the layperson, this proposal probably seems reasonable, and possibly more reasonable than

most searches for dark matter. But the particle physicist can see many reasons that it’s completely

impossible given what we already know about the universe, which sharply limits the kinds of

experimental signatures that can appear.

First, we know that special relativity works. Generations of successors to the Michelson–Morley

experiment have found no deviations, time dilation is routinely measured, and observations of gamma

rays show that light of different frequencies travels at the same limiting speed, to extreme precision.

It is possible that there are very small deviations to special relativity, which can be parametrized

with Lorentz-violating terms in the Lagrangian, but the physical effects of these terms are often

equivalent to those of additional external fields, such as ultralight dark matter fields.

Second, we know that quantum mechanics works: time evolution is linear and measurements

obey the Born rule, which together logically imply that time evolution is unitary. The linearity of

quantum mechanics is tested through interference experiments with increasingly large objects, and

“loophole-free” Bell tests show that measurements on entangled states yield the expected results,

regardless of how the entangled state is produced. Quantum mechanics admits a huge variety of

interpretations, but interpretations by definition imply the same experimental results. Modifications

of quantum mechanics, which do change experimental results, usually do so by introducing an

additional source of wavefunction collapse. Such effects would appear in relevant experiments as an

irreducible source of decoherence. Again, the same signature can be produced by other effects, such

as collisions with dark matter particles.

As a result, for determining potential experimental signatures, we might as well assume that

special relativity and quantum mechanics hold exactly. However, these two assumptions together

imply a great deal about nature [91]. First, they sharply restrict the kinds of fundamental particles

that can exist in nature, and the way these particles can interact. They imply that massive particles

are classified by a mass m and a integer or half-integer spin s, while massless particles with zero

spin scale are classified by an integer or half-integer helicity h. They further imply that interactions
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between these particles can be written in the Lagrangian in terms of local products of relativistic

fields, which create and annihilate the particles.

Massless bosonic particles are particularly interesting, as in the regime of high mode occupancy,

they collectively behave like classical fields. These fields mediate the familiar macroscopic forces,

with the electromagnetic field corresponding to h = 1, and the gravitational field corresponding

to h = 2. For h ≥ 1, the mismatch between the number of degrees of freedom of a particle and

the simplest tensor field that can create it implies that the Lagrangian must have gauge symmetry.

This in turn requires the fields to couple to appropriate tensorial conserved quantities, so that the

electromagnetic field couples to ordinary charge and the gravitational field couples to stress-energy.

(These considerations also doom our polite gentleman’s idea: since only two polarizations of light are

observed, the photon must be its own antiparticle, and particles and antiparticles must couple to

it in the same way, up to an unimportant sign.) The absence of other observed macroscopic fields

is neatly explained by the fact that for h = 0 there is no gauge symmetry, and thereby no reason

the particle’s mass is protected from quantum corrections, while for h > 2 a “minimal” coupling is

impossible, as there are no appropriate conserved tensors to couple to.

Another important piece of information comes from thinking about how physics at a high energy

scale Λ impacts physics at lower energy scales E. Terms in the Lagrangian have mass dimension 4.

Given a set of fields, one can typically write a small number of interaction terms with dimension

less than 4, some more with precisely dimension 4, and an arbitrarily larger number at progressively

higher dimensions. However, by dimensional analysis, the coefficient of a term with mass dimension

n > 4 must have dimensions 1/Mn−4, where M is a mass scale. It can be shown quite generally that

if the unknown high energy physics is perturbative with order-one couplings, can induce such a term,

and has no other special structure, then we have M ∼ Λ. By dimensional analysis, the physical effect

of this term at the lower energy E is weighted by powers of E, so that the relative effect depends on

(E/Λ)n−4, and therefore smaller the higher n becomes. This heuristic works very well throughout

physics as a whole, so much so that practitioners outside of particle physics often use it without

explicitly realizing it, and it has led to successful predictions in particle physics as well [92].

This paradigm of parametrizing the unknown effects of high energy physics in terms of a series of

increasingly suppressed terms involving low energy fields is known as effective field theory. For our

purposes, effective field theory is useful because it strongly constrains how new physics can appear.

For example, suppose that a new spin 1/2 field ψ couples to the electromagnetic field. The simplest,

“minimal” coupling is the dimension 4 term Aµψ̄γ
µψ, which gives the particle an electric charge. The

next-simplest possibilities are the dimension 5 terms iψ̄[γµ, γν ]ψFµν and ψ̄[γµ, γν ]γ5ψFµν , which give

the particle a magnetic or electric dipole moment, respectively. At dimension 6, we can write down

terms like ψ̄γµψ∂νFµν and ψ̄γµγ5ψ∂νFµν , which correspond to charge radii and anapole moments.

Each term yields different experimental signatures, but they can be enumerated and sorted by

importance. Furthermore, because the high energy physics induces all terms allowed by symmetries,
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a ēiγ5e

a GG̃

a FF̃

(∂μa) q̄γμγ5q

(∂μa) ēγμγ5e
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Figure 1.2: A schematic of how the low-energy axion couplings arise from the ultraviolet. The final
boxed expressions are the axion-gluon coupling, the axion-photon coupling, and the axion-fermion
couplings, to electrons and nucleons.

the search space is finite. It only makes sense to search for a higher dimensional term if there exists

a plausible reason that effects from all lower dimensional terms would be suppressed.

Even though the choices of terms in the Lagrangian are quite restricted, the number of potential

models of new physics suffers from a combinatorial explosion, whenever one introduces multiple

families of particles with independent properties. Worse, within each model the number of possible

terms in the Lagrangian can range from dozens to hundreds, due to the same combinatorial explosion,

which can make it difficult to determine when a model is thoroughly tested. The solution to the

problem is to insist on absolute minimality. For example, if one wants to explain dark matter, one

could suppose it is due to a single new field with a single coupling of interest. If one must introduce

a second field (such as a force mediator between Standard Model and dark matter particles), then

the interactions of the mediator should be as simple as possible.

Certainly, it’s true that the physics of dark matter can be extremely complex, just as the Standard

Model is. But if it’s complex, the chances of guessing it correctly are exponentially small. Fortunately,

complex models often yield the same basic types of observable signals as minimal ones, so that

searches targeting minimal models still automatically cover the complex ones.

Motivated by these considerations, let’s consider one of the simplest possible models of dark

matter: that it is a single light scalar field. As discussed earlier, scalar fields are not naturally light,

and require a mechanism to protect their mass. This can happen when they are the Goldstone bosons

of a spontaneously broken global symmetry. The simplest cases are when the symmetry is dilation

symmetry, yield a parity-even scalar called the dilaton, and when it is a fermion’s chiral symmetry,

yielding a parity-odd scalar called an axion. Here we’ll focus on the latter case.

The breaking of chiral symmetry at a high energy scale fa gives the axion a coupling to fermions

of the form aψ̄iγ5ψ. As illustrated in Fig. 1.2, performing chiral field redefinitions converts these

couplings to the form (∂µa)ψ̄γµγ5ψ which explicitly contains a derivative on the axion field, reflecting

its status as a Goldstone boson. In the presence of chiral anomalies, this redefinition can also produce

couplings to gauge fields, aF F̃ and aGG̃ where F and G are the photon and gluon field strengths.
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The first coupling can be rewritten in the form (∂µa)Kµ
EM by integration by parts, where Kµ

EM is the

electromagnetic Chern–Simons current. The second coupling can’t be simply rewritten in this way,

because of QCD instanton field configurations, and accordingly it can give the axion a small mass,

suppressed by powers of fa.

One could have arrived at the same couplings (minus the axion-gluon coupling) by naively applying

effective field theory. Here, one would simply enumerate terms consistent with the axion’s odd parity

and shift symmetry. One finds that no terms are possible at dimension 4 or lower. The leading terms

at dimension 5 are precisely the axion-fermion and axion-photon couplings, and are accordingly

suppressed by 1/fa. Dimension 6 couplings would be suppressed by 1/f2a , and thus usually have

negligible effects. Another consequence of the smallness of axion couplings is that laboratory searches

for axion dark matter are typically never sensitive to processes which depend on pairs of couplings, as

these would be suppressed by at least 1/f2a , which implies that we can search for each single coupling

independently.

Through either route, we conclude that axion dark matter has only a few leading experimental

signatures. This theoretical background, largely already known in the 1980s, allows us to focus on

developing experiments sensitive to each one.

1.4 Outline

The first half of this thesis is devoted to new experimental searches for axion dark matter.

In chapter 2, we propose a new search for the axion-photon coupling. In the presence of axion

dark matter and a background electric or magnetic field, this coupling induces “effective” currents

which yield other electric or magnetic fields, shifted in angular frequency from the background field

by the axion mass ma. Previously, most proposals to search for such effects considered a static

background field, and used the axion to drive an electromagnetic resonator with resonant angular

frequency ma. We instead propose to excite a “loaded” mode of a microwave cavity, and detect

axion-induced transitions to a “signal” mode whose angular frequency differs by ma. This approach

tends to generate a higher signal power, particularly at low ma, and allows orders of magnitude in

ma to be scanned by slightly tuning the frequency difference for a single cavity. To effectively store

energy in the loaded mode, one must use superconducting cavities, which have fortuitously been

developed for decades for particle accelerators; the sensitivity is determined by how well one can

cool the cavity and isolated the signal mode from the loaded mode. Experimental efforts in this

direction are underway at both the SLAC National Accelerator Laboratory and the Fermi National

Accelerator Laboratory.

In chapter 3, we adapt the analysis of chapter 2 to the case where the signal and loaded mode

frequencies are set equal to each other, and one searches for energy off-resonance in the signal mode.

This method has the advantage of broadband sensitivity, covering a large range of axion masses



CHAPTER 1. INTRODUCTION 10

without any need for scanning, at the cost of lower sensitivity at each individual axion mass. The

work also contains a detailed exploration of the subtler noise sources relevant in such an experiment,

such as drifts in the cavity mode frequencies and the frequency of the driving oscillator.

In chapter 4, we turn to the axion-gluon coupling. Famously, this coupling allows the axion

field value to influence the electric dipole moment of the neutron. One of the strongest theoretical

motivations for the axion is that when it minimizes its potential, the neutron’s electric dipole moment

is set to zero, explaining why this quantity is much smaller than the Standard Model expectation.

However, if the axion carries the energy density of dark matter, then it oscillates about its potential

minimum, producing a small neutron electric dipole moment which oscillates with angular frequency

ma. For appropriate atoms, we show that these such effects can propagate to a comparable oscillating

atomic electric dipole moment, parallel to the nuclear spin. In a solid sample of such atoms, with

nuclear spins aligned, these dipole moments correspond to an oscillating polarization and therefore a

polarization current, which can excite a microwave cavity surrounding the sample. We find that if

the axion mass is identified by other experiments, and lies in the well-motivated microwave regime

ma ∼ µeV, then existing cavity and detector technology outfitted with a hyperpolarized sample of

an appropriate rare earth element can detect the axion’s coupling to gluons.

In chapter 5, we turn to the axion-fermion couplings, and in particular the coupling of the axion

to electrons. The main physical effects of this coupling are a torque on electron spins, proportional to

∇a, and a force on electrons proportional to äSe. We review a variety of mechanical, electromagnetic,

and solid state experiments sensitive to such effects throughout the entire axion mass range. We also

explain why the axion does not induce an electron electric dipole moment proportional to a, contrary

to several recent proposals. Finally, we outline a new proposal which centers around the use of layers

of ferromagnetic material. The axion’s torque on the electron spins causes the magnetization of such

materials to precess, yielding a oscillating magnetization current on the surface of each layer. This

current produces radiation, whose amplitude can be increased through constructive interference using

multiple layers, and focused on a detector. Furthermore, the resonant frequency of each layer can be

easily adjusted by tuning an external magnetic field. This proposal requires only mass produced

magnetic materials and existing detector technology. It yields the strongest projected sensitivity for

a axion search in the µeV to meV range.

In chapter 6, we consider a completely different possibility: that dark matter might come in the

form of macroscopic clumps. Such clumps could arise in various ways in the early universe, and are

worth considering because almost all experiments would be blind to them. There is no simple way

to enumerate all possible interactions of clumps with Standard Model matter, so in the spirit of

minimality, we suppose they are characterized by a mass M and a radius R, and scatter Standard

Model matter elastically with geometric cross section. We identify a new experimental signature,

relevant if the clumps have asteroid-like mass, within a few orders of magnitude of M ∼ 1015 kg. In

this case, “dark asteroids” colliding with stars dissipate their energy to shock waves in the star’s
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interior, which subsequently travel to the star’s surface and produce a burst of ultraviolet light.

Unlike other known transients, these events would occur to all types of main sequence stars, and

produce unusually powerful transients which track the local dark matter distribution. We show

that ultraviolet space telescopes such as Hubble can effectively search for such events, potentially

improving sensitivity to macroscopic dark matter by orders of magnitude.

In chapter 7, we turn to the most well-studied possibility that dark matter is a particle of mass

mχ. “Direct” detection experiments search for the energy deposited in scattering events. However,

for mχ ≲ GeV, WIMP searches lose sensitivity since the energy deposited becomes too low to detect.

Moreover, some of the simplest theories of particle dark matter predict an extremely suppressed

scattering rate, due to the fact that dark matter moves nonrelativistically with speed vDM/c ∼ 10−3.

However, in these cases, dark matter can still be effectively produced in relativistic scattering events.

The resulting dark matter travels out of the experiment undetected, and its signal is apparently

“missing” energy and momentum. Detecting such anomalous events is the focus of the proposed

Light Dark Matter eXperiment (LDMX). In this work, we refine sensitivity projections for LDMX

by considering the case where dark matter is produced through the decay of a light meson, such as

the ρ, ω, or ϕ. Considering these processes improves the sensitivity of LDMX by several orders of

magnitude for mχ ≳ 0.1 GeV, where previously considered production channels become ineffective.

Finally, in chapter 8, we consider a radical new possibility which, on its face, has nothing to do

with dark matter. As mentioned above, massless particles are generally classified by a spin scale,

which is traditionally assumed to be zero. A particle with nonzero spin scale can carry arbitrary

integer helicity, with the spin scale quantifying how much the helicity states mix under boosts. We

show, however, that one can formulate a theory with fields that create and annihilate massless

particles of nonzero spin scale, and couple the fields to matter. The result is that at high energies, the

behavior of the field automatically mimics that of a minimally coupled scalar, photon, or graviton;

at low energies, the response remains well-behaved, but arbitrarily many helicity states play an

important role. These results spectacularly break conventional effective field theory intuition, and

are possible because the effective Lagrangian necessarily contains an infinite series of dimension 3

operators, which conspire to guarantee good behavior in the infrared. Deriving our results requires

the use of a new mathematical tool called vector superspace, within which the entire Lagrangian can

be neatly encapsulated in a few terms. They motivate an entirely new set of experimental searches

focused on the deep infrared.
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This chapter is based on Axion Dark Matter Detection by Superconducting Resonant Frequency

Conversion, by A. Berlin, R. T. D’Agnolo, S. A. R. Ellis, C. Nantista, J. Neilson, P. Schuster, S. Tantawi,

N. Toro, K. Zhou, JHEP 07, 088 (2020).

Abstract

We propose an approach to search for axion dark matter with a specially designed superconducting

radio frequency cavity, targeting axions with masses ma ≲ 10−6 eV. Our approach exploits axion-

induced transitions between nearly degenerate resonant modes of frequency ∼ GHz. A scan over

axion mass is achieved by varying the frequency splitting between the two modes. Compared to

traditional approaches, this allows for parametrically enhanced signal power for axions lighter than a

GHz. The projected sensitivity covers unexplored parameter space for QCD axion dark matter for

10−8 eV ≲ ma ≲ 10−6 eV and axion-like particle dark matter as light as ma ∼ 10−14 eV.

12
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2.1 Introduction

The axion is a hypothetical parity-odd real scalar, protected by a shift symmetry and derivatively

coupled to Standard Model fields. It is predicted by the Peccei–Quinn solution to the strong CP

problem [93, 94, 95, 96] and expected to arise generically from string theory compactifications [97,

98, 99]. It was shown to be a viable dark matter (DM) candidate four decades ago [100, 101]. A

generic prediction of axion models is the coupling to photons [102, 103, 104, 105, 106],

L ⊃ −gaγγ
4

aF F̃ = −gaγγ aE ·B . (2.1)

This interaction can induce axion-photon conversion in the presence of a background electromagnetic

field via the Primakoff process [107], which has been exploited in various axion searches [6, 7, 9, 10, 12,

13, 18, 108, 109, 110, 4]. These searches have started to cover parameter space motivated by the Peccei–

Quinn solution to the strong CP problem [102, 103, 104, 105, 106], gaγγ ≃ 3×10−16 GeV−1 (ma/µeV),

but for now without a positive detection.1

More generally, an attractive motivation for axion-like particles (axions that do not solve the

strong CP problem) is that they are a simple DM candidate. A very light axion can acquire a

cosmological abundance from the misalignment mechanism that is in agreement with the observed

DM energy density if gaγγ ∼ 10−16 GeV−1(ma/µeV)1/4, where we have taken gaγγ ∼ αem/2πfa and

assumed an O(1) initial misalignment angle (see Ref. [19] for a recent discussion). This relation thus

provides a cosmologically motivated target for axion-like particle searches.

Cold axion DM produced by any mechanism generically virializes in the galactic halo. The typical

virial velocity dispersion va ∼ 10−3 leads to an effective quality factor of Qa ∼ 1/⟨v2a⟩ ∼ 106. For

timescales shorter than the axion coherence time τa ∼ Qa/ma, we can thus treat the axion as a

monochromatic field of the form

a(t) =

√
2ρ

DM

ma
cosmat , (2.2)

where ρ
DM

≃ 0.4 GeV/cm3 is the local DM energy density. Properly speaking, we model the axion

DM field in the galaxy as a Gaussian random field2 with ⟨a(t)⟩ = 0 and ⟨a(t)2⟩ = ρ
DM
/m2

a, since

it is a superposition of a large number of waves with random phases. This implies O(1) amplitude

fluctuations on timescales t ≲ τa, which we suppress in Eq. (2.2) for simplicity.3

Resonant detectors are well-suited to exploit the coherence of the axion field. To date, most axion

search experiments have matched the resonant frequency of the experiment to the mass of the axion DM

being searched for. For ma ∼ µeV, the axion oscillates at ∼ GHz frequencies. This enables resonant

searches using high-Q normal-conducting cavities in static magnetic fields [6, 7, 9, 10, 12, 13, 18],

1The value quoted is the average of the DFSZ [102, 103] and KSVZ [104, 105, 106] predictions.
2Detailed coherence properties of the axion DM field have been discussed in Refs. [111, 112], but do not change the

features noted above.
3These fluctuations lead to statistical subtleties for t ≲ τa, as discussed in Appendix 2.10, but these will not be

relevant.
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Figure 2.1: (a) A schematic depiction of a potential cavity setup. A photon of frequency ω0 is
converted by the axion dark matter background into a photon of frequency ω0 ±ma, where ma is
the axion mass. The cavity is designed to have two nearly degenerate resonant modes at ω0 and
ω1 = ω0 + ma. One possibility, as discussed in Section 2.4, is to split the frequencies of the two
polarizations of a hybrid HE11p mode in a corrugated cylindrical cavity. These two polarizations
effectively see distinct cavity lengths, L0 and L1, allowing ω0 and ω1 to be tuned independently. In
this case, larger frequency steps could be achieved by adjusting the fins (shown in red), while smaller
frequency steps could be achieved with piezo-actuator tuners.
(b) A schematic comparison between the proposed frequency conversion scheme (right of the dotted
line) and typical searches using static magnetic fields (left of the dotted line). The vertical and
horizontal axes correspond to differential power and frequency, respectively, of either the driven field
(vertical arrows) or the axion-induced signal (resonant curves). The parametric signal power derived
in Section 2.2 is shown for both setups, where we assume ωsig ∼ V −1/3 for our proposed scheme and
factored out a common volume dependence of V 5/3.

where a cavity mode is rung up through the interaction of Eq. (2.1), sourced by the axion field and

the external B field. These experiments take advantage of strong magnetic fields, the large quality

factors (Q ≲ 106) achievable in GHz normal-conducting cavities, and low-noise readout electronics

operating at the GHz scale. However, extending this approach to smaller axion masses would require

the use of prohibitively large cavities. To probe lighter axions, experiments have been proposed using

systems whose resonant frequencies are not directly tied to their size, such as lumped-element LC

circuits [113, 114, 115] or nuclear magnetic resonance [116].4

In this chapter, we explore an alternative approach to resonant axion detection, where the

frequency difference between two modes is tuned to be on-resonance with the axion field, while

the mode frequencies themselves remain parametrically larger. Because of their very large quality

factors (Q ≳ 1010), superconducting radio frequency (SRF) cavities are ideal resonators for such a

setup. More concretely, as illustrated in Figure 2.1, we consider an SRF cavity with a small, tunable

4Ideas for resonant detection of axions heavier than a GHz can also involve decoupling the resonant frequency from
the size of the apparatus, for instance via modifications to the photon dispersion relation in tunable plasmas [117] and
dielectrics [118, 119].
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Figure 2.2: The anticipated reach to axion dark matter in the gaγγ−ma plane, for various experimental
configurations, compared to existing constraints, shown in gray. Along the right axis, we relate the
axion-photon coupling to the symmetry breaking scale fa by gaγγ ∼ αem/2πfa. As two representative
examples, we show the projected sensitivity assuming an intrinsic quality factor and readout-pump
mode coupling (see Section 2.5.2) of Qint = 1010, 1012 and ε1d = 10−5, 10−7, respectively. The
dashed line shows the thermal noise limited sensitivity for Qint = 1012 and ε1d = 10−7. In all cases,
we assume a pump mode frequency of ω0/2π = GHz, a cavity volume of V = 1 m3, a peak magnetic
field of B0 = 0.2 T, a mode overlap of η10 = 1 (see Eq. (2.21)), a cavity temperature of T = 1.8 K,
an average wall displacement of qrms = 10−1 nm (as defined in Section 2.5.3), and an e-fold time
of te = 107 s. The orange band denotes the range of couplings and masses as motivated by the
strong CP problem. Along the red band, axion production through the misalignment mechanism
is consistent with the observed dark matter energy density, assuming an O(1) initial misalignment
angle. As discussed in Section 2.5.3, the feature near ma ∼ kHz is due to our assumption that there
are no mechanical resonances below a kHz.
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frequency difference between two low-lying modes, which we call the “pump mode” and the “signal

mode.” The cavity is prepared by driving the pump mode, which has frequency ω0 ∼ GHz ≫ ma. If

the signal mode is tuned to a frequency ω1 ≃ ω0 ±ma, then the axion DM field resonantly drives

power from the pump mode to the signal mode.

The idea of detecting axions through photon frequency conversion has been studied in other

contexts.5 These include axion detection with optical cavities [124, 125, 126] and frequency conversion

in SRF cavities with GHz-scale mode splittings [127]. More generally, frequency conversion is a

commonly used technique in signal processing, under the name of “heterodyne detection.”

However, frequency conversion in SRF cavities is particularly powerful because of the combination

of high Q-factors and the large amount of stored energy in the pump mode. In this chapter, we

highlight the parametric advantages of this approach at low axion masses, discuss scenarios for

realizing the mode overlap and tunability requirements for such an experiment, and analyze key

sources of noise. In the latter two aspects, we benefit from the decades-long effort to detect kHz-

to-MHz gravitational waves with SRF cavity resonators [128]. The results from the prototypes of

Refs. [129, 130, 131, 132] are particularly useful in anticipating the experimental challenges of our

proposed approach.

Our study shows that axion-induced frequency conversion in SRF cavities could be sensitive to

QCD axions for 10−8 eV ≲ ma ≲ 10−6 eV and axion DM as light as ma ∼ 10−14 eV. The projected

sensitivity for two representative sets of experimental parameters is shown in Figure 2.2, with a

larger set of parameters shown in Figure 2.5. Compared to traditional resonant searches, fixing the

signal to GHz frequencies leads to several advantages for lower axion masses:

1. High frequency readout leverages the large quality factors of SRF cavities, which are typically

of order Q ≳ 1010. In this case, the signal power saturates once Q ≳ (GHz/ma)Qa, unlike

static-field detectors whose signal power saturates once Q ≳ Qa.

2. Only a small fraction of the signal power (ma/GHz ≪ 1) is sourced directly by the axion DM field.

Therefore, the signal is not suppressed by the small axion mass when its Compton wavelength is

much larger than the detecting apparatus. This is unlike static-field electromagnetic resonators,

where the signal power scales as ma in this limit.

3. Operating readout electronics near the standard quantum limit has been demonstrated at GHz

frequencies [9].

In the next section, we present a parametric estimate of the axion-induced signal power and

compare it to that of other resonant setups. In Section 2.3, we provide a more detailed calculation,

using a simple model without explicit reference to cavity parameters. We discuss a more complete

5Different SRF setups have also been considered for production and detection of light, non-DM axions [120, 121].
Another, distinct idea is the proposal of Refs. [122, 123] to drive two modes and detect the resulting axion-induced
frequency shifts.
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experimental setup in Section 2.4, deferring a detailed discussion of SRF cavity geometries to

Appendix 2.8. In Section 2.5, we study the expected sources of noise, with additional details in

Appendix 2.9. In Section 2.6, we estimate the physics reach, with further detail regarding optimization

of the readout coupling presented in Appendix 2.10. Finally, we conclude in Section 2.7.

2.2 Conceptual Overview

At the level of Maxwell’s equations, an oscillating axion DM field sources a time-dependent effective

current density, Jeff, in the presence of an applied magnetic field B0(t), of magnitude

Jeff(t) ∼ gaγγ B0(t)
√
ρ

DM
cosmat . (2.3)

This effective current density leads to a real magnetic field, Ba ∝ Jeff. The oscillations of this field

generate a small electromotive force

Ea ∼ V 2/3 ∂tBa , (2.4)

which can drive power into a resonant detector of volume V . In typical setups, the applied magnetic

field is static, such that E(static)
a ∝ ma. In the approach we advocate for here, the applied magnetic

field oscillates in time, B0(t) = B0 cosω0t. Compared to static-field detectors of comparable size, the

electromotive force is significantly larger,

E(osc.)
a

E(static)
a

∼ ω0 +ma

ma
∼ ω1

ma
. (2.5)

This is the essential reason for the parametric enhancement of our approach at low axion masses

(ma ≪ ω0).6

To make this intuition more precise, it is useful to compute the signal power explicitly and

compare it to that of static-field resonators. In general, the power delivered to a resonator of volume

V and resistance R is

P
(r)
sig ∼ E2

a

R
min

(
1,
τa
τr

)
∼ ω2

sigB
2
aV min(Qr/ωsig, Qa/ma) , (2.6)

where τr ∼ Qr/ωsig is the ring-up time for a resonator with quality factor Qr and readout frequency

ωsig, and in the second equality, we expressed R in terms of Qr. Note that as a function of Qr, the

signal power saturates once the axion coherence time is smaller than the resonator ring-up time,

since only a fraction of the axion power resides within the resonator bandwidth, as encapsulated in

6There is a well-known argument that axion signals must degrade at small ma, since the massless limit at fixed
axion field amplitude would be equivalent to a static QED θ-angle. The scaling of Eq. (2.4) does not violate this
argument because Jeff ∝ √

ρDM ∼ ma a. Thus, for a fixed axion field amplitude, the electromotive force in our setup

scales as ma, compared to m2
a for static-field experiments.
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the second factor in both equalities.

To date, most resonant experiments searching for electromagnetically coupled axion DM employ

static magnetic fields, since these are more easily sourced at large field strengths. In this case,

Jeff(t) ∝ cosmat implies that this current density sources photons of energy and frequency comparable

to ma, which can be detected with an apparatus whose resonant frequency is matched to the axion

rest mass. For ma ∼ GHz, this is the strategy employed by resonant cavity experiments such as

ADMX [6, 7]. However, for any static-field cavity detector, this approach becomes increasingly

difficult for ma ≪ GHz, since the resonant frequency is typically controlled by the inverse length-scale

of the apparatus.

By contrast, LC resonators can search for sub-GHz axions because their resonant frequency is not

directly tied to the geometric size of their circuit components. In such a setup, when the Compton

wavelength of the axion is much larger than the shielded detection region of volume VLC, the size

of the axion-induced magnetic field follows simply from the quasistatic expectation, Ba ∼ Jeff V
1/3
LC .

Since the readout frequency of static-field setups is dictated by the axion mass, the signal power of

an LC circuit with quality factor QLC is parametrically

P
(LC)
sig ∼ ma J

2
eff V

5/3
LC min(QLC, Qa) . (2.7)

The saturation of signal power at Qr ≳ Qa as well as the overall suppression at small axion masses is

characteristic of static-field setups. This latter point can also be understood from the fact that for a

static-field configuration, the axion-induced electromotive force vanishes for zero axion mass and

fixed DM energy density, since Ea ∝ ma.

Our setup instead involves driving a resonant cavity at a frequency ω0 ≫ ma. An axion DM

background converts the frequency, sourcing an effective current oscillating at ωsig = ω1 = ω0 ±ma,

Jeff(t) ∼ gaγγ B0
√
ρDM cos (ω0 ±ma)t , (2.8)

which drives power into the signal mode. In this case, Ba ∼ Jeff/ω1, and for a fixed DM energy

density, the electromotive force is not suppressed for ma ≪ GHz since Ea ∝ ω1. By the same logic as

the previous calculation, the axion-induced signal power is

Psig ∼ J2
eff V min(Qr/ω1, Qa/ma) , (2.9)

which yields a parametric advantage7 over LC resonators when ma ≪ V
−1/3
LC . Intuitively, this is

because each axion-photon interaction in the cavity involves a photon of energy ω0, and so only a small

fraction (ma/ω0 ≪ 1) of this signal power is contributed by the axion background, with the remainder

originating from the pump mode. Since ω1 ≫ ma, maximizing the signal power in our setup requires

7Axion detection by frequency conversion in a radio frequency cavity was also briefly considered in Ref. [122], but
the authors did not find the same parametric enhancement we demonstrate here.
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resonator quality factors much larger than Qa, saturating only when Qr ≳ (ω1/ma)Qa ≫ 106. This

motivates the choice of using an SRF cavity, as superconducting resonators have been built with

quality factors as large as Qr ∼ few × 1011.

To complete our overview, we give a parametric comparison of the reach. This can be done

straightforwardly when our approach is thermal noise limited, which occurs in the right half of

Figure 2.2. As we will see in Section 2.6, accounting for the scan rate and coupling optimization

leads to simple expressions for the signal-to-noise ratio (SNR), which do not require the casework of

Eqs. (2.7) and (2.9). Instead, for general quality factors,

SNR

SNR(LC)
∼ (ω1V

1/3)−1

maV
1/3
LC

(
V

VLC

)4/3(
Qint

QLC

)1/2(
TLC
T

)1/2(
B0

BLC

)2

(2.10)

∼ ω1

ma

(
Qint

QLC

)1/2(
TLC
T

)1/2(
B0

BLC

)2

, (2.11)

where Qint is the intrinsic quality factor of the SRF cavity, and for comparison we took ω1V
1/3 ∼ 1,

appropriate for low-lying cavity modes, and V = VLC in the second line. For the reference parameters

Qint ∼ 1012, T ∼ 1.8 K, and B0 ∼ 0.2 T, and comparison parameters QLC = Qa ∼ 106, TLC = 0.1 K,

and BLC = 4 T, the last three factors roughly cancel, leaving only the factor ω1/ma which enhances

our frequency conversion approach compared to an LC resonator operating in the quasistatic regime.8

In the next section, we begin the work of establishing these results, by directly solving the relevant

equations of motion to compute the signal power.

2.3 Signal Power

In this section, we explicitly compute the signal induced by axion DM interacting with a loaded

cavity. For this calculation, it suffices to use a simplified model that treats the cavity as a collection

of fixed cavity modes. In the following two sections, we refine this model by including the additional

layers of complexity needed to describe the system in the presence of noise.

Our starting point is Maxwell’s equations modified by the axion interaction of Eq. (2.1),

∇ ·E = ρ− gaγγB · ∇a ,
∇×B = ∂tE + J− gaγγ (E×∇a−B ∂ta) . (2.12)

Since the spatial gradients of the axion field are small, the dominant effect is that the axion sources

an effective current, Jeff = gaγγB∂ta. The effective current Jeff inherits its time-dependence from the

oscillating axion and pump mode magnetic field and can resonantly drive power into other cavity

8Fixing the geometry and other factors, scaling up both approaches in volume would decrease the relative advantage
of the SRF approach. However, increasing the volume of either approach much beyond O(1) m3 would constitute an
engineering challenge.
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modes with matching characteristic frequency.

To compute the steady state signal power, it is convenient to work in frequency space. In doing

so, we adopt the following convention for the Fourier transform of a function f ,

f(t) =
1

2π

∫
dω eiωtf(ω) , f(ω) =

∫
dt e−iωtf(t) .

When unspecified, the region of integration for ω or t is implicitly −∞ to ∞. We define the power

spectral density (PSD) of f , denoted as Sf (ω), by

⟨f(ω)f∗(ω′)⟩ = Sf (ω) δ(ω − ω′) , (2.13)

so that the steady state average power can be expressed as9

⟨ f(t)2 ⟩ =
1

(2π)2

∫
dω Sf (ω) . (2.14)

Note that all PSDs in this chapter are two-sided.

Given the tiny backreaction of the axion field on the cavity, it is useful to decompose the electric

and magnetic fields into a set of vacuum cavity modes:

E(t, r) =
∑

n

En(t, r) =
∑

n

en(t) Ẽn(r) ,

B(t, r) =
∑

n

Bn(t, r) =
∑

n

bn(t) B̃n(r) , (2.15)

where the resonant modes satisfy the conditions

∇2Ẽn = −ω2
n Ẽn , ∇2B̃n = −ω2

n B̃n ,∫

V

Ẽ∗
n · Ẽl = δnl

∫

V

|Ẽn|2,
∫

V

B̃∗
n · B̃l = δnl

∫

V

|B̃n|2 . (2.16)

Here, V is the volume of the cavity and ωn are the resonant frequencies. Using the above definitions,

Maxwell’s equations in Eq. (2.12) can be rewritten as an equation of motion for the cavity’s electric

field in the presence of background axion and magnetic fields,

∑

n

(
ω2 − ω2

n − i
ω ωn
Qn

)
En(ω) = gaγγ

∫
dt e−iωt ∂t(B ∂ta) , (2.17)

where we have neglected terms proportional to the small axion velocity. Each mode has a distinct

quality factor, Qn, that is dictated by the electric field profile near the walls and power losses through

9In Eq. (2.13), the brackets denote an ensemble average, where a signal f(t) is Fourier transformed in many different
time intervals, which are then averaged in a given frequency bin. Eq. (2.14) then defines ⟨f(t)2⟩, which can equivalently
be described as a time average of f(t)2.
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the loading and readout ports, and determines the dissipative terms on the left-hand side. Above,

we have neglected the motion of the cavity walls, which can couple distinct modes and shift their

resonant frequencies; we account for this source of noise in Section 2.5.3.

To complete the calculation, we note that the magnetic field in Eq. (2.17) is dominated by the

pump mode such that B ≃ B0. We then define the characteristic amplitude of the pump mode

magnetic field as

B0 ≡
√

1

V

∫

V

|B̃0|2 . (2.18)

The steady state average power delivered to the signal mode (n = 1) can be written in terms of a

signal PSD defined analogously to Eq. (2.14),

Psig =
ω1

Q1
U1 =

1

(2π)2

∫
dω Ssig(ω) , (2.19)

where U1 is the electromagnetic energy stored in the signal mode. From Eq. (2.17), we find that

Ssig(ω) =
ω1

Q1
(gaγγ η10B0)2 V

ω2

(ω2 − ω2
1)2 + (ω ω1/Q1)2

∫
dω′

(2π)2
(ω′−ω)2 Sb0(ω′)Sa(ω−ω′) , (2.20)

where Sa(ω) is the axion PSD, Sb0(ω) is the PSD for b0(t) (defined in Eq. (2.15)), and η10 is an O(1)

mode overlap factor,

η10 ≡

∣∣∣
∫
V
Ẽ∗

1 · B̃0

∣∣∣
√∫

V
|Ẽ1|2

√∫
V
|B̃0|2

≤ 1 . (2.21)

We have ignored backreaction on the axion field, as this is negligible even for very large quality

factors. We note that Eq. (2.20) is only valid when the experimental integration time tint exceeds

both the ring-up time of the signal mode, τr ∼ Q1/ω1, and the axion coherence time, τa ∼ Qa/ma.

The steady state power is achieved when tint ≳ τr, but if tint ≲ τa, the axion PSD is not resolved,

and Sa(ω) must be convolved with a window function.10

If the spectral width of the pump mode magnetic field is sufficiently narrow, then it may be

approximated as a monochromatic source, b0(t) = cosω0t, which corresponds to

Sb0(ω) = π2 [δ(ω − ω0) + δ(ω + ω0)] . (2.22)

10Our result also breaks down in the extreme case ma ≲ ω1/Q1 ∼ 10−17 eV × (1012/Q1), where the axion oscillates
on a longer timescale than the ring-up time. In this case, the signal power does not reach a steady value, but rather
depends on the instantaneous phase of the axion field. Eq. (2.24) remains valid only if Psig is taken to denote the
average power over an entire axion field oscillation. This is not relevant for any of the parameter space shown in
Figure 2.2. For the smaller intrinsic quality factors or e-fold times shown in Figure 2.5 (which affect Q1, as described
in Section 2.6), we restrict our calculations to ma ≳ ω1/Q1.
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Eq. (2.20) then reduces to

Ssig(ω) =
ω1

4Q1
(gaγγ η10B0)

2
V

ω2
[
(ω − ω0)2 Sa(ω − ω0) + (ω + ω0)2 Sa(ω + ω0)

]

(ω2 − ω2
1)2 + (ω ω1/Q1)2

. (2.23)

As we will see in Section 2.6, this is a valid approximation in most of the parameter space considered

in this chapter. This is possible because the magnetic field can have a much narrower width than the

pump mode itself, as its width is determined by the frequency stability of the oscillator that loads

the cavity.

To understand Eq. (2.23) parametrically, we assume the signal mode frequency is on resonance and

consider two limiting cases. The frequency spread of the axion PSD is controlled by its effective quality

factor Qa ∼ 106. If the axion is narrow compared to the signal mode’s bandwidth (ma/Qa ≪ ω1/Q1),

we can evaluate the integral of Eq. (2.19) by treating the axion PSD as a delta function. Instead,

if the axion is broad compared to the signal bandwidth (ma/Qa ≫ ω1/Q1), we can evaluate the

integral using the narrow width approximation for the Breit–Wigner response of the signal mode.

The result is

Psig ≃ 1

4
(gaγγ η10B0)

2
ρ

DM
V ×




Q1/ω1

ma

Qa
≪ ω1

Q1

πQa/ma
ma

Qa
≫ ω1

Q1
,

(2.24)

which matches the parametric estimate of Eq. (2.9). Here we use the normalization

⟨a(t)2⟩ =
1

(2π)2

∫
dω Sa(ω) =

ρDM

m2
a

, (2.25)

and take Sa(ω) to be governed by a virialized Maxwellian velocity distribution [133].

For large axion masses, the axion is broad, and the signal power in Eq. (2.24) is suppressed by

m−1
a since only a small fraction of the axion PSD lies within the detector bandwidth. As the axion

mass decreases, the signal power increases, saturating when these two bandwidths are comparable,

i.e., when the axion coherence time matches the ring-up time of the signal mode, τa ∼ τr. As

discussed in the previous section, this differs from resonant experiments where the readout frequency

is comparable to the axion mass, in which case the signal power saturates once Q1 ≳ Qa.

Expanding on the intuition developed in Section 2.2, we now compare more carefully the parametric

form of the signal power in Eq. (2.24) to that of static-field experiments designed to resonantly detect

axions with masses ma ≪ GHz. For example, near-future LC resonators plan on using magnetic

fields of size BLC ∼ 4 T, while the magnetic fields for our setup can be no larger than roughly 0.2 T,

to preserve the superconducting properties of the cavity. However, this is compensated by the much

larger quality factors attainable by SRF cavities. To see this, note that a static-field LC resonator is

required to operate in the quasistatic limit once ma ≪ V −1/3. In this case, as discussed in Section 2.2,
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the parametric form of the signal power is

P
(LC)
sig ∼ (gaγγBLC)2 ρ

DM
V 5/3 min(QLC, Qa)ma . (2.26)

The factor of ma in Eq. (2.26) stands in contrast to Eq. (2.24), and appears because the signal

frequency in such an experiment is comparable to the axion mass. This is not the case for the setup

discussed here because the signal frequency is always fixed to be ω0 + ma ∼ ω1 ∼ GHz even for

ma ≪ GHz. Comparing Eqs. (2.24) and (2.26), we have

Psig

P
(LC)
sig

∼
(

0.2 T

4 T

)2

×





(Q1/Qa)
2 (ω1/Q1)

(ma/Qa)
ma

Qa
≪ ω1

Q1

(ω1/ma)
2 ma

Qa
≫ ω1

Q1
,

(2.27)

where we took the cavity and LC resonator to be of comparable size, fixed ω1V
1/3 ∼ 1 for the cavity

setup, and set QLC ∼ Qa. Eq. (2.27) shows that a frequency conversion setup using an SRF cavity

has a parametric advantage in signal power when ma ≪ ω1, which is the regime shown in Figure 2.2.

For a broad axion, ma ≲ ω1/20 is already enough to overcome the weaker magnetic field, while for a

narrow axion the larger quality factors achievable in SRF cavities more than suffice to compensate at

any axion mass.

Of course, this does not suffice to establish a comparably enhanced sensitivity, since noise sources

can vary drastically across different experimental setups. We investigate these noise sources in detail

in Section 2.5. Realistic values for the relevant cavity parameters are discussed in more detail in the

next section.

2.4 A Cavity Concept

In this section, we discuss the choice of cavity geometry and pump and signal modes, as well as the

quality factors attainable in SRF cavities. We also outline possible methods for tuning the mode

splitting ω1 − ω0, loading the cavity, and reading out the signal.

As mentioned in Section 2.3, the peak magnetic field in an SRF cavity will be smaller than in

a conventional RF cavity, and this must be compensated by a larger quality factor. In multi-cell

elliptical cavities operating at GHz frequencies designed for accelerating charged particle beams,

intrinsic quality factors of Qint ≃ 4 × 1010 (and in one case as high as Qint ≳ 2 × 1011) have been

achieved [134, 135], a factor of over 106 greater than what the same geometry would display in

warm copper. However, we are not restricted to geometries useful for particle acceleration. Quality

factors of Qint ∼ 105 are commonly achieved in overmoded non-superconducting RF cavities with

non-accelerator geometries [136, 137, 138]. This suggests that SRF counterparts can be constructed

with quality factors as large as Qint ∼ 1012.11

11The power dissipation of a cavity with the parameters of Fig. 2.2 would be Pin ∼ 104 × (1010/Qint) W. As such,
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We now consider the choice of cavity geometry, where the goal is to find a cavity design with

two nearly degenerate modes and an O(1) geometric overlap factor η10, as defined in Eq. (2.21).

Rectangular, cylindrical, and spherical cavities can be treated analytically straightforwardly; realistic

cavities are often variations on these shapes. We do not consider spherical cavities, as they typically

do not have pairs of nearly degenerate modes.12 Furthermore, it is difficult to manufacture rectangular

cavities with the required large quality factors. We hence focus on cylindrical cavities.

An ordinary cylindrical cavity supports transverse electric (TEmnp) and transverse magnetic

(TMmnp) modes, indexed by integers m, n, and p, as described in Appendix 2.8. Because the axion

carries no spin, and we have neglected its spatial gradients, it can only mediate transitions between

modes with the same m. Furthermore, since the axion is a pseudoscalar, it must change the parity of

p. Finally, axions cannot mediate transitions between pairs of TM modes.

A simple option would be to use transitions between the two polarizations of a single TE mode,

after splitting them in frequency by perturbing the cavity. However, this cannot work because

the axion transition must change the parity of p. Instead, since the frequencies of the modes each

depend differently on the cavity radius R and length L, two modes could be arranged to be nearly

degenerate by manufacturing the cavity with an appropriate aspect ratio L/R. As discussed further in

Appendix 2.8, overlap factors of η10 ≃ 0.5 can then be achieved for the transitions TM0,n+1,0 ↔ TE0n1.

For example, for a cavity loaded in the TM030 mode, the loaded mode frequency is ω0 = 2πGHz if

the cylinder has radius R ≃ 0.4 m. The TE021 signal mode is degenerate if the length is L ≃ 0.25 m,

and a frequency difference of ma ∼ GHz is attained if L ≃ 0.21 m. Thus, many orders of magnitude

in axion mass can be scanned by tuning the length through a relatively small range.

Larger overlap factors of η10 ≃ 0.8 can be achieved by corrugating the outer wall with ridges.

Similarly, using orthogonally oriented ridges on the end-walls of a square cross-section cavity to

align the electric and magnetic fields of cross-polarized TE10p/TE01p modes can also provide a large

overlap factor, limited by how large/overmoded the cavity is. To further improve the quality factor,

one can do the same with the cross-polarized HE11p hybrid modes in a cylindrical cavity with outer

wall corrugations. This final approach is mathematically developed in Appendix 2.8.

We now turn to physical mechanisms for tuning the frequency difference ω1 − ω0. Small changes

in the cavity length can be achieved by applying pressure on the end-walls with a piezoelectric device.

Concretely, the smallest scan steps we consider in Section 2.6 are of order 0.1 Hz, which corresponds

to changes in length of order 0.1 nm. This tuning mechanism can deform a meter-long cavity by a few

millimeters at most, leading to a scannable range of axion masses of about ∼ MHz. Larger changes in

the cavity length can be achieved with mechanically retractable fins, as shown in Figure 2.1(a). For

non-corrugated cylindrical cavities, these fins effectively serve to change the length L of the cavity,

operating SRF cavities with intrinsic quality factors significantly lower than 1010 is not practical due to power and
cooling demands.

12It might be possible to use spherical cavities with the poles cut off, where the only modes that can be supported
are nearly degenerate high harmonics. Alternatively, one could couple two spherical cavities with a small tunable
aperture as in Refs. [132, 130, 131].
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while for corrugated cylindrical cavities, they change the length seen by only one of the hybrid mode

polarizations.

Using fins, one can cover the full parameter space shown in Figure 2.2 with a single cavity.

However, introducing such sharp features into the cavity increases the peak surface fields, and hence

has the potential to degrade the quality factor and lead to enhancement of field emission, as discussed

in Section 2.5.4.

Since detailed numeric simulations of the cavity are required to understand these effects, we defer

further discussion to future work. As such, the reach shown in Figure 2.2 should be interpreted

as indicating the potential of our general approach. However, we note that even an uncorrugated

cylindrical cavity tuned solely with piezoelectric devices can probe a wide range of motivated

parameter space, over orders of magnitude in axion mass.

Finally, loading and readout can be achieved either through coaxial antennae fed into the cavity

or with waveguides. For concreteness, we will employ the term “waveguide” when discussing the

loading/readout architecture. When we discuss the reach of the proposed approach in Section 2.6,

we will explore the optimization of the readout architecture. The language of waveguides lends itself

well to this discussion, but the conclusions we reach do not depend on what specific instrument is

used to extract the signal from the cavity.

To summarize, as reference cavity parameters we consider V ∼ m3 sized cylindrical SRF cavities

operating at frequencies of ω/2π ∼ GHz, with typical magnetic fields of B ∼ 0.2 T, and intrinsic

quality factors of Qint ≳ 109. The level of frequency stability of modes planned for similar SRF

cavities [139] suggests that scanning step sizes of ∼ 0.1 Hz − 1 Hz are achievable. We therefore limit

our analysis to frequency steps of 0.1 Hz and above, and do not consider axion masses corresponding

to frequencies below 1 Hz, where the effects of such a frequency instability become more dramatic.

Furthermore, we do not consider the possibility of large frequency separations between the pump

and signal mode, since this would involve accounting for intermediate modes. We therefore restrict

our analysis to ma ≲ GHz.13

2.5 Noise Sources

In this section, we describe the expected dominant noise sources for our setup, shown schematically

in Figure 2.3. Some of these noise sources, such as amplifier and thermal noise, are common to

axion DM experiments using static background magnetic fields [6, 7, 108, 9, 10, 12, 13, 18]. The

remaining contributions, however, are particular to our setup. These include phase noise from the

master oscillator that drives the pump mode, mechanical vibrations of the cavity walls, and field

emission, commonly known in the accelerator community as “dark current.”

The relative sizes of the noise sources, as a function of axion mass, are shown in Figure 2.4.

13An initial exploration of the use of higher harmonics of a loaded cavity was conducted in Ref. [127].
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Thermal noise in the cavity, and amplifier noise in the readout system are both independent of ma.

Of the two sources, thermal noise in the cavity dominates, and plays the most important role at the

largest axion masses that we consider. At smaller axion masses, two other sources of noise become

relevant: frequency instability of the resonant modes from mechanical vibrations and power leakage

from the pump to the signal mode. These both grow as the axion mass is decreased. As we discuss

in the following, they are also both strongly sensitive to the quality factor of the cavity. Increasing

the quality factor, other than increasing the signal power, decreases these two sources of noise.

In Figure 2.4, the sharp feature evident in the mechanical noise power is due to our assumptions,

motivated by the experimental characterization of similar cavities performed in Ref. [130]; we assume

that there exists a spectrum of mechanical resonances above a kHz, each maximally coupled to the

pump and signal modes of the cavity.

Before turning to a more detailed description of each of these noise sources, it is useful to

distinguish the two contributions to the quality factor Q1 of the signal mode,

1

Q1
=

1

Qint
+

1

Qcpl
, (2.28)

where Qint depends only on losses intrinsic to the cavity (such as the residual resistance of the walls)

and Qcpl is determined by the rate at which power is transmitted to the readout. Critical coupling

occurs when the two losses are equal, Qint = Qcpl, but we will see in Section 2.6 that it is optimal

to strongly overcouple, Q1 ≃ Qcpl ≪ Qint, even though this degrades the total signal power. The

readout is set to predominantly couple to the signal mode, as discussed further in Section 2.5.2, so

that the pump mode’s quality factor is not affected, Q0 ≃ Qint. The PSDs derived in this section

represent the total noise power delivered to the cavity and to the readout apparatus in the signal

mode.

2.5.1 Thermal and Amplifier Noise

Thermal emission of radio waves from the the cavity walls constitutes an irreducible noise source. If

the cavity is cooled to a temperature T , then the PSD of this thermal noise is

Sth(ω) =
Q1

Qint

4πT (ω ω1/Q1)2

(ω2 − ω2
1)2 + (ω ω1/Q1)2

. (2.29)

Here, the prefactor of 4π stems from our use of two-sided PSDs and the convention of Eq. (2.13), and

the factor of Q1/Qint arises because the coupling to the readout does not source thermal noise; it is

only the cavity walls that are at temperature T . This corresponds to an average total noise power of

Pth ≃ T ω1

Qint
. (2.30)
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Figure 2.3: A diagram depicting the main expected sources of noise specific to our detection strategy.
In counterclockwise order are depictions of individual noise sources: thermal emission, discussed
in Section 2.5.1; the effects of oscillator phase noise, as discussed in Section 2.5.2; the precision of
the geometric coupling of the loading and readout waveguides, relevant to several noise sources;
vibrations of the cavity walls, discussed in Section 2.5.3; and field emission, discussed in Section 2.5.4.
Not shown is amplifier noise, discussed in Section 2.5.1.
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Figure 2.4: Comparisons of total power in thermal (yellow), amplifier (cyan), oscillator phase
(red), and mechanical vibration (blue) noise, shown as a function of the axion mass ma. The cavity
parameters match the (a) lower and (b) upper curves in Figure 2.2. The figure shows the total power
delivered to the readout architecture assuming critical coupling, and thus has appropriate factors of
Qn/Qcpl included as discussed in Section 2.6. The estimated size of mechanical noise depends on
the degree of degeneracy between the axion mass and the resonant frequency of mechanical modes
of the cavity. The solid line corresponds to the same model incorporated into the reach shown in
Figures 2.2 and 2.5, while the dashed lines serve to bracket the variation in such noise, depending on
the scan/instrumental strategy employed (see Section 2.5.3 for discussion).

Driven SRF cavities can be efficiently cooled using a superfluid helium bath to a temperature of

T = 1.8 K. This temperature is below the superfluid transition at 2.2 K, which mitigates vibrational

noise from the bubbling of gaseous helium. Dissipation of the pump mode increases the temperature

of the cavity walls slightly above that of the helium bath, but we neglect this since the typical

temperature change is small, of order 0.1 K [140]. For reference, a 1 m3 cavity operating at GHz

with B0 ∼ 0.2 T dissipates Ploss ∼ 10 W − 1 kW for Qint ∼ 1012 − 1010.

The signal is to be read out with an amplifier coupled to the resonant cavity. We assume that

amplifier noise can be reduced to its standard quantum limit, resulting in one photon of power per

unit bandwidth [141, 142]. One half of this power is due to quantum zero-point fluctuations, while

the other half accounts for the backaction and imprecision noise associated with the amplifier [143].

The corresponding noise power can be described as a spectrally flat PSD of the form

Sql(ω) = πω1 . (2.31)

This assumption is equivalent to that made for other experiments targeting similar axion parameter

space [115] and has been achieved in practice at GHz frequencies [9]. For context, at critical

coupling, amplifier noise is smaller than thermal noise by a factor of the thermal occupation number,

nocc = T/ω1 ∼ 100.
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Overcoupling the cavity to the readout can enhance the reach of a thermal noise limited search [115].

Intuitively, this is possible since a quantum-limited readout has an effective noise temperature given

by a single photon of noise per unit bandwidth (Teff ∼ ω1 ∼ 10 mK ≪ 1.8 K), and so overcoupling

lowers the effective noise temperature of the system. Similar statements can be made when other

noise sources dominate. We discuss these aspects in more detail in Section 2.6 and Appendix 2.10.

2.5.2 Oscillator Phase Noise

The pump mode is excited by driving a waveguide at frequency ω0 with an external oscillator. The

loading waveguide possesses a geometric coupling to the pump mode ϵ0d ≃ 1 and is adjusted to have

a small coupling to the signal mode, ϵ1d ≪ 1. Similarly, the signal is detected through a readout

waveguide, which is adjusted to have a small coupling to the pump mode, ϵ0r ≪ 1. Since minimizing

the unwanted geometric couplings ε1d and ε0r requires precisely controlling the geometry of the two

waveguides, we take ε1d ≃ ε0r. The mechanical precision required to achieve a certain rejection value

is discussed further in Appendix 2.9.

The oscillator is centered around the frequency ω0, but is broadened due to fluctuations in the

amplitude and phase of its output voltage, which can be parametrized as

Vosc(t) = V0 (1 + α(t)) cos(ω0t+ φ(t)) . (2.32)

The PSD of the amplitude noise Sα(ω) typically has flat (white) and 1/ω components, the latter

due to so-called “flicker noise.” The PSD of the phase noise Sφ(ω) has additional 1/ω2 and 1/ω3

components due to the Leeson effect, whose effects dominate over amplitude noise for the small

frequency splittings that we consider [144, 145]. The component of Vosc(t) at frequency ω1 can be

inadvertently read out as signal through the coupling ϵ1d or ϵ0r.

Oscillator manufacturers typically report the one-sideband noise power per unit bandwidth,

relative to the carrier power. From this we extract the phase noise PSD Sφ(ω). We fit the reported

spectrum of a low-noise commercially available oscillator [146] to the functional form

Sφ(ω) =

3∑

n=0

bn ω
−n , (2.33)

yielding the values

b0 = 10−16 Hz−1 , b1 = 10−9 , b2 = 10−6 Hz , b3 = 10−5 Hz2 . (2.34)

Defining the total power input to the cavity as

Pin =
ω0

Q0
B2

0V , (2.35)
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the PSD due to oscillator phase noise is given by

Sphase(ω) ≃ 1

2
ε21d Sφ(ω − ω0)

(ω ω1/Q1)2

(ω2 − ω2
1)2 + (ω ω1/Q1)2

ω0Q1

ω1Q0
Pin . (2.36)

Note that because the width ω0/Q0 of the pump mode is much smaller than the axion mass

ma = ω1 − ω0 for all parameters we consider, the noise due to the coupling ϵ0r is suppressed by the

Breit–Wigner tail of the pump mode, (ω0/maQ0)2 ≪ 1, and is hence negligible. Taking Sφ(ω) to be

spectrally flat within the signal mode bandwidth, which is a good approximation for all parameters

shown in Figure 2.2, the above PSD corresponds to an average total noise power of

Pphase ≃
ε21d Sφ(ma)

16π

ω0

Q0
Pin . (2.37)

Projected sensitivities are shown in Figure 2.2 for ε1d = 10−5, 10−7. Geometric rejections at the

level of O(10−7) have been experimentally demonstrated in Refs. [130, 132] for a different signal and

pump mode geometry. As discussed in greater detail in Appendix 2.9, achieving ϵ1d = 10−7 in our

setup requires controlling the cavity components at the few nm level, which is a level of precision that

is already envisioned for other applications [139]. For such small rejection factors, ϵ1d scales linearly

with this distance scale. As shown in Figure 2.4, we find that phase noise is subdominant compared

to thermal noise for the largest axion masses that we consider, while it dominates at smaller masses.

2.5.3 Mechanical Vibration Noise

Mechanical oscillations of the cavity boundaries lead to time-dependent shifts in the resonant modes

and their corresponding frequencies. Such perturbations can impede the ability to reliably scan over

the axion mass range and may also induce transitions between the pump and signal modes, thus

constituting a potential background to the axion-induced signal. Various forces can contribute to

mechanical noise such as thermal excitations of the cavity, external vibrations from the cryogenic

cooling system or seismic activity, and radiation pressure due to the electromagnetic energy stored

in the loaded mode. Of these sources, the last is negligible, because it does not source significant

vibrations at frequency O(ma). Instead, its dominant effect is to introduce a static shift in the cavity

mode frequencies, known in the accelerator community as “Lorentz force detuning,” which we may

simply absorb into the definitions of ω0 and ω1.14 Thermal effects are irreducible but, as we will

argue below, subdominant, while power from external sources can be significantly attenuated through

active feedback or isolation of the suspended cavity from its immediate surroundings.

To estimate both thermal and vibrational effects, we follow the discussion in Ref. [131]. The

14Note that precise knowledge of the central pump and signal mode frequencies is necessary to conduct a search for
the axion-induced transition. This can be achieved by active monitoring. Maintaining the stability of mode frequencies
within their bandwidth has been demonstrated in SRF cavities over timescales of a few minutes longer than our longest
integration time [147].
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displacement of the cavity wall from its equilibrium position, denoted as u(x, t), can be decomposed

as a sum over the various dimensionless mechanical normal modes of the cavity, ξα(x),

u(x, t) = qα(t) ξα(x) , (2.38)

where the expansion coefficients are given by the time-dependent generalized coordinates, qα(t), and

a sum over the integer α is implied. The mode vectors are normalized such that

∫
d3x ρ(x) (ξα · ξβ) = M δαβ , (2.39)

where ρ and M are the mass density and total mass of the cavity, respectively. In the following,

we focus on an individual mechanical resonance, labeled by α = m. The noise power from multiple

resonances can be summed, but in most cases only the nearest resonance will be relevant. The

response of the generalized coordinate of the cavity boundary is described by the PSD,

Sqm(ω) ≃ 1

M2

Sfm(ω)

(ω2 − ω2
m)2 + (ωmω/Qm)2

, (2.40)

where ωm is the resonant frequency of the excited mechanical mode, Qm is the mechanical quality

factor, and fm is the force projected onto mode α = m. In our estimates, we adopt Qm = 103 as a

representative value [132]. The force term on the right-hand side of Eq. (2.40) contains contributions

from radiation pressure, thermal fluctuations, and other environmental sources.

The force generated from thermal fluctuations is negligible compared to seismic or cryogenic

noise for realistic attenuation capabilities. For the cavity parameters we consider, thermal vibrations

source Sfth
m

(ω) ∼ 10−23 N2/Hz × (M/kg) (T/K) (ωm/kHz)
(
103/Qm

)
, while, e.g., the authors of

Ref. [132] directly measured the unattenuated force PSD for a similar resonant cavity design and

found values spanning from O(10−7) N2/Hz−O(10−3) N2/Hz within the measured frequency range of

10 Hz − 10 kHz, stemming from vibrations of the surrounding environment. For realistic attenuation

factors, the latter vibrational sources are dominant.

Rather than directly reporting an attenuated external force PSD, experiments frequently charac-

terize mechanical noise by the RMS wall displacement qrms induced by these forces. For example,

near-term light-shining-through-wall type experiments at FNAL plan on controlling wall displacements

of loaded cavities to within sub-nanometer precision through the use of piezo-actuator tuners [139].

To infer a force PSD from this level of vibration, we note that Eq. (2.40) implies an RMS displacement

of the m’th normal mode

⟨q2m⟩ ≃ Sfm(ωm)Qm
4πM2 ω3

m

∼ 106 nm2 ×
(

Sfm(ωm)

10−4 N2 Hz−1

)(
Qm
103

)(
M

kg

)−2 ( ωm
kHz

)−3

. (2.41)
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The scaling with ωm implies that, for an approximately flat Sfm(ω), ⟨q2m⟩ is largest for the lowest-

frequency mechanical mode. Thus, we normalize the attenuated force PSD to

Sfm ≃ 4πM2 ω3
min q

2
rms/Qm , (2.42)

where qrms ∼ 0.1 nm and ωmin ∼ kHz is the lowest-lying mechanical resonance of the cavity. This

estimate of ωmin is motivated by the measurements of a similar apparatus to search for gravitational

waves, which showed a growing number of mechanical resonances above ω ∼ 0.5 kHz [130]. Hence,

we will assume that externally sourced vibrations are controlled to ⟨q2m⟩ ∼ (0.1 nm)2, which from

Eq. (2.41) implies an attenuation ability of O(10−8). Note that even assuming a considerably worse

control of the cavity walls, qrms ∼ 102 µm, the estimated sensitivity at large axion masses, and in

particular the ability to probe the QCD axion, is not appreciably affected, as shown in Figure 2.5.

These mechanical vibrations couple to the electromagnetic cavity modes by, e.g., shifting their

resonant frequencies,

δωn(t) ≃ −1

2
qm(t)Cmn ωn , (2.43)

where the coupling coefficients, Cmn , are given in terms of the electromagnetic modes,15

Cmn =

∫
dS · ξm(x)

(
|Bn(x)|2 − |En(x)|2

)
∫
d3x |En(x)|2 . (2.44)

In the numerator of Eq. (2.44), the integral is performed over the surface boundary of the deformed

cavity. Note that the size of the coupling coefficient Cmn , and hence also the frequency shift of

Eq. (2.43), depends on the specific nature of the mechanical and electromagnetic resonances of the

unperturbed cavity. We will pessimistically assume maximum overlap between the mechanical and

electromagnetic modes, in which case the coupling coefficient is parametrically of size Cmn ∼ V −1/3,

where V is the geometric volume of the cavity.

The shift in the cavity mode frequencies in Eq. (2.43) results in a modification of the equation of

motion for a mode (labeled n) driven by an external field D(t, r),

[
∂2t +

ωn
Qn

∂t + (ωn + δωn)2
]
Bn(t, r) = ω2

nD(t, r) . (2.45)

When the time-dependent shifts in the cavity mode frequencies are small, we can perturbatively

solve the above equation to find the noise PSD due to vibrations of the cavity walls, Smech(ω). To

15We have assumed that the off-diagonal generalizations of the coupling coefficient involving pairs of distinct
electromagnetic modes vanish to leading order in the cavity perturbation. We have checked that this is satisfied for
various nearly-degenerate modes of cylindrical cavities, which have orthogonal E and B fields at every point in space.
If this is not the case, additional source terms in the coupled electromagnetic-mechanical equations of motion should
be included. See Ref. [131] for additional details.
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leading order in δω2
n/ω

2
n ≪ 1, we find

Smech(ω) =
∑

n=0,1

S
(n)
mech(ω) (2.46)

≃ ε21d
4

ω0

Q0
Pin

∑

n=0,1

(
Sqm(ω − ω0)/V 2/3

)
(ωn/Qn)ω4

n ω
2

[
(ω2 − ω2

n)2 + (ω ωn/Qn)2
] [

(ω2
0 − ω2

n)2 + (ω0 ωn/Qn)2
] , (2.47)

where the sum is over the pump (n = 0) and signal (n = 1) modes. To understand Eq. (2.47)

parametrically, we note that for ma ≃ ωm and ωm/Qm ≪ ωn/Qn, evaluating Smech(ω) near the

positive frequency resonance (ω ≃ ω1) and applying Eqs. (2.40) and (2.41) yields

Smech(ω1 + ∆ω) ≃ π

2

ε21dQm
1 + (∆ω/∆ωm)2

ω2
1ω

3
min

m6
a

q2rms

V 2/3
Pin , (2.48)

where we defined the width of the mechanical mode ∆ωm ≡ ωm/2Qm.

In the coupled superconducting cavity setup of Ref. [130], direct probes of the designed apparatus

revealed the presence of mechanical resonances above ωmin ∼ kHz, separated in frequency by

O(100) Hz. For ma < ωmin, mechanical noise is driven by the tail of the lowest-frequency resonance.

In this regime, the scaling of mechanical noise is dominated by the cavity’s response to an off-resonance

driving force, as expected from the form of Eqs. (2.40) and (2.47). Therefore, the noise power scales

as roughly 1/m2
a. As shown in Figure 2.4, mechanical noise is significant in this mass range and is

roughly comparable to oscillator phase noise.

The behavior of mechanical noise in the vicinity of resonances is more subtle, and so merits

further discussion. Eqs. (2.40) and (2.47) imply that the power in mechanical noise is maximized

for ωm ≃ ω1 − ω0. Thus, in a scan over ω1, the mechanical noise PSD has a forest of local maxima

around each resonance ω0 + ωm, with minima in between. In Figure 2.3, we bound the total power

in mechanical noise for ma > ωmin by considering two cases: where the axion mass is situated at or

near a local maximum of the noise PSD (ma ≃ ωm for some mechanical resonance m), or at a local

minimum (ma at the midpoint between two adjacent resonances, i.e., assuming a typical separation

of ∼ 100 Hz between mechanical resonances, at 50 Hz separation from each). The total mechanical

noise powers obtained in these two extreme cases, illustrated by dashed curves in Figure 2.3, define an

envelope for the mechanical noise power at each scan step. The envelope spans 3 orders of magnitude

in noise power, due to the sharpness of the mechanical resonances, but for the same reason, the noise

power only approaches the upper envelope in narrow regions of size ∆ωm about each resonance.

For a more representative characterization of the mechanical noise near resonances, we note

that in a scan over the range of candidate axion masses between any two resonances, the median

noise PSD is that obtained at 25 Hz separation from the nearest mechanical resonance. The total

mechanical noise power at this separation is indicated by the solid blue curve in Figure 2.3, and this

characteristic noise power is used in deriving the axion sensitivity curves. In a single scan, half of
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candidate axion masses are expected to have noise above this line (and hence weaker sensitivity)

and half below (and hence stronger sensitivity). It may also be possible to fill these narrow gaps in

sensitivity by using two cavities with slight mechanical variations, so that their mechanical resonance

frequencies are slightly offset. In this case, each candidate axion mass will be well-separated from the

mechanical resonances of at least one of the two cavities.

Near-resonance mechanical noise is only expected to dominate over about one decade in axion

mass near angular frequencies of 1 kHz−10 kHz. At lower frequencies there are no nearby resonances,

and mechanical noise falls off rapidly at higher frequencies. These two effects lead to a peak-like

structure near ma = 1 kHz in Figure 2.4, and corresponding dips in the reach shown in Figures 2.2

and 2.5. The strength and position of this feature should be appropriately rescaled by ωmin for

cavities with higher- or lower-lying resonances.

For ma ≪ MHz, where mechanical noise is important, the integral of Eq. (2.47) over the signal

bandwidth is analytically tractable for the pessimistic case of a mechanical resonance very closely

spaced to ω1 −ω0 ≃ ma. Taking the mechanical resonance to be narrower than the cavity bandwidth

and further approximating Q0 ≃ Q1 and ma ≪ ω0, the average total noise power in mechanical noise

is

Pmech ≃ ε21d
16

ω2
0 ω

3
min

m5
a

q2rms

V 2/3
Pin . (2.49)

We emphasize that the mechanical noise estimates presented above are most likely overly pes-

simistic. In particular, we assumed that for every axion mass ≳ kHz there is a corresponding resonant

mechanical mode that is maximally coupled to the electromagnetic properties of the cavity. In this

sense, a dedicated design strategy could potentially significantly mitigate noise from mechanical

vibrations.

2.5.4 Field Emission

At high surface electric fields, electrons are emitted from imperfections on the walls of the SRF

cavity. The released electrons accelerate to relativistic speeds, absorbing energy from the cavity field,

and typically are reabsorbed into the wall within less than one oscillation cycle of the cavity. They

emit radiation in three different stages: as they accelerate inside the cavity and emit synchrotron

radiation; as they encounter the dielectric mismatch between the interior and wall of the cavity,

leading to transition radiation; and as they encounter the nuclear electric fields of the wall material,

leading to Bremsstrahlung radiation.

In this section, we crudely approximate the noise due to each process. First, we note that for an

electron of energy γme, all three processes produce radiation in a small solid angle 1/γ2 around the

electron momentum, spread roughly uniformly over a frequency range much broader than the signal

mode bandwidth. Hence, only a small fraction of the power absorbed by the emitted electrons is

deposited in the signal mode.
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The energy absorbed by a single electron as it traverses a cavity of length L ∼ 1/ω0 ∼ 1 m and

average electric field of strength E0 ∼ cB0 = 60 MV/m is roughly Uabs ∼ eE0L, corresponding to a

Lorentz factor of γ ∼ 100. This energy is then released through the three processes described above.

The energy released as synchrotron radiation and the corresponding frequency range are

Usync ∼
e4γ2E2

0L

m2
e

, ∆ωsync ≳ ω0 , (2.50)

where the frequency range is determined by the short timescale tsync ∼ 1/ω0 over which the electron

is within the cavity. The energy released in transition radiation depends on the plasma frequency

of the wall material, which for niobium is ωp ∼ 50 eV. The spectrum of the produced radiation is

relatively flat, and the total energy released and the corresponding frequency range are [148]

Utrans ∼ e2γωp , ∆ωtrans ∼ γωp . (2.51)

Finally, as the electron travels inside the cavity wall, the remaining energy is released through losses

inside the material. Since both Usync and Utrans are both much smaller than Uabs, almost all the

absorbed energy is released inside the wall. We assume that all of the energy is converted into

photons via Bremsstrahlung, that all of these photons are released into the body of the cavity, and

that the spectrum of the radiation is approximately flat, giving

Ubrem ∼ eE0L , ∆ωbrem ∼ γme . (2.52)

In reality, the release of energy in the walls is a complex process, which our assumptions model only

very crudely. Our first two assumptions are very pessimistic, while our third assumption is optimistic,

as a relativistic electron will create showers of softer electrons which release energy within a smaller

frequency range. However, in any case, we will find that the noise PSD due to Bremsstrahlung is

subdominant by several orders of magnitude.

We can use these results to evaluate the noise PSD, normalized to the total power loss Ptot due to

field emission. For concreteness, we compare the three contributions to the typical PSD for thermal

noise. Accounting for the small geometric overlap factor 1/γ2, the PSDs are

Si(ω) ∼ Ptot
Ui
Uabs

1

γ2∆ωi
, (2.53)

where Ptot is the total power loss due to field emission. Numerically, we have

S(ω1)

4πT
∼ Ptot

0.1 W
×





1 synchrotron

10−6 transition

10−5 Bremsstrahlung ,

(2.54)
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so that for field emission to be negligible compared to thermal noise, we require Ptot ≲ 0.1 W. For

context, this corresponds to O(100) electrons emitted per cycle, or about 0.1% of the total energy

loss for a cavity with Qint = 1012.

In practice, the rate of field emission is set by the shapes of each cavity’s particular defects, which

determine the local enhancement of the electric field. Since it is a tunneling effect, the electric current

due to a given defect has a strong exponential dependence on the field, I ∼ exp(−1/βE), where β

depends on the geometry of the defect [149]. As such, field emission from a defect is essentially zero

for lower fields, then sharply increases at a certain threshold field value. Modern cavity fabrication

techniques can produce cavities where field emission is a small source of energy loss (defined as

Ptot < 10 W) up to peak surface electric fields beyond ∼ 60 MV/m. Moreover, in many cases, field

emission is not even detectable for peak surface fields of this magnitude [150, 140].

Given this background, the relevance of field emission to our setup depends sensitively on the

design. For the cylindrical cavity modes discussed in Section 2.4, the peak surface electric fields

are several times smaller than the typical fields E0 ∼ 60 MV/m, making field emission a completely

negligible effect. However, the use of retractable fins to tune the frequency difference would create

a sharp feature within the cavity and hence a local enhancement of the surface field. As discussed

in Section 2.4, we are sensitive to a wide range of motivated parameter space even without the

implementation of fins; we defer further discussion of field emission in this setting to a future detailed

study of the experimental design. In particular, both field emission and the resulting synchrotron

radiation can be simulated more precisely using existing dedicated numeric programs.

Finally, it is worth mentioning other well-known effects associated with SRF cavities. The cavity

must be designed and manufactured to manage well-understood problems such as multipacting and

thermal breakdown [149, 140]. Another physical effect to consider is nonlinearity in the response of

the cavity walls to the pump mode fields, which could produce radiation with frequency at integer

multiples of ω0. However, this is not relevant for our setup because the signal mode frequency ω1 is

not close to any of these multiples; instead we have ω1 ≃ ω0.

2.6 Physics Reach

With our noise estimates in place, we now compute the conceptual reach of our setup. The signal

PSD for the readout is slightly modified from that of Eq. (2.20) because the readout receives a

fraction Q1/Qcpl of the power delivered to the cavity, where Q1 and Qcpl are related by Eq. (2.28).

Referring to Eq. (2.23), we therefore make the replacement

Ssig(ω) → Q1

Qcpl
Ssig(ω) . (2.55)
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Figure 2.5: The anticipated reach to axion dark matter in the gaγγ −ma plane, for a wide range
of experimental parameters. Our baseline parameters are those of the lower curve of Figure 2.2,
including Qint = 1012, ε1d = 10−7, qrms = 10−1 nm, and te = 107 s. In each panel, we vary one
of these four parameters, while keeping the others fixed. All other features of the figures are as
explained in Figure 2.2. Throughout, we only consider axion masses for which the integration time
for a single scan step tint is larger than the axion coherence time and cavity ring-up time, and axion
masses that are greater than the typical frequency shift due to mechanical vibrations.
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This is to be compared to the total noise PSD for the readout,

Snoise(ω) = Sql(ω) +
Q1

Qcpl

(
Sth(ω) + Sphase(ω) + S

(1)
mech(ω)

)
+

Q0

Qcpl
S
(0)
mech(ω) , (2.56)

where we do not include field emission noise (see Eq. (2.54)) because it can be kept below thermal

noise for cylindrical cavities. Amplifier noise does not receive a factor of Q1/Qcpl because it is intrinsic

to the amplifier itself. The last term in Eq. (2.56) corresponds to the pump mode contribution to

mechanical noise (see Eq. (2.47)), which is rescaled by Q0/Qcpl since it arises from the pump mode

readout coupling.

At this point, one can see why it can be advantageous to overcouple: referring to Eqs. (2.29) and

(2.36), the signal, thermal noise, and phase noise PSDs are all proportional to Q2
1/Qcpl. Therefore,

if either of these noise sources dominates, overcoupling (Qcpl ≃ Q1 ≪ Qint) preserves the ratio

Ssig(ω)/Snoise(ω) but broadens the frequency range that a scan step is sensitive to, relative to critical

coupling (Qcpl = Qint).

We now describe the scan optimization. For a scan step with integration time tint, the noise power

is independent between frequency bins of width ∼ 2π/tint. Each bin thus has an independent SNR,

and the bins may be combined by a weighted average. The optimal weighting leads to an overall

SNR that is the sum of the SNRs of the bins in quadrature [151]. As in Section 2.3, we assume that

tint > max(τr, τa), where τr is the ring-up time of the overcoupled signal mode, and hence that the

variation of Ssig(ω)/Snoise(ω) is on frequency scales greater than 1/tint. As a result, the SNR can be

approximated as an integral over frequency,

(SNR)2 ≃ tint

∫ ∞

0

dω

2π

(
Ssig(ω)

Snoise(ω)

)2

, (2.57)

where only positive frequencies are included, since the signal and noise PSDs are symmetric in ω.

We assume that a scan is performed uniformly in logma, allocating a time te for each e-fold in

axion mass. It is optimal to scan in steps as wide as possible, as time must be spent waiting for the

signal to ring up during each step. We take the width ∆ωsc of a single scan step to be set by the

range of axion masses near ω1 − ω0 within which the expected SNR, as given by Eq. (2.57), is within

an O(1) factor of the maximal value. Parametrically, this implies

∆ωsc ∼ max(ma/Qa , ω1/Q1) . (2.58)

This step size in turn sets the integration time allowed for each scan step to be

tint ≃ te
∆ωsc

ma
. (2.59)

For each scan step, we numerically optimize the SNR as given by Eq. (2.57) with respect to the



CHAPTER 2. SUPERCONDUCTING RESONANT FREQUENCY CONVERSION 39

coupling Qcpl, subject to the constraint tint > max(τr, τa), and determine the reach by demanding

SNR ≳ 1. The largest tint values we consider are O(100) s. The stability of frequencies within their

bandwidths on timescales of a few minutes has been demonstrated in an SRF cavity in Ref. [147]. As

discussed in Section 2.3, we model the axion PSD as following a virialized Maxwellian distribution.

For concreteness, consider the case where thermal noise dominates and the next most important

contribution is amplifier noise; this occurs at the largest axion masses shown in Figures 2.2, 2.4,

and 2.5. As discussed further in Appendix 2.10, Eq. (2.57) reduces to the usual Dicke radiometer

equation [152], and it is optimal to overcouple until the thermal noise is reduced to the quantum

noise floor. This requires setting Qcpl ∼ Qint/nocc where nocc ∼ T/ω1 is the thermal occupation

number, which leads to an enhancement of the SNR by a factor of n
1/2
occ relative to critical coupling.

In this case, the SNR is then, parametrically,

SNR ∼ ρDM V

ma ω1
(gaγγ η10B0)

2

(
QaQint te

T

)1/2

. (2.60)

For comparison, a similar analysis applied to a static-field LC resonator yields

SNR(LC) ∼ ρDM V
5/3 (gaγγ BLC)

2

(
QaQLC te

TLC

)1/2

. (2.61)

Our setup benefits from a large intrinsic quality factor Qint because it reduces dissipation in the

cavity and hence thermal noise. As a result, for both our setup and LC resonators, the SNR continues

to increase with Qint even after the signal power saturates, in agreement with the conclusions of

Ref. [151]. However, for a fixed operational temperature and e-fold time, it is not useful to increase

the intrinsic quality factor to arbitrarily large values, as there will be insufficient time to fully ring

up the signal. For our choice of te ∼ 107 s and T ∼ K, this occurs when Qint ∼ 1013. We also note

that the SNR for our setup in Eq. (2.60) is in principle valid for ma ≳ GHz. However, in this regime

we have no parametric advantage over existing cavity haloscopes, and accordingly our reach falls off

rapidly due to the factor of ω1 ≃ ω0 +ma in the denominator.

The optimized reach is shown in Figure 2.2 for two baselines choices of experimental parameters

and in Figure 2.5 for a larger set of variations. In both figures, we also show existing exclusions

from cavity haloscopes [7, 8, 9, 10, 12, 13, 14], helioscopes [4, 153, 154, 155], and observations

of SN1987A [16, 17]. We highlight parameter space that is motivated by the QCD axion as a

solution to the strong CP problem, corresponding to a range bounded by the DFSZ [102, 103]

and KSVZ [104, 105, 106] models. We also highlight regions of parameter space where an axion-

like particle with temperature-independent mass ma acquires a cosmological abundance from the

misalignment mechanism that is in agreement with the observed DM energy density. This occurs

if the initial field amplitude at the onset of oscillation is ai ∼ (T 2
eqm

3
pl/ma)

1/4, where Teq ∼ eV

is the temperature at matter-radiation equality and mpl is the Planck mass. Defining the initial
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misalignment angle as θi ≡ ai/fa and relating the axion decay constant to its photon coupling by

gaγγ ∼ αem/2πfa, we find

gaγγ ∼ αem

2π

(
ma

m3
pl T

2
eq

)1/4

θi ∼ 10−16 GeV−1

(
ma

µeV

)1/4

θi . (2.62)

This relation, along with the parametric expectation θi ∼ 1, provides a cosmologically motivated

target for axion-like particles.16

The projected reach covers unexplored parameter space relevant for the QCD axion for 10−8 eV ≲

ma ≲ 10−6 eV and for axion-like particles as light as ma ∼ 10−14 eV. The ma dependence of

the projected sensitivity can be understood as follows. Consider the upper curve of Figure 2.2,

which displays all of the parametric regimes. At large axion masses, thermal noise dominates

and the reach in coupling grows as 1/
√
ma when ma is decreased, as shown in Eq. (2.60). For

ma ≲ 10−10 eV, oscillator phase noise becomes the dominant background. The reach changes slope,

degrading at smaller axion masses because the signal frequency is closer to the pump mode frequency,

where the pump mode power is concentrated. At even smaller axion masses, mechanical vibrations

become the dominant source of noise, accounting for the change in slope of the reach curve around

ma ∼ 10−11 eV. This is due to the rapid increase of the mechanical noise power, as shown in

Eq. (2.49). Near ma ≃ kHz ≃ 10−12 eV, mechanical noise decreases, as discussed in Section 2.5.3,

because of the absence of mechanical resonances below 1 kHz. This result is in agreement with the

experimental characterization of similar cavities performed in Ref. [130].

This general description also applies to the four panels of Figure 2.5, which are intended to

demonstrate the robustness of our approach. The mass dependence of the reach is qualitatively

similar, except that not all of the noise regimes are always realized. For instance, in the lower left

panel, oscillator phase noise never dominates over mechanical noise if qrms is large. Figure 2.5 shows

that, as long as a large intrinsic quality factor is maintained, our approach is still sensitive to the

QCD axion, even if one degrades the geometric rejection factor by 104, shortens the e-fold time by

102, or increases the amplitude of the wall vibrations by 106. In all cases, our approach also still has

the potential to cover a wide range of parameter space motivated by axion-like particle DM.

In Figures 2.2 and 2.5, the projected sensitivity of our setup is not shown for ma ≲ Hz; this

corresponds to the level of frequency (and frequency splitting) control with current technology [139].

As discussed in Sections 2.4 and 2.5.3, this corresponds to controlling the displacement of cavity

walls at the ∼ 0.1 nm level, allowing for scanning steps as small as ∼ 0.1 Hz − 1 Hz. Furthermore,

our calculation is not valid at these small masses where the axion oscillates less than once per

ring-up time. We also refrain from considering axion masses less than ω1 (qrms/V
1/3), since sizable

16Additional dynamics or interactions in the early Universe can allow for axion-like particles to be viable DM
candidates in a much larger range of gaγγ − ma, as discussed in, e.g., Refs. [156, 157, 158]. Note that for the
QCD axion, the temperature-dependence of the axion mass leads to the correct relic abundance being obtained for
ma ∼ 10−6 eV [159, 160].
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mechanical displacements of the cavity walls may impede the ability to scan over such axion masses

in a controlled manner.

Finally, we note that in deriving our result for the signal PSD in Eq. (2.23), we treated the

oscillator, and hence the pump mode magnetic field, as monochromatic. Since the axion effective

current in Eq. (2.12) scales as Jeff ∝ B ∂ta, the oscillator width is negligible so long as it is smaller

than the axion width ma/Qa. In practice, the oscillator width is quantified by the Allan variance [144].

The phase noise discussed in Section 2.5.2 is better suited to describing the tails of the spectrum.

From the manufacturer data sheet of a commercially available oscillator in Ref. [146], we conclude

that the pump mode width is negligible for ma ≳ kHz. In a setup where the oscillator can be

efficiently coupled to a precise reference clock (e.g., NIST [161]), the pump mode width is negligible

in all of the parameter space we consider.

2.7 Outlook

In this chapter, we have proposed an approach to leverage the properties of SRF cavities to detect low-

mass axions, with sensitivity to significant new parameter space spanning eight orders of magnitude in

axion mass. As shown in Eq. (2.10) and confirmed in Eq. (2.60), our frequency conversion approach

is parametrically enhanced compared to static-field LC resonators because of the larger electromotive

forces attained (see Eq. (2.5)). In addition, the insights of Ref. [151], which shows that the sensitivity

is optimized for a strongly overcoupled readout (Q1 ≪ Qint), allow us to take advantage of the

extremely large intrinsic quality factors of SRF cavities within a reasonable scanning time.

Estimating the sensitivity of our approach required careful consideration of several noise sources.

Aside from thermal noise, which can be treated relatively straightforwardly, we have pinned all of our

noise estimates to quantities measured in real apparatuses. As such, we are indebted to the decades

of work done on the development of quantum noise limited amplifiers, SRF cavity fabrication and

testing, low phase noise oscillators, and previous precision experiments targeting both axions and

gravitational waves. Ultimately, we find that for our reference parameters thermal noise is expected

to dominate over most of the mass range, with vibrational noise and oscillator phase noise becoming

more important at smaller masses.

We have left the detailed design of the experimental apparatus to future work. As mentioned

in Sections 2.4 and 2.5.4, there may be a tradeoff between maximizing the scanning range of a

single cavity, and maintaining large quality factors and suppressing field emission. However, we note

that even a simple cylindrical cavity design without tuning fins can potentially cover six orders of

magnitude in axion mass.

In principle, our approach is also sensitive to sub-Hz axion masses. In fact, as discussed in

Section 2.3, the signal power is not parametrically suppressed even when the axion does not undergo

a full oscillation within a resonator ring-up time. This leads to the intriguing possibility of probing
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axion-like particles with frequencies down to mHz or even lower. In this regime, finer details involving

the stabilization of the cavity modes and the width of the oscillator become relevant, and we defer a

detailed analysis to future work.

Elaborations on our basic approach could be used to further enhance the sensitivity. For example,

one could use correlations between two signal modes above and below that of the pump mode

(ω± ≃ ω0 ±ma) to help distinguish the signal from noise, or use several signal modes simultaneously

to accelerate the scanning. When mechanical noise dominates, two cavities with distinct mechanical

resonant frequencies could be used to avoid gaps in the reach. Furthermore, variations on our

approach could be sensitive to other models of ultralight bosonic dark matter, such as dilaton-like

scalars that couple to the mechanical modes of the cavity. By leveraging technologies developed and

proven over the past few decades, our proposal is potentially sensitive to symmetry breaking scales

of up to fa ∼ 1016 GeV, and thereby some of the highest fundamental energy scales in nature.

Note added: While this study was ongoing, we became aware of Ref. [162], which discusses similar

ideas for axion detection.

2.8 Appendix: Cavity Geometry and Overlap Factor

Cylindrical Cavities

The normal modes of a cylindrical cavity are grouped into TE and TM modes. We begin by reviewing

facts about these modes, following the treatment in Ref. [148]. The TM modes are defined by the

vanishing of the transverse electric field ET at z = 0 and z = L, where L is the height of the cylinder.

Thus the z component of a TM mode is defined by

Ez = ψ(r, φ) cos
(pπz
L

)
, (2.63)

for a nonnegative integer p. The function ψ vanishes at the boundaries and obeys a transverse wave

equation, and hence has solutions of the form

ψ(r, φ) = E0Jm(γmnr)e
imφ , (2.64)

where γmn = xmn/R, with xmn being the nth zero of the mth order Bessel function Jm(x), and R

being the cylinder radius. The transverse electric and magnetic field components of a TM mode are
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then given by

ET = − pπ

Lγ2mn
sin
(pπz
L

)
∇Tψ(r, φ) , (2.65)

BT =
iϵµωmnp
γ2mn

cos
(pπz
L

)
ẑ×∇Tψ(r, φ) , (2.66)

where ∇T is the transverse part of the gradient, and µϵω2
mnp = γ2mn + (pπ/L)2 defines the frequency

of the TMmnp mode.

For TE modes, the boundary condition Bz = 0 at z = 0 and z = L impose

Bz = ϕ(r, φ) sin
(pπz
L

)
, (2.67)

for a positive integer p. The function ϕ now obeys the boundary condition ∂Hz/∂r|r=R = 0. Here,

the solutions to the transverse wave equation are

ϕ(r, φ) = µB0Jm(γ′mnr)e
imφ , (2.68)

where γ′mn = x′mn/R, with x′mn being the nth root of J ′
m(x). The transverse electric and magnetic

field components of a TE mode are then given by

ET = − iωmnp

µγ′mn
2 sin

(pπz
L

)
ẑ×∇Tϕ(r, φ) , (2.69)

BT =
pπ

Lγ′mn
2 cos

(pπz
L

)
∇Tϕ(r, φ) , (2.70)

and ω2
mnp = γ′2mn + (pπ/L)2 defines the frequency of the TEmnp mode.

Overlap Factors for Cylindrical Cavities

In this section, we compute the normalized overlap factors defined in Eq. (2.21) for transitions

between cylindrical cavity modes. From this point on, we set ϵ = µ = 1 for brevity.

We begin by deriving the selection rules quoted in Section 2.4. For a geometric overlap factor

between two modes indexed by (m0, n0, p0) and (m1, n1, p1), the integral over z gives a factor of

∫ L

0

cos
(p0πz

L

)
sin
(p1πz

L

)
dz =

Lp1
π(p21 − p20)

(1 + (−1)p0+p1+1) =
Lp1

π(p21 − p20)
×





2 p1 + p0 odd

0 p1 + p0 even
,

(2.71)
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while the integral over φ gives a factor of

∫ 2π

0

e−im0φeim1φ dφ =





2π m0 = m1

0 m0 ̸= m1

. (2.72)

Therefore, a nonzero geometric overlap factor is only possible if the selection rules m0 = m1 = m

and p0 + p1 odd are obeyed. Furthermore, TM ↔ TM mode transitions always have a zero overlap

integral, because for two TM modes,

∫

V

E∗
mn1p1 ·Bmn0p0 ∝

∫ R

0

dr r
(
∇Tψ

∗
mn1p1(r, φ)

)
· (ẑ×∇Tψmn0p0(r, φ))

∝
∫ R

0

dr
(
∂rJm(γmn1

r)
)
Jm(γmn0

r) + Jm(γmn1
r)∂r

(
Jm(γmn0

r)
)

∝
∫ R

0

dr ∂r
(
Jm(γmn1r)Jm(γmn0r)

)

= Jm(γmn1
R)Jm(γmn0

R)

= 0

where the last line follows from the definition of γmn.

For TEm1n1p1 ↔ TMm0n0p0 transitions, the overlap integral can be nonzero. Assuming the

selection rules are obeyed, the overlap integral is

∫

V

(E∗
1)TE · (B0)TM = B1E0

(
ωmn1p1ωmn0p0

(γ′mn1
)2(γmn0)2

)(
4Lp1
p21 − p20

)

×
∫ R

0

r dr

[
∂rJm(γ′mn1

r)∂rJm(γmn0r) +
m2

r2
Jm(γ′mn1

r)Jm(γmn0
r)

]
. (2.73)

The volume integral
∫
V

(B∗
1)TE · (E0)TM yields the same result, as expected. For TEm1n1p1 ↔

TEm0n0p0 transitions, the overlap integral can also be nonzero. The same selection rules apply, with

the additional requirement m > 0. The overlap integral can then be written compactly as

∫

V

(E∗
1)TE · (B0)TE = B1B0

(
ωmn1p1 mp0

(γ′mn1
)2(γ′mn0

)2

)(
8πp1
p21 − p20

)[
Jm(γ′mn1

R)Jm(γ′mn0
R)
]
. (2.74)

To obtain the normalized overlap factor η10 defined in Eq. (2.21), one must also compute the norms
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of the modes,

∫

V

(E∗
1 ·E1)TE = πLB2

1

ω2
mn1p1

(γ′mn1
)4

∫ R

0

r dr

[(
∂rJm(γ′mn1

r)
)2

+
m2

r2
(
Jm(γ′mn1

r)
)2
]
,

(2.75)
∫

V

(B∗
0 ·B0)TE = πLB2

0

(p0π/L)2

(γ′mn0
)4

∫ R

0

r dr

[(
∂rJm(γ′mn0

r)
)2

+

(
m2

r2
+

(γ′mn0
)4

(p0π/L)2

)(
Jm(γ′mn0

r)
)2
]
,

(2.76)
∫

V

(B∗
1 ·B1)TM = πLE2

0

ω2
mn0p0

(γmn1
)4

∫ R

0

r dr

[
(∂rJm(γmn0r))

2
+
m2

r2
(Jm(γmn0r))

2

]
.

(2.77)

We can now write relatively compact expressions for the overlap factors,

ηTE↔TM =
4 p1

π(p21 − p20)

∫ R

0

r dr

[
∂rJm(γ′mn1

r)∂rJm(γmn0
r) +

m2

r2
Jm(γ′mn1

r)Jm(γmn0
r)

]

×
(∫ R

0

r dr

[(
∂rJm(γ′mn1

r)
)2

+
m2

r2
(
Jm(γ′mn1

r)
)2
])−1/2

×
(∫ R

0

r dr

[
(∂rJm(γmn0

r))
2

+
m2

r2
(Jm(γmn0

r))
2

])−1/2

(2.78)

and

ηTE↔TE =
8mp1

π(p21 − p20)
Jm(γ′mn1

R)Jm(γ′mn0
R)

×
(∫ R

0

r dr

[(
∂rJm(γ′mn1

r)
)2

+
m2

r2
(
Jm(γ′mn1

r)
)2
])−1/2

×
(∫ R

0

r dr

[(
∂rJm(γ′mn0

r)
)2

+

(
m2

r2
+

(γ′mn0
)4

(p0π/L)2

)(
Jm(γ′mn0

r)
)2
])−1/2

. (2.79)

Clearly, we wish to maximize p1 while keeping p21 − p20 as small as possible. Therefore, good choices

might include (p0, p1) = (0, 1) or (1, 2), depending on whether the relevant frequencies have a

degenerate solution to perturb around.

Pairs of Degenerate Modes

The axion-induced transitions we are interested in observing would be between nearly degenerate

modes. Therefore, it is useful to have an analytic result for the cavity length to radius ratio that
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Figure 2.6: Cavity with corrugated end- and side-walls, R = 3λ. Shown are density plots of the E
and H fields as labeled. a) Fields for mode with electric field polarized perpendicular to end-wall
vanes. b) Fields for mode with electric field polarized parallel to end-wall vanes.

would be required to achieve degeneracy. For TMmn0p0↔TEmn1p1 transitions, we find that

(
L

R

)2

=
π (p21 − p20)

x2mn0
− x′2mn1

, (2.80)

indicating that for there to be a real solution for L/R, then for p1 > p0 we require x′mn1
< xmn0

, while

for p1 < p0 we require x′mn1
> xmn0 . A similar analysis can be performed for TEmn0p0↔TEmn1p1

transitions, with the same result up to a replacement of xmn0 → x′mn0
. Tuning the length to radius

ratio will then allow for axion mass to be scanned. A discussion of how tuning could be performed in

practice can be found in Section 2.4.

Corrugated Cylinders

When the outer wall of a cylindrical guide can be characterized by a constant impedance Z = Eφ/Hz

and Y = Hφ/Ez, then the waveguide modes are typically hybrid, having both electric and magnetic

fields transverse to the longitudinal axis z [163],

Eφ = − k0
k⊥

(
m
kz
k0

Jm(k⊥r)
k⊥r

+ ΛJ ′
m(k⊥r)

)
sin mφ , (2.81)

Er =
k0
k⊥

(
kz
k0
J ′
m(k⊥r) +mΛ

Jm(k⊥r)
k⊥r

)
cos mφ , (2.82)

Hφ =
k0
η0k⊥

(
J ′
m(k⊥r) +m

kz
k0

Λ
Jm(k⊥r)
k⊥r

)
cos mφ , (2.83)

Hr =
k0
η0k⊥

(
m
Jm(k⊥r)
k⊥r

+
kz
k0

ΛJ ′
m(k⊥r)

)
sin mφ , (2.84)

where k0 and kz are the free space and longitudinal propagation constants respectively, k⊥ = γ/R is

the transverse propagation constant where γ is a Bessel root, η0 is the wave impedance of the medium
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filling the guide and Λ is a hybrid factor relating the TE to TM fields. Imposing the boundary

condition Z = Eφ/Hz and Y = Hφ/Ez at r = R yields an equation for the hybrid factor

Λ = −i
(
η0Y − Z

η0

)
k2⊥R
2mkz

±
[

1 −
((

η0Y − Z

η0

)
k2⊥R
2mkz

)2
]1/2

. (2.85)

The two solutions correspond to the two types of hybrid modes, HEmnp and EHmnp. The most

interesting case for our approach occurs when η0Y = Z/η0 ≪ k0R, yielding Λ = ±1. This limit can

be obtained by using a corrugated waveguide surface and is referred to as the balanced hybrid modes.

The lower order modes for this case are characterized by significantly reduced wall losses compared

to the smooth wall modes. In addition, some of these modes have high degree of field polarization.

The dominant balanced hybrid mode is the HE11p, and has losses approximately 2.5 times lower

than the lowest loss cylindrical mode, TE01p, and very low cross polar fields. For a guide radius

large compared to wavelength kz/k0 ≃ 1, the radial dependence of the electric and magnetic fields

simplifies to J0(k⊥r) with γ = x10. For this dependence the transverse field components go to zero

at the wall which explains the low attenuation. The attenuation factor α for the HE11p mode is given

by

α ≃ γ2

R3k20

(ωϵ
2σ

)1/2
, (2.86)

where it can be seen that attenuation decreases as 1/R3.

The design of the detection cavity can take advantage of both of the special properties (low loss

and high polarization) of the HE11p mode. The low wall losses allow generation of a very high Qint

cavity and the low cross-polarization coupling allows the pump and signal mode to be identical but

of opposite polarization so the coupling between them is minimized.

To achieve a high geometric overlap factor between the pump and signal modes, we again take

advantage of the high polarization of the mode by introducing a polarization-dependent reflection

at the cavity end walls. This can be achieved by using corrugations on the end walls as shown in

Figure 2.6. A mode with electric field polarized parallel to the corrugation vanes will be reflected

at the vane edge while the mode with electric field polarized perpendicular to the vane edge will

propagate into the vane section which allows for spatial alignment of the electric and magnetic fields

of the two modes.

2.9 Appendix: Geometric Rejection

The ability to discriminate between the pump and signal modes can be achieved by ensuring that

the input (output) waveguide couples only to the pump (signal) mode to a high degree of precision.
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Figure 2.7: Ellipticity of the cavity can lead to signal and pump mode contamination. Shown here
are the major axis voltage VM and minor axis voltage Vm, and a drive voltage Vd, subject to a wall
deformation ∆R.

These couplings can be parametrized by geometric overlap factors, defined as

ϵij =

∫
V
Ẽ∗
i · Ẽj√∫

V
|Ẽi|2

√∫
V
|Ẽj |2

, (2.87)

where the Ẽi denote the spatial part of the cavity normal modes as defined in Section 2.3. In practice,

the undesired couplings between the pump and output mode, ϵ0r, and the signal and input mode,

ϵ1d, will be nonzero, as it is not possible to perfectly control the geometry of the various components.

Below we discuss how ensuring ϵ0r ≃ ϵ1d ≪ 1 can be achieved, and the required precision of the

geometry of the cavity setup.

Coupling to the two orthogonal pump and detection modes in the cavity can be done through

rectangular waveguides placed in the center of the two end walls rotated 90◦ relative to each other.

However, if there is an angular misalignment ∆θ there will be coupling between the modes at a level

proportional to the angular misalignment. For an amplitude discrimination between modes i = 0, 1

and drive/readout j = d, r of ϵij ≲ 10−n, then ∆θ ≲ 10−n. For a guide height h, this would require

the rotational displacement to be δ < h∆θ/2. Assuming a frequency f0 = 1 GHz, h = λ/3 and a

desired power discrimination of 140 dB (ϵij = 10−7), the rotational displacement error must be δ < 5

nm.

Another source of coupling of the signal and pump modes can come from small deformations

of the guide resulting in ellipticity of the guide cross section, as shown in Figure 2.7. Consider the

idealized case in which the applied drive signal has a polarization midway between the major and

minor axis of the elliptical guide, labeled M and m, such that it may be decomposed into the two

orthogonal modes of equal amplitude. Since the propagation constant along the two elliptical axes

have a slightly different value ∆β as a result of the radius deformation, the drive signal amplitude

Vd(z) in terms of the two orthogonal modes of the elliptical guide will vary as

Vd(z) =
1√
2

(
VM + Vme

−i∆βz) , VM = Vm = Vd(0) . (2.88)
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This shift in relative phase between the two orthogonal modes will couple the drive mode to the

readout mode as

Vr(z) =
1√
2

(
VM − Vme

−i∆βz) =
Vd(0)

2

(
1 − e−i∆βz

)
. (2.89)

The axial propagation constant of a guided mode is given by

β =
ω

(
1 − (k⊥/ω)

2
)1/2 . (2.90)

The amplitude of the readout voltage at z = L relative to the input drive voltage at z = 0 is

Vr(L)

Vd(0)
≃ L

2

dβ

dR
∆R =

−γ2L∆R

2ωR3
(

1 − (k⊥/ω)
2
)3/2 . (2.91)

Evaluating this expression for f0 = 1 GHz, 2R = L = 5λ and a desired power discrimination of 140

dB (ϵ1d = ϵ0r = 10−7) we find ∆R ≲ 0.2 µm.

2.10 Appendix: Parametric Optimization of Coupling

In this section, we show analytically that overcoupling the readout can parametrically enhance the

reach of our search. Our conclusions match those of Refs. [151, 115], which provide a detailed and

enlightening explanation of axion search optimization in general. We will only aim for parametric

estimates, as our reach is found by numerically optimizing (2.57). For simplicity, we begin by

considering only thermal and amplifier noise, and take the loading to be monochromatic.

We define the dimensionless coupling strength ξ = Qint/Qcpl, giving signal and noise PSDs of

Ssig(ω1 + ∆ω) ∝ ξ

(1 + ξ)2
Sa(ω1 − ω0 + ∆ω)

1 + (∆ω/∆ωr)2
,

Snoise(ω1 + ∆ω) ∝ 4ξ

(1 + ξ)2
1

1 + (∆ω/∆ωr)2
+

1

nocc
, (2.92)

where we have absorbed constants to display only the dependence on ξ and ω, and expanded the

PSDs near the positive frequency resonance ω ≃ ω1.

In all cases we will consider, the integrand of Eq. (2.57) will be roughly constant within an interval

ωmax ± ∆ωs, where we call ∆ωs the sensitivity width, and quickly falls off outside it. In this case,

evaluating the integral roughly gives

SNR(ξ) ≈ Ssig(ωmax)

Snoise(ωmax)

√
tint∆ωs

2π
(2.93)
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which is the familiar Dicke radiometer equation. Directly applying Eq. (2.92), we have

Ssig(ω1 + ∆ω)

Snoise(ω1 + ∆ω)
∝ 1

1 + 1/neff

Sa(ω1 − ω0 + ∆ω)

1 + (∆ω/∆ωr)2/(1 + neff)
(2.94)

where neff describes the ratio of thermal to amplifier noise,

neff =
4ξ

(1 + ξ)2
nocc (2.95)

and nocc ≫ 1.

We now optimize the coupling ξ. When the axion is broad, the sensitivity width is determined by

the width of the Breit–Wigner in (2.94),

∆ωs = ∆ωr
√

1 + neff ∝ (1 + ξ)
√

1 + neff (2.96)

where the second step follows because ∆ωr ∝ 1/Q1. The maximum SNR depends on ξ as

Ssig(ωmax)

Snoise(ωmax)
∝ 1

1 + 1/neff
. (2.97)

Finally, the scan step affects the SNR through the integration time, tint ∝ ∆ωsc, as in Eq. (2.59),

but in the broad axion case, ∆ωsc = ∆ωa is independent of ξ. Therefore, the figure of merit to be

maximized is

SNR(ξ) ∝ F (ξ) =

√
(1 + ξ)

√
1 + neff

1 + 1/neff
. (2.98)

We have normalized the figure of merit so that a critically coupled readout that naively detects only

the total power within the resonator width (i.e. taking ξ = 1 and artificially setting ∆ωs = ∆ωr) has

F ∼ 1.

For a narrow axion, the roles of the scan step ∆ωsc and sensitivity width ∆ωs are flipped: it is

now the sensitivity width that is determined by the axion width, and the scan step that is determined

by the width of the Breit–Wigner. As a result, the SNR has the same parametric dependence on ξ,

so we can roughly handle both cases at once.

For ξ ≈ 1, we have neff ≫ 1, and (2.98) reduces to

F (ξ) ≈
√

(1 + ξ)
√
neff = (4ξnocc)

1/4 (2.99)

which makes it clear that overcoupling is advantageous. For ξ ≫ 1, we can expand again to find

F (ξ) ≈

√
ξ
√

1 + 4nocc/ξ

1 + ξ/4nocc
=

(4ξnocc)
1/4

(1 + ξ/4nocc)3/4
(2.100)
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which is maximized when ξ ∼ nocc, at which point F (ξ) ∼ √
nocc, justifying the claims made in

Section 2.6. As anticipated, the optimum is achieved when the thermal noise hits the quantum noise

floor, neff ∼ 1.

We now make some remarks on this result. First, our conclusions are not specific to thermal

noise. Referring to Eq. (2.92), we see that they hold for any source of noise which has a Breit–Wigner

shape and the same dependence on the coupling ξ. In particular, this is true for oscillator phase

noise. As such, the SNR gain from overcoupling is
√
nocc ∼ 10 for high axion masses, where thermal

noise dominates, and grows further at low axion masses, where oscillator phase noise becomes larger

than thermal noise.

Second, if the amplifier were instead at the same physical temperature as the cavity, the thermal

noise would not be reduced by overcoupling. Assuming thermal noise dominates, the figure of merit

is

SNR(ξ) ∝ F (ξ) =
ξ

(1 + ξ)2

√
1 + ξ (2.101)

where the first factor is due to the PSD ratio, and the second is from the dependence on
√
tint∆ωs.

This quantity is maximized at ξ = 2, in accordance with standard results.

Third, we have assumed throughout that tint > max(τr, τa), so that steady state solutions apply. A

smaller integration time can be described by multiplying all time-dependent functions by a windowing

function of width tint, smearing their Fourier transforms over the width 1/tint. For example, in the

broad axion case, the total signal power is penalized as

Ps ∼





t2/τrτa t≪ τa,

t/τr τa ≪ t≪ τr,

1 τr ≪ t.

(2.102)

This signal power is also smeared over a larger frequency range, so detecting it requires taking in

more noise, further reducing the SNR. For tint ≲ τa, we also encounter a qualitatively new problem

which is statistical in nature [164, 165]. The axion DM field is generically expected to be a Gaussian

random field, which implies that its amplitude of oscillation fluctuates by an O(1) factor over the

timescale τa. (We suppressed this in the qualitative discussion following Eq. (2.2) for simplicity.) As

a result, the axion signal power has large statistical fluctuations, and the possibility of a downward

fluctuation significantly weakens the reach; the simple criterion SNR ≳ 1 is no longer a good estimate.

These subtleties introduce significant complications, so we have simply imposed tint > max(τr, τa)

as a constraint. As a result, if te is sufficiently short (as in the lower right panel of Figure 2.5), the

readout is overcoupled beyond the optimal value to allow the scan to complete in time.

Finally, we note one more feature of our optimization: the sensitivity width ∆ωs can be para-

metrically larger than the resonator width ∆ωr. For example, for critical coupling and a broad

axion, we have ∆ωs ∼
√
nocc ∆ωr. A critically coupled experiment which naively looks only at the
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power within the resonator width thus parametrically underestimates its potential SNR by a factor

of F (ξ = 1) ∼ n
1/4
occ . The intuition here is that the signal and thermal noise PSDs fall off resonance

with exactly the same Breit–Wigner tail, so bins far beyond the resonator width can still have high

SNR. However, this point is not relevant to our final result, because once the coupling is optimized,

we have ∆ωs ∼ ∆ωr again.



Chapter 3

Heterodyne Broadband Detection

This chapter is based on Heterodyne Broadband Detection of Axion Dark Matter, by A. Berlin, R. T.

D’Agnolo, S. A. R. Ellis, K. Zhou, Phys. Rev. D 104, L111701 (2021).

Abstract

We propose a new broadband search strategy for ultralight axion dark matter that interacts with

electromagnetism. An oscillating axion field induces transitions between two quasi-degenerate

resonant modes of a superconducting cavity. In two broadband runs optimized for high and low

masses, this setup can probe unexplored parameter space for axion-like particles covering fifteen

orders of magnitude in mass, including astrophysically long-ranged fuzzy dark matter.

53
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3.1 Introduction

Evidence for dark matter (DM) has been accumulating for almost ninety years [166] and its microscopic

nature remains one of the most important open questions in physics. Among the many DM candidates

proposed in the literature, light pseudoscalar bosons with sub-eV masses have garnered considerable

appeal since they generically appear in string compactifications [97, 98, 99] and have a simple and

predictive cosmological history. Furthermore, in certain regions of parameter space they can solve

the strong CP [93, 94, 95, 96, 100, 101, 102] or electroweak hierarchy problem [167, 168, 169]. In the

“fuzzy” mass limit (m
DM

∼ 10−22 eV), light bosonic DM may also play a role in resolving long-standing

tensions between observations and simulations of galactic structure [170, 171, 172]. In this chapter,

we present a new detection strategy for these DM candidates, which we refer to as axions.

Axion DM generically couples to electromagnetism through the interaction

−L ⊃ 1

4
gaγγ aFµν F̃

µν ⊃ 1

2
Jeff ·A , (3.1)

where a is the axion field and A is the vector potential. In the presence of a background magnetic

field B, the axion sources an effective current density

Jeff ≃ gaγγ ∂taB . (3.2)

The interaction of Eq. 3.1 forms the basis of several experimental approaches to axion detection [4, 5,

6, 7, 9, 11, 10, 12, 13, 18, 108, 109, 110, 173, 174, 123]. For instance, the time variation of Jeff may

be used to drive a resonant detector [107, 175]. Such experiments exploit the coherence properties of

the axion DM field, which we model as a classical Gaussian random field within the galaxy, with an

average local density ρDM ≃ 0.4 GeV/cm3 and oscillating with angular frequency approximately equal

to the axion mass ma. Velocity dispersion from virialization within the galaxy leads to a spectral

broadening of the axion, with a characteristic width of ∆ωa ∼ ma/Qa, where Qa ∼ 106.

In setups applying static magnetic fields, Jeff oscillates with the same frequency as the axion field.

Microwave cavities resonantly matched to the axion field can be built for ma ∼ µeV [11], but for

lower axion masses, the required cavity volume becomes impractically large. Resonant detection of

lighter axions is possible in static-field setups if the resonant frequency and volume of the detector

are independent, such as for lumped-element LC circuits [113, 114, 115]. However, their sensitivity

to low mass axions is suppressed by ∂tJeff ∝ ma.

Recently, we have proposed a new approach for axion DM detection, which uses frequency

conversion to retain the advantages of resonant cavities while avoiding this suppression at low

masses [176] (see also Refs. [127, 177, 178]).1 A cavity is prepared by driving a “pump mode” with

frequency ω0 ∼ GHz, so that the axion can resonantly drive power into a “signal mode” of nearly

1Resonant and broadband heterodyne setups based on optical interferometry have previously been proposed, but
their sensitivity is limited by laser shot noise [179, 180, 181].
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Figure 3.1: In shaded green, the projected 90% C.L. reach of our setup to axion dark matter for several
values of leakage noise suppression ε, intrinsic quality factorQint, and integration time tint. For each set
of parameters, we show the envelope of two or three distinct experimental runs, as discussed in the main
text. We assume pump and signal mode frequencies ω0 = ω1 = 100 MHz, a cavity volume Vcav = m3,
a magnetic field strength B0 = 0.2 T, a mode overlap form factor ηa = 1, a drive oscillator width
∆ωd = 0.1 mHz, and an attenuated RMS cavity wall displacement qrms = 0.1 nm. Further variations
are shown in the appendix. Existing constraints [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
are shown in grey. The orange band denotes parameter space motivated by the strong CP problem.
Along the blue band, axions are produced through the misalignment mechanism at a level consistent
with the observed dark matter density [19], assuming a temperature independent mass, O(1) initial
misalignment angle, and coupling gaγγ = αem/(2πfa). (For larger couplings, axions produced in the
same way would make up a subcomponent of dark matter. However, since Jeff ∝ gaγγ

√
ρa ∝ gaγγfa,

our setup is equally sensitive to such subcomponents.)



CHAPTER 3. HETERODYNE BROADBAND DETECTION 56

degenerate frequency ω1 ≃ ω0 ±ma and distinct spatial geometry. A scan over possible axion masses

is performed by slightly perturbing the cavity geometry, thereby modulating the frequency splitting

ω1 − ω0. Compared to a static-field LC circuit of comparable volume and noise, the signal-to-noise

ratio of this “heterodyne” approach is parametrically enhanced by ω1/ma. It also benefits from the

very large intrinsic quality factors Qint ≳ 2 × 1011 achievable in superconducting radio frequency

(SRF) cavities [134, 135], which far exceed the quality factors achievable in static-field detectors

targeting small axion masses.

In this chapter, we consider a broadband search where the signal and pump modes are fixed to

be degenerate within their bandwidth, the feasibility of which is currently being investigated by the

DarkSRF collaboration [182]. For the lowest axion masses, ma ≲ ω0/Qint ∼ 10−17 eV, the signal

power is resonantly enhanced. For higher axion masses, the signal is off-resonance, but so are the

dominant sources of noise in the cavity, thereby allowing this setup to explore new parameter space

for axions as heavy as ma ∼ 10−7 eV, as shown in Fig. 3.1. This broadband approach is thus sensitive

to a wide range of axion masses without the need to scan over frequency splittings. It is also the

first approach that could directly detect electromagnetically-coupled axion DM at the lowest viable

DM masses ma ∼ 10−22 eV, which correspond to a de Broglie wavelength the size of dwarf galaxies

and a coherence time ten times longer than recorded human history. In this chapter, we will show

parametric estimates that illustrate its potential; detailed calculations of signal and noise are given

in Ref. [176] and the appendix.

3.2 Detection Strategy

The basic principle of our setup is shown in Fig. 3.2. The effective current, given by Eq. 3.2, oscillates

at frequency ωsig ≃ ω0 ±ma. Since it is parallel to B0, it drives power into the signal mode with

strength parametrized by the form factor

ηa =
|
∫
Vcav

E∗
1(x) ·B0(x)|

( ∫
Vcav

|E1(x)|2
∫
Vcav

|B0(x)|2
)1/2 ≤ 1 , (3.3)

where E1 is the signal mode electric field and Vcav is the volume of the cavity. We will be agnostic to

the cavity geometry, taking ω0 = ω1 ∼ (1 m)−1 ∼ 100 MHz, but as a concrete example, ηa ∼ O(1)

for the TE011 and TM020 modes of a cylindrical cavity, which are degenerate in frequency for a

length-to-radius ratio of L/R ≃ 0.8 [176, 178].

We assume the frequencies of the pump and signal can be held fixed and degenerate within

the signal mode bandwidth. However, the assumption of degeneracy only affects the reach at very

low masses (ma ≲ ω1/Q1). Furthermore, as shown in the appendix, even a frequency splitting 103

times larger than the bandwidth allows new ultralight axion parameter space to be probed. The

fundamental reason our setup can probe such low axion masses is that the signal strength depends
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Figure 3.2: A schematic depiction of our setup. An SRF cavity is designed to have two degenerate
modes of frequency ω0. It is prepared by driving a loading waveguide, predominantly coupled to the
pump mode, with an external oscillator of frequency ω0. In the presence of axion DM, the pump
mode magnetic field B0 sources an effective current that drives power into the signal mode. A wide
range of axion masses can be simultaneously probed by broadband readout, via a readout waveguide
predominantly coupled to the signal mode.

on ∂tJeff ≃ gaγγ ∂ta ∂
2
tB ∝ ma a ∝ √

ρ
DM

. For a fixed axion field amplitude, this vanishes as ma → 0,

as required by general principles, but it is independent of ma for fixed axion energy density.

When the sensitivities of a broadband and scanning approach overlap, the latter is stronger with

a similar cavity [176], as expected on general grounds [151]. The two approaches have the same

sensitivity only when ma is smaller than the resonator bandwidth and the broadband setup functions

as a resonant experiment. However, a broadband setup is simpler to operate due to its fixed geometry,

and could be used as a stepping stone towards a scanning one. Moreover, it can probe a wide range

of parameter space in a short integration time.

3.3 Overview of Signal and Noise

The frequency spread ∆ωsig of Jeff (and hence of our signal) depends on the width ∆ωa of the axion

field and the width ∆ωd of the oscillator driving the pump mode, ∆ωsig ∼ max(∆ωa,∆ωd). For

concreteness, we take the power spectral density (PSD) of the central peak of the oscillator to be

flat with a width ∆ωd ≃ 0.1 mHz, comparable to a commercially available oscillator [146]. This is

narrower than the signal mode width ∆ωr = ω0/Q1 for all parameters we consider. Since it can

be beneficial to overcouple the readout, the loaded quality factor Q1 of the signal mode can be

much lower than the intrinsic quality factor Qint, though the pump mode quality factor Q0 remains
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Figure 3.3: The signal and noise PSDs evaluated at ωsig as a function of the axion mass ma, at
critical coupling. The vertical dashed line denotes the bandwidth ∆ωr of the signal mode. We use a
fixed, fiducial value of gaγγ , below our projected sensitivity, to allow the reader to easily compare the
slopes of signal and noise. We show leakage noise (blue), thermal fluctuations of the electromagnetic
field in the cavity at T = 1.8 K (red), and quantum-limited amplifier noise (green). Mechanical
vibrations dominate the leakage noise for high ma. The parameters are those of the second-lowest
curve in Fig. 3.1.

comparable to Qint.

The average signal power delivered to the cavity is

Psig ∼ (gaγγ ηaB0)2 ρ
DM
Vcav

max (∆ωr,∆ωa)
min

[
1,
(∆ωr
ma

)2 ]
, (3.4)

where B0 is the characteristic amplitude of the pump mode magnetic field. The final factor in

Eq. 3.4 accounts for the suppression that occurs when the axion drives the signal mode off-resonance

(ma ≳ ∆ωr). Given the signal power and noise PSD Sn(ω), the reach is determined by the signal-to-

noise ratio [152]

SNR ∼ Psig

Sn(ωsig)

√
tint

∆ωsig
, (3.5)

where tint is the total integration time. Eq. 3.5 is valid when tint ≳ 1/∆ωsig, which holds for all

parameters we consider. A detailed derivation of the signal power and of the test statistic that Eq. 3.5

approximates is given in the appendix.

For most of the axion masses we consider, the dominant noise source is power in the oscillator

or pump mode “leaking” into the readout waveguide. For instance, geometric imperfections can

lead to small cross-couplings ε≪ 1 between the loading architecture and signal mode (and similarly
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between the readout and pump mode), resulting in leakage noise power proportional to ε2. Leakage

noise was previously encountered in the gravitational wave experiment MAGO, which looked for

transitions between nearly degenerate symmetric and antisymmetric mode combinations of two

identical SRF cavities coupled by a small tunable aperture [130, 131, 132]. The collaboration achieved

a noise suppression of ε ∼ 10−7 using magic-tees and a variable phase shifter coupled to an active

feedback loop [183]. In our setup, the two modes can additionally be chosen to be locally orthogonal,

E0 ·E1 = B0 ·B1 = 0, with distinct spatial profiles, which could allow for further noise suppression

by, e.g., loading/reading out the pump/signal mode near a node of the other mode [178], or by

correlating readout measurements across multiple regions of the cavity. However, we conservatively

consider ϵ ≥ 10−7.

As shown in Fig. 3.3, leakage noise is largest when ma ≲ ∆ωd, while for higher axion masses it

falls off according to the tail of the pump mode PSD, which is determined by oscillator “phase noise”

and mechanical vibrations of the cavity [176]. For the highest axion masses we consider, readout

amplifier noise dominates. This explains the main qualitative features of Fig. 3.1. Since slightly

different setups are optimal in each mass regime (with the exact crossover points depending on the

experimental parameters), we organize the following discussion by axion mass.

Low mass axions

When the axion mass is smaller than the oscillator width (ma ≲ 10−19 eV), the signal overlaps

in frequency with the central peak of the oscillator. Both the signal and noise are spread over a

bandwidth ∆ωsig ∼ ∆ωd, giving a leakage noise PSD of

Sleak(ωsig) ∼ ε2 Pin/∆ωd , (3.6)

where Pin ∼ (ω0/Qint)B
2
0 Vcav is the power stored in the cavity. Assuming the readout waveguide is

critically coupled to the signal mode (Q1 = Qint/2), which maximizes the sensitivity, Eq. 3.5 gives

SNR ∼ ρ
DM

(
gaγγ Qint

ω0 ε

)2√
tint ∆ωd (3.7)

and hence a reach gaγγ ∝ ϵ/Qint, independent of ma.2

Since leakage noise dominates, parameters such as B0, Vcav, and the cavity temperature do not

directly affect the sensitivity. The same is true for external sources of low frequency noise, such

as vibrations of the ground or the cooling apparatus. Relative displacements of the cavity walls

are suppressed by the rigidity of the cavity and further controlled by actively monitoring the mode

frequencies and cross-coupling ϵ. In the appendix, we conservatively estimate the effect of vibrational

2The reach is slightly penalized when ∆ωa ≲ 1/tint, as described in the appendix. Furthermore, we do not consider
very low axion masses ma ≲ 1/tint, as the reach is strongly suppressed by the unknown instantaneous phase of the
axion.
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noise to be subdominant by many orders of magnitude in this mass range, in contrast to precision

interferometric experiments where such noise can be dominant.

The signal and noise overlap in frequency, but can be distinguished by their distinct spatial

profiles and spectral tails. There are several other effects to consider. Since ma ≲ ∆ωr in this regime,

the axion field oscillates less than once per ring-up time of the cavity. Hence, the instantaneous

signal power tracks the oscillations of (∂ta)2, with angular frequency 2ma. Furthermore, Jeff ∝ B0

drives the signal mode on resonance, leading to a signal mode magnetic field π/2 out of phase with

leakage noise. In addition, fluctuations in leakage noise due to fluctuations in the pump mode field

can be monitored and ideally subtracted out. Thus, the parameter ϵ in Eq. 3.7 should be regarded as

including the ability to distinguish between signal and leakage noise using these additional handles,

though here we conservatively take ϵ ≥ 10−7.

High mass axions

Here, leakage and thermal noise are negligible due to the off-resonance suppression (∆ωr/ma)2. Since

the axion is wider than the oscillator, the signal width is ∆ωsig ∼ ∆ωa. As in static broadband axion

searches in this mass range [114, 174], amplifier noise dominates, such that

SNR ∼ ρ
DM
Vcav

∆ωr
Samp(ωsig)

(gaγγ B0

ma

)2√ tint
∆ωa

, (3.8)

where for a quantum-limited amplifier, Samp(ω) ∼ ℏω. We cut off the reach in Fig. 3.1 at ma ≃ ω0,

above which higher harmonics of the cavity must be considered [127], as well as potential nonlinear

response of the cavity walls [184].

The reach scales as gaγγ ∝ m
5/4
a /∆ω

1/2
r , assuming ∆ωr ≳ ∆ωa. Thus, when amplifier noise

dominates, lowering Q1 by overcoupling the signal mode to the readout is beneficial, as it reduces

the off-resonance suppression of the signal without increasing the noise. The reach shown in Fig. 3.1

can be attained from a critically coupled run targeting low masses and an overcoupled run targeting

high masses.3 For the latter run, we assume a quantum-limited amplifier, and take Q1 ∼ 105, which

is a typical loaded quality factor of SRF cavities in accelerators [140].

Intermediate mass axions

For the bulk of the parameter space shown in Fig. 3.1, the reach is dictated by the high frequency

tail of the leakage noise. In most of this range, the oscillator is wider than the axion, so the signal

width is ∆ωsig ∼ ∆ωd.

In the lower end of this mass range, the main contribution to the leakage noise tail is from

3The lowest curve in Fig. 3.1 requires a third run with intermediate overcoupling, specifically targeting intermediate
mass axions.
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oscillator phase noise [176], which for ma ≳ ∆ωr is of the form

Sleak(ωsig) ∼ ε2 Pin

(∆ωr
ma

)2
Sφ(ma) , (3.9)

where the phase noise PSD Sφ(ω) is parametrized by [144]

Sφ(ω) =

3∑

n=0

cn ω
−n , (3.10)

and the cn are fit to a commercially available oscillator [146]. For ma slightly higher than ∆ωd, the

cubic term in Sφ(ω) dominates, resulting in Sleak(ωsig) ∝ 1/m5
a and a rapid improvement in the

reach at higher axion masses.

In the upper end of this mass range, the main noise contribution instead arises from displacements

of the cavity walls, where mechanical vibrations at frequency ma contribute to pump mode power

at ωsig [176]. On the basis of previous measurements in a MAGO prototype [130], we take the

external mechanical force PSD to be spectrally flat, and the mechanical modes to have a quality

factor Qm ∼ 103. As described in the appendix, the contribution of the lowest-lying mechanical

resonance at ωmin ∼ kHz dominates for ma ≲ ωmin, such that

Sleak(ωsig) ∼ ε2 Pin

(∆ωr
ma

)2 δ2Q2
int

ωminQm
, (3.11)

where δ ≪ 1 is the fractional displacement of the cavity walls. For ∆ωa ≲ ∆ωr ≲ ma, Psig ∝ 1/m2
a,

and thus the sensitivity in this region is independent of the axion mass. For frequencies above

ωmin, we assume a forest of evenly spaced mechanical modes exists. To estimate δ, we note that

the DarkSRF collaboration has recently demonstrated the ability to control the resonant frequency

of a driven cavity to one part in Qint ≳ 1010, corresponding to sub-nm displacements of the cavity

walls [139, 182]. This has been demonstrated on minute timescales, and a near-future run is expected

to prolong this to O(1) week. Thus, we fix the typical RMS cavity wall displacement to qrms = 0.1 nm,

corresponding to δ ∼ 10−10 for a meter-sized cavity. This is larger than the displacement due to

environmental seismic noise [185], reflecting the expectation that vibrations will primarily arise from

the apparatus itself (e.g., the helium pump).

Deformations of the cavity walls can also directly transfer power between the pump and signal

modes. This “mode mixing” is parametrized by a dimensionless mechanical form factor ηmix, with

Smix ∼ (ηmix/ϵ)
2 Sleak. The form factor ηmix vanishes for a perfectly cylindrical cavity, which implies

its value is set by cavity deformations [186, 131]. Since ϵ parametrizes the precision to which we can

control slow deformations of the cavity and waveguide geometry, we expect ηmix ∼ ϵ, such that mode

mixing is at most comparable to mechanical leakage noise.
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3.4 Discussion

We have proposed a heterodyne approach to search for ultralight axion dark matter through its

coupling to electromagnetism, which applies recent developments in the manufacturing and control

of SRF cavities. Due to the decreasing signal power and increasing strength of readout noise at low

frequencies, traditional static-field haloscopes have limited reach to axions lighter than a kHz ∼
10−12 eV [173, 174]. In contrast, our setup is sensitive to much lighter axions, including the entire

allowed mass range for fuzzy dark matter, ma ≥ O(10−21) eV [187, 188, 189, 190, 191, 192], thereby

complementing ultralight axion searches that use non-electromagnetic couplings [193, 194, 195, 196].

It is also sensitive to axions as heavy as 10−7 eV, including those motivated by string theory [197]

and the misalignment mechanism. Finally, the broadband nature of this approach implies that a

network of such detectors would be sensitive to axion-induced transients, due to miniclusters or

topological defects [198, 199].

Our projections rely on noise estimates anchored to experimental findings, such as those obtained

fifteen years ago by the MAGO collaboration [130, 131, 132]. More recently, there has been renewed

interest in the SRF community to apply their technological advances to new physics searches, leading

to the recent results of the DarkSRF collaboration [182] that show the feasibility of our proposed

approach. The promising sensitivity of SRF cavities to weakly coupled physics, demonstrated in

this chapter, motivates in situ measurements of mode mixing and leakage noise, in order to further

investigate the potential of these ideas. Future developments, some of which are already envisioned

by the DarkSRF collaboration, can further extend our reach, improving the capacity to probe some

of the most motivated dark matter candidates.

3.5 Appendix: Detailed Analysis

In this appendix, we derive the experimental sensitivity of our proposed approach in detail. We begin

by deriving the signal and noise PSDs. We then discuss the statistical procedure used to estimate

the reach, which involves subtleties for integration times shorter than the axion coherence time.

3.5.1 Definitions and Conventions

Throughout, we use the conventions of Ref. [176]. In particular, the Fourier transform of a function

f(t) is denoted as f(ω), where

f(t) =
1

2π

∫
dω eiωtf(ω) , f(ω) =

∫
dt e−iωtf(t) . (3.12)

The two-sided PSD of f , denoted as Sf (ω), is defined to be

⟨f(ω)f∗(ω′)⟩ = Sf (ω) δ(ω − ω′) , (3.13)
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where the brackets correspond to an ensemble average. The steady state time-averaged power is then

given by

⟨ f(t)2 ⟩ =
1

(2π)2

∫
dω Sf (ω) , (3.14)

where all integrals over t or ω are taken from −∞ to ∞, unless specified otherwise.

The fields in the pump (i = 0) and signal (i = 1) modes behave as damped driven harmonic

oscillators. Therefore, we will find it convenient to treat them as independent RLC circuits of

resonant frequency ωi = 1/
√
LiCi and quality factor Qi =

√
Li/Ci /Ri ∝ 1/Ri. This is not a

physical statement, but merely a mathematical analogy between two systems obeying the same

equations. Furthermore, we often approximate ω1 ≃ ω0, unless the difference ω1 − ω0 is important,

in which case we leave the expression generalized to ω1 ̸= ω0.

It is also useful to recall the distinction between the intrinsic and loaded quality factors of a cavity

mode. The quality factors of the pump and signal modes are denoted by Q0 and Q1, respectively, and

Q1 is determined by both the intrinsic energy loss of the cavity Qint ≃ Q0 ≳ 1010 and the coupling

to the readout Qcpl,
1

Q1
=

1

Qint
+

1

Qcpl
. (3.15)

In the RLC circuit analogy, this corresponds to the addition of resistances in series, R1 = Rint +Rcpl.

As discussed in the main body, it can be beneficial to overcouple, such that Q1 ≃ Qcpl ≪ Qint. For

simplicity, we begin by deriving the noise and signal PSDs corresponding to the total power delivered

to the cavity. However, the sensitivity of the apparatus depends only on the power delivered to the

readout, and when discussing overcoupling, we will explicitly show how the PSDs must be modified

to account for this.

The total noise PSD Sn receives contributions from leakage noise, mechanical mode mixing,

thermal noise, and amplifier noise,

Sn(ω) = Sleak(ω) + Smix(ω) + Sth(ω) + Samp(ω) . (3.16)

Leakage noise from the oscillator is the dominant noise source at low axion masses and is parametrized

as

Sleak(ω) = ε2 Pin

(
Sb0(ω) +

Q1

Q0
Sb1(ω)

)
≡ S

(0)
leak(ω) + S

(1)
leak(ω) , (3.17)

where

Pin ≡ (ω0/Q0)B2
0 Vcav (3.18)

is the power stored in the cavity and the bi are defined below. Both terms in Eq. 3.17 are suppressed

by ϵ≪ 1, which parametrizes the cross-coupling between the pump mode and readout waveguide,

and the coupling between the signal mode and the loading waveguide, which are of the same order.
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We define the characteristic amplitude of the pump and signal mode magnetic fields as

Bi ≡
√

1

Vcav

∫

Vcav

|Bi(x)|2 , (3.19)

where Bi(x) is the time-independent part of the magnetic field

Bi(x, t) = Bi(x) bi(t) , (3.20)

and bi(t) is the dimensionless time-dependent coefficient. For instance, for a monochromatic source

exciting mode i, bi(t) = cosωit and Sbi(ω) = π2
(
δ(ω−ωi) + δ(ω+ωi)

)
. More generally, phase noise

of the oscillator and mechanical vibrations contribute to Sbi(ω) such that

Sbi(ω) = π2
(
δ(ω − ωi) + δ(ω + ωi)

)
+ S

(phase)
bi

+ S
(mech)
bi

, (3.21)

where S
(phase)
bi

and S
(mech)
bi

are given by Eqs. (3.29) and (3.40), respectively.

3.5.2 Leakage Noise and Signal

Oscillator Phase Noise

We model the oscillator as a voltage Vd that drives the equivalent RLC circuits of the pump and signal

modes. In particular, a noisy oscillator is parametrized as a driving voltage with a time-dependent

phase φ(t),

Vd(t) = Vd cos (ω0t+ φ(t)) , (3.22)

where the voltage amplitude is fixed to the power delivered to the pump mode,

V 2
d /R0 = Pin . (3.23)

When the amplitude of the phase is small (φ(t) ≪ 1), the above form can be expanded as

Vd(t) ≃ Vd
(

cosω0t− φ(t) sinω0t
)
. (3.24)

This implies that the PSD of the drive voltage is

SVd
(ω) ≃ R0 Pin

[
π2
(
δ(ω − ω0) + δ(ω + ω0)

)
+

1

4

(
Sφ(ω − ω0) + Sφ(ω + ω0)

)]
. (3.25)

As we discuss below, Sφ(ω) is peaked near ω ≃ 0 (see Eq. 3.31). Therefore, for a frequency ω of

fixed sign, only one of Sφ(ω ∓ ω0) dominates in the expression above. By convention, we focus on

ω ≃ ω0 > 0, such that Sφ(ω − ω0) ≫ Sφ(ω + ω0). Also using that Sφ(ω) = Sφ(−ω) = Sφ(|ω|), we
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then have

SVd
(ω) ≃ R0 Pin

[
π2
(
δ(ω − ω0) + δ(ω + ω0)

)
+

1

4
Sφ(|ω − ω0|)

]
. (3.26)

Above, the first two terms involving delta functions are simply the PSD of a perfectly monochromatic

drive. The inclusion of Sφ accounts for so-called “phase noise” of an imperfect oscillator.

The power delivered to the ith mode is determined by the voltage Vi across the resistor Ri, which

obeys Kirchoff’s voltage law,

V̈i(t) +
ωi
Qi

V̇i(t) + ω2
i Vi(t) =

ωi
Qi

V̇d(t) . (3.27)

In the above equation, we have not included the fact that the oscillator’s coupling to the i = 1 signal

mode is suppressed by ε. For convenience, we have instead included this factor in Eq. 3.17, so that

the derivation of S
(i)
leak is identical for i = 0 and i = 1. Fourier transforming and solving for the PSD

of Vi gives the cavity response function,

SVi(ω) =
(ω ωi/Qi)

2

(ω2 − ω2
i )2 + (ω ωi/Qi)2

SVd
(ω) . (3.28)

To change variables from Vi to bi, we equate the total power, SVi
(ω)/Ri = (Qi/Q0)Pin Sbi(ω), giving

S
(phase)
bi

(ω) ≃ 1

4

(ω ω0/Qi)
2

(ω2 − ω2
i )2 + (ω ω0/Qi)2

Sφ(|ω − ω0|) , (3.29)

where we approximated ω0/Qi ≃ ω1/Qi.

To incorporate the small, but finite, width of the external oscillator (∆ωd ≲ mHz), we replace

the delta functions in Eq. 3.21 by

δ(ω) ≃ Θ(∆ωd/2 − |ω|)
∆ωd

, (3.30)

where Θ is the Heaviside step function. For simplicity, we make the approximation ∆ωd ≪ ω0/Qint

throughout our calculations, since this holds for all parameters we consider. As in Ref. [176], for the

phase noise PSD Sφ(ω), we fit the reported spectrum of a commercially available oscillator [146] to

the form

Sφ(ω) =

3∑

n=0

cn ω
−n . (3.31)

We find that the coefficients

c0 ∼ 10−15 Hz−1 , c1 ∼ 10−11 , c2 ∼ 10−10 Hz , c3 ∼ 10−8 Hz2 , (3.32)

provide a good fit for ω0 ∼ 100 MHz. We fix the overall normalization by demanding that the phase
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noise term of Eq. 3.29 smoothly matches on to the the central peak of Sbi(ω) near ω ≃ ω0 when

using Eq. 3.30 and ∆ωd ≃ 0.1 mHz.

Mechanical Leakage Noise

An additional contribution to Sbi arises from small mechanical vibrations of the cavity walls, which

lead to time-dependent shifts of the resonant frequencies. These frequency wobbles affect the mode

PSDs by enhancing the power in the high frequency tail. We incorporate this effect by continuing

with the analogy to an RLC circuit. If the resonant frequency squared of an equivalent RLC circuit

has a small fractional time variation ∆(t), Kirchoff’s voltage law becomes

V̈i(t) +
ωi
Qi

V̇i(t) + ω2
i Vi(t) =

ωi
Qi

V̇d(t) − ω2
i ∆(t)Vi(t) . (3.33)

Solving this equation to first order in ∆ yields

SVi(ω) ≃ (ω ωi/Qi)
2

(ω2 − ω2
i )2 + (ω ωi/Qi)2

(
SVd

(ω) +
ω4
i

(2π)2

∫
dω′ S∆(ω − ω′)SVd

(ω′)
(ω′ 2 − ω2

i )2 + (ω′ ωi/Qi)2

)
. (3.34)

Relative to Eq. 3.28, the second term incorporates perturbative corrections from mechanical vibrations.

Substituting the leading order piece of SVd
(ω) from Eq. 3.26 into the ω′ integral of Eq. 3.34 and

converting from Vi to bi again yields the mechanical vibration contribution to the unit-normalized

mode PSD,

S
(mech)
bi

(ω) ≃ 1

4

(ω ω0/Qi)
2

(ω2 − ω2
i )2 + (ω ω0/Qi)2

ω4
0

(ω2
0 − ω2

i )2 + (ω2
0/Qi)

2

(
S∆(ω−ω0)+S∆(ω+ω0)

)
. (3.35)

When the modes are degenerate, the second Breit–Wigner factor above simplifies, giving

S
(mech)
bi

(ω) ≃ 1

4

(ω ω0)2

(ω2 − ω2
i )2 + (ω ω0/Qi)2

(
S∆(ω − ω0) + S∆(ω + ω0)

)
. (3.36)

For brevity, we will use this form below, though the more general form Eq. 3.35 is useful when

considering what happens when the modes are not exactly degenerate.

The PSD of the frequency wobble S∆(ω) can be computed using cavity perturbation theory,

which treats the small displacement of the cavity walls as an expansion parameter. We will assume

that for each axion mass, a single mechanical resonance, labeled by “m,” dominates the mechanical

vibrations. To first order in cavity perturbation theory, ∆(t) ≃ −qm(t)Cmi , where the displacement of

the cavity walls, projected onto the spatial profile of the mechanical resonance, is parametrized by the

generalized coordinate qm, and the coupling coefficient Cmi quantifies the mechanical overlap of the

electromagnetic cavity modes (i = 0, 1) with the mth vibrational mode of the cavity walls [131, 176].

Parametrically, fractional length variations are comparable to the fractional frequency variations

they induce, so |Cmi | ∼ V
−1/3
cav for maximally coupled mechanical and electromagnetic modes.



CHAPTER 3. HETERODYNE BROADBAND DETECTION 67

The amplitude of the wall displacement qm is determined by the generalized force fm, such that

Sqm(ω) =
Sfm(ω)/M2

cav

(ω2 − ω2
m)2 + (ω ωm/Qm)2

, (3.37)

where Mcav is the mass of the cavity, ωm is the frequency of the mechanical resonance, and Qm is its

corresponding mechanical quality factor. Here, fm should be regarded as the remaining force that

couples to the cavity after vibrational attenuation is employed. Since S∆ = |Cmi |2 Sqm ,

S∆(ω ± ω0) =
|Cmi |2 Sfm(ω ± ω0)/M2

cav(
(ω ± ω0

)2 − ω2
m)2 +

(
(ω ± ω0)ωm/Qm

)2 . (3.38)

The PSD of the generalized force fm is peaked towards smaller ω [132], which implies that for

frequencies near ω ≃ ω0 the S∆(ω − ω0) term dominates over the S∆(ω + ω0) term in Eq. 3.36. As

in Ref. [176], we determine the size of the force PSD by fixing the RMS cavity wall displacement

qrms ≃ 0.1 nm, consistent with DarkSRF [182], and assume that it is dominated by the lowest-lying

mechanical resonance of the cavity, with corresponding frequency ωmin:

Sfm(ωmin) ≃ 4πM2
cav ω

3
min q

2
rms/Qm ≃ 10−13 N2 Hz−1 ×

(
Mcav

1 kg

)2(
ωmin

1 kHz

)3(
qrms

0.1 nm

)2(
103

Qm

)
.

(3.39)

In the following discussion, we take ωmin = 1 kHz and Qm = 103, which are representative of the

SRF cavities fabricated for the MAGO experiment [130, 132]. For maximally coupled mechanical

and electromagnetic modes, Eqs. (3.36), (3.38), and (3.39) imply that

S
(mech)
bi

(ω) ≃ (ω ω0)2

(ω2 − ω2
i )2 + (ω ω0/Qi)2

π ω3
min δ

2/Qm
((ω − ω0)2 − ω2

m)2 + ((ω − ω0)ωm/Qm)2
, (3.40)

where we defined the fractional cavity wall displacement δ ≡ qrms/V
1/3
cav . For our baseline estimates,

we take qrms = 0.1 nm, corresponding to δ ∼ 10−10 for a meter-sized cavity.

In the SRF cavity setup of Ref. [130], direct measurements found a forest of mechanical resonances

above ωmin, approximately separated by 100 Hz. For each axion mass ma above ωmin, mechanical

noise is most severe if there exists a resonance at the axion mass, ωm ≃ ma, and is least severe if the

nearest resonance is separated by 50 Hz. We thus estimate the median noise PSD for each value of

ma by taking the nearest mechanical resonance to be separated by 25 Hz,

ωm(ma) ≃ max (ωmin,ma + 25 Hz) . (3.41)

See Sec. VC of Ref. [176] for a more detailed discussion regarding this point.

To estimate Sfm(ω) at lower frequencies, we assume that the attenuated Sfm(ω) that enters

our calculations is flat, i.e., Sfm(ω) ≃ Sfm(ωmin), though the precise spectral shape will depend
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on the details of the vibration attenuation mechanism. This estimate is consistent with measured

unattenuated acceleration PSDs from seismic activity at frequencies as low as 10 µHz [200, 201].

Thus, given the implementation of even modest seismic isolation, our estimate for the low frequency

force PSD is quite possibly pessimistic.

The effects of vibrations at very low frequencies, ω ≲ ∆ωr, are resonantly enhanced by the

Breit–Wigner factor in Eq. 3.36. This can cause our perturbative calculation to break down even

though δ is small. To ensure this is not an issue, we demand that S
(mech)
bi

in Eq. 3.40 is smaller than

the leading order terms in Eq. 3.21. Approximating the delta functions as in Eq. 3.30, this condition

holds at low frequencies if

δ ≲

(
Qm ωmin

Q2
i ∆ωd

)1/2

∼ 10−7 ×
(

1012

Qi

)
, (3.42)

which is easily satisfied. In fact, the sensitivity of our setup is even robust to δ near the perturbative

limit, as shown in the lower-left panel of Fig. 3.5, corresponding to vibrational forces many orders of

magnitude greater than seismic noise.

It is worth comparing this situation to that faced by interferometric experiments, where seismic

noise is an important limiting factor at low frequencies. Such experiments precisely measure the

distance between multiple objects, which are typically freely hung and are independently subject

to seismic vibrations. By contrast, our approach takes place entirely within a single rigid cavity.

Only the relative motion between the cavity walls is relevant for noise, and this is many orders of

magnitude smaller than the RMS motion of the ground itself. However, throughout this section, we

have used Eq. 3.37, which assumes that the mechanical response of the cavity is elastic. Nonelastic

deformations can lead to slow drifts of the cavity frequencies, which is addressed in a dedicated

section below.

Signal Power

We calculate the signal PSD using the drive mode PSD Sb0(ω) derived above. From Eq. (19) of

Ref. [176], the general form for the signal PSD is

Ssig(ω) =
1

(2π)2
ω0

Q1
(gaγγ ηaB0)

2
Vcav

ω2
∫
dω′ Ia(ω, ω′)

(ω2 − ω2
1)2 + (ω ω0/Q1)2

, (3.43)

where the axion form factor ηa is defined as in Eq. (4) in the main body and

Ia(ω, ω′) ≡ (ω − ω′)2 Sa(ω − ω′)Sb0(ω′) . (3.44)

Above, Sa(ω) is the PSD of the axion field, and Sb0(ω) includes contributions from Eqs. (3.29) and

(3.40), as in Eq. 3.21. For the axion PSD, we use a simplified form that neglects effects from solar
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Figure 3.4: The signal (black) and leakage noise (blue) PSDs as a function of ω − ω0, for a fixed
value of gaγγ and various choices of the axion mass (black labels), at critical coupling. The signal
PSD peaks at ωsig and the vertical dashed line denotes the bandwidth ∆ωr of the signal mode. The
parameters are those of the second-lowest curve in Fig. 1 in the main body. The signal curve of Fig. 2
of the main body is constructed by taking the maxima of the signal PSDs shown here, as ma varies.

and terrestrial motion,

Sa(ω) = Θ(|ω| −ma)
2π2 ρ

DM

m3
a σ

2
v

e−(|ω|−ma)/(ma σ
2
v) , (3.45)

where the dispersion velocity is σv ≃ 9 × 10−4. This is consistent with the normalization ⟨a2⟩ =

ρDM/m
2
a. Examples of the signal PSD, compared to the total leakage noise PSD, are shown in Fig. 3.4

for various values of ma.

When there is a large hierarchy between the widths of the external oscillator and the axion field,

Eq. 3.43 can be simplified by analytically evaluating the ω′ integral involving Ia(ω, ω′). For instance,

when the axion is much narrower, ∆ωa ≪ ∆ωd, we use

Sa(ω) ≃ (2π)2
ρ

DM

2m2
a

(
δ(ω −ma) + δ(ω +ma)

)
(3.46)

in Eq. 3.43. Instead, if the oscillator is narrower, ∆ωd ≪ ∆ωa, then we use

Sb0(ω) ≃ π2
(
δ(ω − ω0) + δ(ω + ω0)

)
. (3.47)
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In these limits, the signal PSD simplifies to

Ssig(ω) ≃ 1

2

ω0

Q1
(gaγγ ηaB0)

2
Vcav ×





ρDM

ω2
(
Sb0

(ω−ma)+Sb0
(ω+ma)

)
(ω2−ω2

1)
2+(ω ω0/Q1)2

∆ωa ≪ ∆ωd ,

1
2

ω2
(
(ω−ω0)

2 Sa(ω−ω0)+(ω+ω0)
2 Sa(ω+ω0)

)
(ω2−ω2

1)
2+(ω ω0/Q1)2

∆ωd ≪ ∆ωa .

(3.48)

The expression for the signal power in Eq. (5) of the main body can be obtained by approximating

the narrowest piece of Eq. 3.48 (Sa(ω) of width ∆ωa, Sb0(ω) of width ∆ωd, or the cavity resonance

of width ∆ωr) in the expression above as a delta function and integrating over ω.

3.5.3 Additional Noise Sources

Mechanical Noise from Mode Mixing

In the previous section, we showed that mechanical vibrations contribute to leakage noise by affecting

how the external oscillator loads power into the high frequency tail of the pump and signal mode

PSDs. In addition, deformations of the cavity can lead to “mode mixing,” thus allowing for direct

power transfer between the two modes of interest.

To describe this effect, we use the cavity perturbation theory results of Refs. [186, 131]. For a

single mechanical resonance, labeled by “m,” to leading order in the fractional displacement of the

cavity wall δ, the equation of motion governing the time-evolution of the signal mode is

V̈1(t) +
ω1

Q1
V̇1(t) + ω2

1 V1(t) = ω2
1 ηmix δ(t)V0(t) , (3.49)

where we again have used the analogy to an RLC circuit. The dimensionless mechanical form factor

ηmix is

ηmix ∝
∫
dS · ξm(x)

(
E0(x) ·E1(x) −B0(x) ·B1(x)

)
, (3.50)

where the integral is performed over the surface of the cavity and the spatial profile of the mechanical

mode is characterized by the normalized mode vector ξm. For a perfectly cylindrical cavity, the

pump and signal modes considered in this chapter are locally orthogonal, and so ηmix = 0. However,

in reality the cavity cannot be manufactured perfectly, and its shape continues to change throughout

the experiment due to low frequency deformations sourced by, e.g., seismic noise or fluctuations in

the ambient temperature.

We parametrize these static and slowly varying deviations from a cylindrical shape with a

fractional displacement δs(t), which has support only on frequencies much less than ωmin ∼ kHz.

Now, ηmix(t) ∼ δs(t) and the perturbative correction to SV1
from mode mixing in Eq. 3.49 is precisely
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the same as that of leakage noise in Eq. 3.33, except that the driving term is proportional to

ηmix δ(t)V0(t) rather than Cm1 qm(t)V1(t) ∼ δ(t)V1(t).4 Thus, by following the same logic as was

used to derive Eq. 3.40, the noise PSD Smix from mode mixing is parametrically

Smix(ω)

ε2 Pin S
(mech)
b1

(ω)
∼
(ηmix

ε

)2
∼
(
δs
ϵ

)2

, (3.51)

where we have normalized by the mechanical contribution to leakage noise in Eq. 3.17.

Both δs and ϵ parametrize the ability to control the geometry of the experiment and hence are

treated together in Ref. [131]. Specifically, ϵ reflects the precision to which the loading and readout

waveguide modes can be matched to the pump and signal modes, while δs reflects the precision

to which the pump and signal modes can be matched to the ideal cylindrical ones. Both would

be monitored and controlled by appropriate active feedback mechanisms. Thus, it is reasonable to

estimate δs ∼ ϵ in the worst case, making mode mixing merely an O(1) correction to our existing

treatment of mechanical leakage noise. In fact, since the cavity is larger than the waveguides, it

would likely be possible to control it to a greater relative precision, δs ≲ ϵ, in which case mode mixing

is negligible. We thus do not include it in our sensitivity projections.

Cavity Frequency Drift

In the previous section, we discussed how low frequency deformations of the cavity can lead to mixing

between modes in the presence of higher frequency wall vibrations. Low frequency deformations

alone do not lead to significant mode mixing, because the field in each mode adiabatically follows

its slowly changing spatial profile. However, they can significantly affect the mode frequencies and

the cross-coupling ϵ. In the main body, we have addressed how ϵ must be actively monitored and

controlled, as was already done in the MAGO experiment. In this section, we focus on the effect of

mode frequency drift, which must be controlled similarly.

Frequency drift manifests as an additional contribution to ∆(t) in Eq. 3.33, which we write as

∆s(t) in analogy to the slow deformations of the cavity walls δs(t). Unlike the elastic deformations

considered for mechanical leakage noise, ∆s(t) cannot be estimated from first principles, because it

depends on technical details such as the cavity’s hysteresis upon thermal expansion and contraction.

However, since we are assuming the signal and pump modes can be held degenerate within their

bandwidth, the RMS of the drift is bounded by

∆rms
s =

1

2π

(∫
dω S∆s

(ω)

)1/2

≲
1

Qi
. (3.52)

4Alternatively, one could include the next order term on the RHS of Eq. 3.49 as ηmix δ(t) → ηmix δ(t) + η̃mix δ2(t)
where η̃mix is an O(1) form factor that does not vanish even for locally orthogonal modes. Then, upon decomposing
δ(t) in terms of slow and fast components as δ(t) = δs(t) + δf (t), including the cross term δsδf is equivalent to simply
including this contribution as ηmix ∼ δs, as we have done here.
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The effect of cavity frequency drift is maximized if S∆s(ω) is entirely supported at |ω| ≪ ∆ωd,∆ωr,

in which case the integral in Eq. 3.34 can be performed to give

SVi
(ω) ≃ (ω ωi/Qi)

2

(ω2 − ω2
i )2 + (ω ωi/Qi)2

SVd
(ω)

(
1 + (Qi ∆rms

s )2
)
. (3.53)

Thus, perturbation theory breaks down entirely if Eq. 3.52 is no longer satisfied. In this case, however,

we can still understand the effect of ∆s on physical grounds: since the frequency drift is slow, the

oscillations of the modes adiabatically follow it, implying that the pump mode and signal power

will be spread over the frequency width ∆rms
s ωi. This can be shown more precisely using the WKB

approximation.5 Therefore, in the worst case scenario if ∆rms
s ≃ 1/Qi, the power will at most be

spread over the resonator width ∆ωr. This can be mimicked by replacing ∆ωd → ∆ωr, as this also

spreads out the pump mode and signal over frequency; we show the effect of this on the reach in the

upper curve of the lower-right panel of Fig. 3.5 below.

We emphasize that as long as the pump and signal modes can be held degenerate, this is a

maximally pessimistic assumption. First, S∆s(ω) may have some of its support at frequencies

|ω| ≳ ∆ωr, leading to an off-resonance suppression. For instance, if S∆s(ω) is flat up to frequency

∆ωs ≫ ∆ωr, then perturbation theory does not break down instead until ∆rms
s ≳

√
∆ωr/∆ωs/Qi.

Furthermore, if ∆s(t) is directly measured by the active feedback system that stabilizes the modes, it

can be “deconvolved” almost entirely from the signal. As long as this can be done to a frequency

precision of at least ∆ωd, low frequency noise does not affect the estimated reach.

Again, we may compare this situation to that faced by interferometers, whose physical dimensions

also drift. The fundamental reason that one can monitor the mode frequencies in our approach

and subtract out its variations, but not do the same for an interferometer, is that typically the

interferometer itself is the most sensitive ruler in the experiment. In our setup, one needs to only

measure the signal and pump mode frequencies to fractional precision ∆ωd/ω0, and atomic clocks

exceed this by many orders of magnitude.

As mentioned in the main body, the DarkSRF collaboration has already demonstrated frequency

stabilization near that required by our most aggressive parameters. In addition, experimental tests

of Lorentz invariance have stabilized cryogenic sapphire microwave oscillators to substantially greater

precisions for O(month) timescales [202, 203, 204]. For our approach, even if a continuous run of

length tint is infeasible, e.g., if the cavity must be periodically recalibrated, an equivalent sensitivity

can be attained by stitching together many shorter runs. Similarly, rare transient events that disrupt

the experiment can be removed from the data stream.

5For the special case of “monochromatic” frequency wobble of amplitude δω and frequency ω∆, where
Vi(t) ∼ exp(iωit) exp(i(δω/ω∆) cos(ω∆t)), this can also be shown exactly using the Jacobi–Anger expansion. The
Jn(δω/ω∆)ei(ωi+nω∆)t terms have most of their weight for |n| ∼ δω/ω∆, leading to the expected frequency spread of
δω.
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Thermal and Amplifier Noise

We adopt the same conventions as in Ref. [176] to describe noise arising from thermal fluctuations of

the cavity modes and the quantum-limited amplifier in the readout. For completeness, we derive the

thermal noise PSD for the signal mode by applying the equipartition theorem to the equivalent RLC

circuit. Thermal fluctuations of the signal mode can be modeled as sourced by the resistor, which

drives the entire circuit with voltage Vth. Since the PSD of this noisy driving voltage is flat within

the resonance width, we apply the narrow-width approximation to Eq. 3.28, giving

SV1 ≃ πω1

2Q1

(
δ(ω − ω1) + δ(ω + ω1)

)
SVth

(ω) . (3.54)

Integrating over ω thus leads to an average voltage across the resistor R1 of

⟨V 2
1 ⟩ ≃

ω1

4πQ1
SVth

(ω1) . (3.55)

By the equipartition theorem, the temperature of the circuit T can be related to the energy stored

in the inductor L1, T/2 ≃ L1 ⟨I2⟩/2, where I is the current in the circuit. Since the voltage across

the equivalent resistor of the signal mode is V1 = I R1, we have ⟨V 2
1 ⟩ ≃ T R2

1/L1. Equating this to

Eq. 3.55 and using Qi = ωiLi/Ri, we find SVth
≃ 4πT R1.

However, only part of the resistance R1 is due to the intrinsic dissipation Rint of the circuit, and

only this part necessarily sources thermal fluctuations. If the signal readout is connected to a cold

load, so that it does not send thermal noise back to the cavity, then for the signal mode we actually

have SVth
≃ 4πT Rint. Eq. 3.28 then implies that the thermal noise PSD is

Sth(ω) =
SV1(ω)

R1
=

Q1

Qint

4πT (ω ω0/Q1)2

(ω2 − ω2
1)2 + (ω ω0/Q1)2

, (3.56)

where we used Rint/R1 = Q1/Qint.

The readout waveguide is attached to an amplifier, which sources its own noise. The lower bound

on such noise is dictated by the standard quantum limit, arising from zero-point fluctuations and

backaction/imprecision noise. The corresponding PSD is spectrally flat [143],

Samp(ω) = π ω1 . (3.57)

We assume that amplifier noise is quantum-limited, which has been achieved in resonant cavity

setups [9] and is often assumed for future projections of other axion experiments, such as DM

Radio [115].
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3.5.4 Expected Sensitivity

Coupling Optimization

Overcoupling the cavity to the readout corresponds to Qcpl ≪ Qint. As discussed in Refs. [151, 115,

176], this is optimal for thermal noise limited resonant experiments, even though critical coupling

maximizes the signal power, because it decreases both the signal power and thermal noise in a way

that allows a parametrically faster scan rate. Although these considerations do not apply to our

broadband setup, it also benefits from overcoupling for the much simpler reason that it prevents an

off-resonance signal from being overwhelmed by amplifier noise. In the limit where amplifier noise

dominates, Qcpl should be as small as possible.

For completeness, we now precisely describe how the signal and noise are affected by the value

of Qcpl. Recall that in the RLC analogy, the signal mode circuit has a resistor R1 = Rint + Rcpl.

When we computed the signal PSD, the thermal noise PSD, and the part of the leakage noise S
(1)
leak

corresponding to the loading waveguide coupling to the signal mode, we computed the total power

dissipated across both resistors. Thus, the fraction of power sent to the readout is smaller by a factor

of Rcpl/R1 = Q1/Qcpl, and all of these PSDs should be rescaled by this amount. Amplifier noise is

not affected, since it is intrinsic to the amplifier itself. Finally, consider the part of the leakage noise

S
(0)
leak corresponding to the readout waveguide coupling to the pump mode. In the RLC analogy, the

pump mode circuit has a resistor R0 = Rint + O(ϵ2)Rcpl. Therefore, the fraction of power read out

as leakage noise is proportional to Rcpl/Rint = Qint/Qcpl, and S
(0)
leak should be rescaled by this factor.

As described in the main body, we do not consider loaded quality factors lower than Q1 ∼ 105.

One might worry that such a strong coupling to the signal mode might degrade the quality factor of

the pump mode. Thus, we impose as a constraint that the power loss in the pump mode due to the

readout is negligible, ϵ2Rcpl ≪ Rint, which implies

Qcpl ≳ max
[
ε2Qint, 105

]
. (3.58)

The constraint Qcpl ≳ ε2Qint is unimportant for almost all parameters we consider, except for the

most conservative ones in the top-right panel of Fig. 3.5. Critical coupling is optimal for the lowest

axion masses, while overcoupling as much as possible is optimal for the highest axion masses. For

each intermediate axion mass, a different intermediate coupling is optimal, because overcoupling

increases the strength of leakage noise. However, we find numerically that essentially all of the reach

shown in Fig. 1 of the main body can be obtained using only a critically coupled run and a maximally

overcoupled run. A small remaining slice of parameter space at small couplings and intermediate

axion masses can be covered using a third run with Qcpl ∼ 107.
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Statistics for Expected Exclusion

In this section, we roughly describe the statistics of a broadband low mass axion search, in order to

compute the expected exclusion. One notable result of this analysis is that the sensitivity decreases

for tint ≲ τa, where τa ∼ Qa/ma is the axion coherence time; as derived below, for an integration

time tint = 1 day or 5 years, the 90% C.L. reach in gaγγ is suppressed by approximately a factor of

2 for ma ≲ 10−15 eV or ma ≲ 10−18 eV, respectively. A Bayesian approach to the same problem is

given in Ref. [165]. A similar frequentist approach is given in Ref. [205], though it focuses on the

case tint ≫ τa.

For concreteness, we neglect unvirialized components of the axion field, as well as any enhanced

structure in the axion field that could arise, e.g., from strong axion self-interactions or parametric

resonance effects [206, 207, 208, 209, 210, 211]. In the absence of such effects, in the Milky Way

the axion can be described as a collection of classical plane waves with independent phases. An

experiment with total integration time tint can only resolve frequency bins of width ∆ω ∼ 1/tint.

Each bin contains macroscopically many axions; for instance, for tint ≳ τa,

∆Na ≃ ρDMVcav
ma

τa
tint

≃ 1025
(

10−14 eV

ma

)2(
5 years

tint

)(
Vcav
m3

)
, (3.59)

so the central limit theorem applies to the amplitude in each bin. Specifically, suppose we measure

a(t) for a time tint and perform a discrete Fourier transform (DFT), yielding the complex amplitude

ãi for the frequency bin centered at ωi. Then the real and imaginary parts of ãi are independent

Gaussian random variables with zero mean,6 so the axion field can be treated as a Gaussian random

field. For the rest of this section we will use a PSD normalization suited for these DFT elements,

rather than the continuous normalization of Eq. 3.13. For example, for the axion field we define

⟨ãiã∗j ⟩ = δij Sa(ωi) , (3.60)

where Sa(ωi) is the discrete PSD. As illustrated in Ref. [165], a typical realization of a(t) is

approximately monochromatic on timescales tint ≲ τa, but fluctuates in amplitude on timescales τa

with respect to the RMS value
√
⟨a(t)2⟩ =

√
ρ

DM
/ma. For tint ≲ τa, the amplitude is approximately

fixed for the duration of the experiment, and the possibility of observing a downward amplitude

fluctuation is responsible for weakening the projected sensitivity.

For simplicity, we will specialize to axion detection experiments using static fields, and return to

our heterodyne approach later. For a static field experiment, the frequency components of the signal

s(t) are simply those of the axion field multiplied by a frequency-dependent filtering. Therefore,

the signal can also be treated as a Gaussian random field. The experiment measures a data stream

d(t) = s(t) + n(t), where the noise n(t) is independent of the signal. For the noise sources that we

6Under the standard DFT, the amplitudes ãi in neighboring bins will actually be slightly correlated. We neglect
this small effect below.
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consider, n(t) is also a Gaussian stationary random variable with zero mean. Thus, the likelihood of

observing the data is

L[d̃] =
∏

i

e−|d̃i|2/(Ss(ωi)+Sn(ωi))

π(Ss(ωi) + Sn(ωi))
(3.61)

where the frequency bins have width ∆ω = 2π/tint. We note that this result has been previously

derived in Ref. [205].

We assume for simplicity of notation that the data is taken in a single continuous run, but this

is not necessary, as distinct runs can be stitched together. In fact, given a fixed integration time

tint, this can actually be advantageous. As long as texp ≫ τa, where texp is the total duration of

the experiment, the reach will not be penalized by the effect discussed above because the distinct

runs during the experiment will sample different amplitudes for the axion field. In addition, Eq. 3.61

implicitly assumes that the axion oscillates many times during the experiment, texp ≫ 1/ma. For

texp ≲ 1/ma, the likelihood additionally depends on the instantaneous phase of the axion field, which

leads to an additional O(1) suppression of the reach; we will not consider this case below.

The average signal and noise PSDs Ss(ωi) and Sn(ωi) also depend on nuisance parameters θs,n

that we imagine are measured with calibration runs. For the purposes of placing an exclusion on

gaγγ , it is convenient to define

g2aγγ λs,i(θs) ≡ Ss(ωi, θs) , λn,i(θn) ≡ Sn(ωi, θn) (3.62)

so that the likelihood takes the form

L(gaγγ , θs, θn) =
∏

i

e−|d̃i|2/(g2aγγλs,i(θs)+λn,i(θn))

π(g2aγγ λs,i(θs) + λn,i(θn))
Laux(θs, θn) , (3.63)

where Laux contains the results of calibration measurements and is not necessarily Gaussian. These

measurements are independent of the data that we take during our physics run, so the two probabilities

multiply.

Let ĝaγγ be the maximum likelihood estimator for gaγγ . The incompatibility of the coupling value

gaγγ with the data can be quantified by the test statistic [212]

q(gaγγ) = −2 log

(
L(gaγγ ,

ˆ̂
θs,

ˆ̂
θn)

L(ĝaγγ , θ̂s, θ̂n)

)
Θ(g2aγγ − ĝ2aγγ) , (3.64)

where ĝaγγ and θ̂s,n are unconditional maximum-likelihood estimators and
ˆ̂
θs,n are conditional

maximum-likelihood estimators for fixed gaγγ . The step function reflects the fact that we should not

be able to exclude couplings smaller than the best-fit value. Below, we will assume Laux(θ̂s, θ̂n) ≃
Laux(

ˆ̂
θs,

ˆ̂
θn), so the nuisance parameters play little role.

When the integration time is much longer than the axion coherence time, tint ≫ τa, the axion
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signal is spread over many bins, and asymptotic theorems apply. In particular, Wilks’ theorem [213]

implies that the distribution of q(gaγγ) for fixed gaγγ is a half chi-squared distribution with one

degree of freedom, implying that the 90% and 95% C.L. upper bounds are

q90% = 1.64, q95% = 2.71. (3.65)

Assuming that no axion exists, the exclusion that can be set varies from trial to trial. We use

the approach illustrated in Ref. [212], where it is shown that the median exclusion is achieved by

the so-called Asimov dataset, in which each of the |d̃i|2 are set to the mean value achieved in a

background-only dataset, i.e., |d̃i|2 → λn,i. In this case, ĝ2aγγ = 0. Using this in Eq. 3.64 and

approximating g2aγγ λs,i ≪ λn,i for all gaγγ near the sensitivity threshold (valid because the signal is

spread over many bins) gives

q(gaγγ) ≃
∑

i


g

2
aγγ λs,i(

ˆ̂
θs)

λn,i(
ˆ̂
θn)




2

, (3.66)

where we assumed λn(θ̂n) ≃ λn(
ˆ̂
θn). This is closely related to the signal-to-noise ratio (SNR) used to

estimate the reach in many axion experiments (see, e.g., Ref. [176]), as can be shown by approximating

the sum in the above expression as an integral,

q(gaγγ) ≃ tint
2π

∫ ∞

0

dω

(
Ss(ω)

Sn(ω)

)2

= SNR2 . (3.67)

Since this result involves a ratio of PSDs, it also holds for the continuous PSD normalization of

Eq. 3.13. Here, negative frequency bins were not included since they are not independent of the

positive frequency bins. Combining this with Eq. 3.65 implies that the median 90% or 95% expected

exclusion corresponds to an SNR of

SNR(tint ≫ τa) ≳





1.3 90% C.L.

1.6 95% C.L. ,
(3.68)

which roughly matches the SNR ≳ 1 prescription commonly adopted in the axion literature (see, e.g.,

Refs. [214, 114]).

In the short integration time limit tint ≪ τa, the axion signal cannot be resolved, and hence lies in

a single frequency bin.7 In the following we omit for simplicity the explicit dependence on nuisance

parameters and Laux. We continue to assume negligible systematic errors: λn(θ̂n) ≃ λn(
ˆ̂
θn) and

7More precisely, the axion signal could straddle two frequency bins; we neglect this small effect.
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Laux(θ̂s, θ̂n) ≃ Laux(
ˆ̂
θs,

ˆ̂
θn). Dropping the i subscript and defining S ≡ |d̃i|2, we have

L(g2aγγ) =
e−S/(g

2
aγγ λs+λn)

g2aγγ λs + λn
. (3.69)

In this case, Wilks’ theorem does not apply, but the calculation of the test statistic is analytically

tractable. In particular, ĝ2aγγ can be found by analytically maximizing the likelihood, giving

ĝ2aγγ =





(S − λn)/λs S ≥ λn

0 S < λn
(3.70)

where the second line is a consequence of g2aγγ > 0. The test statistic then takes the explicit form

q(g2aγγ , S) = 2 ×





0 g2aγγ λs + λn < S

S
g2aγγ λs+λn

− 1 + log
g2aγγ λs+λn

S λn ≤ S ≤ g2aγγ λs + λn

S
g2aγγ λs+λn

− S
λn

+ log
g2aγγ λs+λn

λn
S < λn .

(3.71)

At fixed g2aγγ , q(g2aγγ , S) is a monotonically decreasing function of S. Thus, to compute the upper

bound qα on q corresponding to a given C.L. α, we can find the value Sα such that the probability

for S ≤ Sα is P (S ≤ Sα) = 1 − α in order to obtain qα(g2aγγ) = q(g2aγγ , Sα(g2aγγ)). Using the known

distribution of S in Eq. 3.69 for a given axion coupling g2aγγ , we have

∫ Sα(g2aγγ)

0

dS
e−S/(g

2
aγγ λs+λn)

g2aγγλs + λn
= 1 − α . (3.72)

Solving for Sα then yields

Sα(g2aγγ) = |logα| (g2aγγ λs + λn) . (3.73)

Therefore, in the event that there is no axion signal, the median expected exclusion for an experiment

at (100 × α)% C.L. is determined by solving [212]

qα(g2aγγ) = q
(
g2aγγ , S0.5(0)

)
. (3.74)

Once again identifying q(g2aγγ) ≃ SNR2, we find that the median expected 90% or 95% limit on gaγγ

corresponds to

SNR(tint ≪ τa) ≳





5.6 90% C.L.

12.5 95% C.L.
(3.75)

Since the SNR is proportional to g2aγγ , the higher threshold in Eq. 3.75 compared to Eq. 3.68

corresponds to weakening the 90%–95% C.L. sensitivity projections for gaγγ by a factor of 2–3 when
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tint ≲ τa.

For comparison, Ref. [165] instead found a weakening of ∼ 4 for the 95% C.L. gaγγ projections,

using a Monte Carlo estimate for the test statistic sampling distribution. That work also found a

weakening factor of ∼ 10 at 95% C.L. using a Bayesian approach with a flat prior on gaγγ . However,

a flat prior in log gaγγ is also reasonable on subjective grounds, as evidenced by the common use of

logarithmic scales in plots like Fig. 1 in the main body. The logarithmic prior penalizes smaller values

of gaγγ much less, and thus the weakening of the sensitivity for tint ≲ τa is more mild. Similarly, a flat

prior in g2aγγ would also be reasonable since the signal is proportional to it, but this penalizes smaller

values of gaγγ to a greater degree, enhancing the sensitivity suppression. Since the conclusions of the

Bayesian approach vary significantly between reasonable priors, we adopt the frequentist approach

described above.

In the above analysis, we have mainly sought to explain analytically why the reach is weakened

for tint ≲ τa. Since this effect arises solely from the fluctuations of the axion field amplitude, we

expect that a similar penalty factor should apply for our heterodyne approach. However, showing

this analytically would be notationally complex, because the axion Fourier components are spread

out by, e.g., the width of the driver ∆ωd, which simultaneously affects the noise. Thus, we defer

a more detailed numerical calculation of the projected sensitivity to future work. To estimate our

reach here, we use Eqs. (3.67), (3.68), and (3.75), along with the following small modification: for

a static field experiment, bins at positive and negative frequencies ±ω are redundant because the

data stream is real-valued. For a heterodyne experiment, bins at ω0 ± ω are redundant for the same

reason, so Eq. 3.67 should only integrate over positive frequencies above ω0. The sole exception is

when amplifier noise dominates, since its contributions at frequencies ω0 ±ma are independent of

each other.

3.5.5 Variations of Experimental Parameters

To demonstrate the robustness of the approach, in Figs. 3.5 and 3.6 we show the expected reach for

experimental parameters which are orders of magnitude worse than the state of the art.

• In the upper-left panel, we vary the intrinsic quality factor Qint. Lowering Qint only has an

adverse effect at the lowest axion masses; for higher axion masses there is no effect because the

signal mode is taken to be strongly overcoupled in this mass range.

• In the upper-right panel, we vary the leakage noise suppression ϵ. Even for ϵ = 10−3 (four orders

of magnitude above that measured by MAGO), corresponding to straightforward millimeter-level

control of the cavity geometry, substantial new parameter space can be covered.

• In the lower-left panel, we increase the attenuated displacement of the cavity walls by four

orders of magnitude. Increasing qrms lowers the reach at intermediate masses, where mechanical

noise dominates, but leaves the sensitivity to other axion masses unchanged.
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Figure 3.5: The projected 90% C.L. reach of our setup for a wider range of experimental parameters.
The benchmark parameters are those of the lowest curve of Fig. 1 in the main body, except for
the lower-right panel, where we take Qint = 1010. For all panels, we assume an integration time
tint = 5 years. The green dotted line in this panel shows the reach for ∆ωd = 0.1 mHz, demonstrating
the small effect of ∆ωd on the sensitivity to small axion masses.
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Figure 3.6: The projected 90% C.L. reach of our setup, assuming experimental benchmarks as in
Fig. 3.5. We vary the frequency splitting ω1 − ω0 between the pump and signal modes, relaxing the
assumption of degeneracy within the bandwidth made in the main body of this chapter.

• In the lower-right panel we increase ∆ωd. As discussed in the appendix, this mimics the effect

of increased low frequency noise in the form of slow drifts of the resonant frequencies over

the range ω0 ± ∆ωd. Since we have assumed that the pump and signal modes can be held

degenerate (equivalent to ∆ωd ≲ ∆ωr), we have decreased the quality factor to Qint = 1010

for this panel. Increasing ∆ωd has little effect at low axion masses because the signal and

noise already overlap completely in frequency. However, for intermediate masses, larger ∆ωd

decreases the sensitivity since it broadens the signal compared to the dominant noise source.

At higher axion masses, there is no effect because ∆ωa ≳ ∆ωd.

• In Fig. 3.6 we relax the assumption that the pump and signal mode are degenerate within

their bandwidth. Although the reach is degraded for ma ≲ ω1/Q1, new parameter space in this

region can still be probed for splittings up to ω1 − ω0 ≃ 103 × ω1/Q1. In addition, the reach

at higher masses, near ma ≃ ω1 − ω0 is resonantly enhanced. Hence, Fig. 3.6 shows that this

approach can probe orders of magnitude of unexplored parameter space even if the frequency

splitting is much larger than the bandwidth.



Chapter 4

Polarization Haloscopes

This chapter is based on Discovering QCD-Coupled Axion Dark Matter with Polarization Haloscopes,

by A. Berlin, K. Zhou, Phys. Rev. D 108, 035038 (2023).

Abstract

In the presence of QCD axion dark matter, atoms acquire time-dependent electric dipole moments.

This effect gives rise to an oscillating current in a nuclear spin-polarized dielectric, which can

resonantly excite an electromagnetic mode of a microwave cavity. We show that with existing

technology such a “polarization haloscope” can explore orders of magnitude of new parameter space

for QCD-coupled axions. If any cavity haloscope detects a signal from the axion-photon coupling, an

upgraded polarization haloscope has the unique ability to test whether it arises from the QCD axion.

82
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4.1 Introduction

The QCD axion is a long-standing, well-motivated dark matter candidate [93, 94, 95, 96, 100, 101, 102]

that can also explain why the neutron’s electric dipole moment (EDM) is at least 1010 times smaller

than generically expected [215]. It is a pseudoscalar field a defined by its coupling to gluons

L ⊃ θa
αs
8π

GµνG̃µν , (4.1)

where θa ≡ a/fa and fa is the axion decay constant. At temperatures below the QCD phase

transition, this coupling generates a potential and mass for the axion [216]

ma = 5.7 µeV × (1012 GeV/fa) . (4.2)

Over cosmological time, the axion field relaxes towards the minimum of its potential at the parity

(P) and time-reversal (T ) conserving point θa = 0 where the neutron EDM vanishes. Assuming a

standard cosmological history and an O(1) initial misalignment angle, the residual energy in the

axion field accounts for the present density of cold dark matter for ma ∼ (0.5− 50)µeV [160]. In this

case, the local axion field has macroscopic mode occupancy and can thus be described by a classical

expectation value,

θa ≃
√

2ρDM

ma fa
cosmat ≃ 4.3 × 10−19 cosmat , (4.3)

oscillating with frequency ma/2π ∼ (0.1 − 10) GHz, where ρ
DM

≃ 0.4 GeV/cm3 is the local dark

matter density.

The direct signatures of QCD axion dark matter are nuclear effects, such as the oscillating neutron

EDM [217],

dn ≃
(
2.4 × 10−3 e fm

)
θa . (4.4)

Detecting such a small signal is very difficult, but has been addressed by several recent proposals. In

some cases, static EDM experiments may be repurposed to constrain slowly oscillating EDMs [218,

219, 220]. Other potential detection avenues involve nuclear magnetic resonance [116, 20, 221], spin

precession in storage rings [222, 223, 224, 21, 225, 226], atomic and molecular spectroscopy [227, 228],

and mechanical oscillations in piezoelectric materials [46]. However, none of these probes are sensitive

at the GHz frequencies motivated by standard misalignment production of axion dark matter.

Currently, the most stringent laboratory constraints on axion dark matter at GHz frequencies come

from cavity haloscopes [107, 229], which rely on the axion’s coupling to photons, L ⊃ gaγγaF
µν F̃µν/4.

In these experiments, axion dark matter produces an effective current Jaγγ = gaγγB∂ta inside

a microwave cavity with background magnetic field B, which can resonantly excite a mode of

angular frequency ma. While there are many other recent proposals to search for the axion (see
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Refs. [45, 230, 231] for reviews), the cavity haloscope concept is currently the most well-developed,

with many collaborations reporting new results [232, 233, 234, 9, 235, 236, 237, 238, 239, 240, 241,

242, 243, 244, 245, 246, 247, 14, 248] and some operating near or beyond the standard quantum

limit [234, 235, 236, 241]. These experiments are well-motivated, as the axion-gluon coupling of

Eq. (4.1) is known to induce an axion-photon coupling. However, their relation is indirect: the

coefficient gaγγ can vary by orders of magnitude within simple models [249, 250, 251, 252], and an

axion with an electromagnetic coupling is not necessarily the QCD axion. Definitively discovering or

excluding the QCD axion thus requires confronting the axion-gluon coupling directly.

In this chapter, we present the first method to probe the axion-gluon coupling at GHz frequencies.

In the presence of axion dark matter, atoms have oscillating EDMs of magnitude dA directed along

their nuclear spin [253], analogous to the neutron EDM in Eq. 4.4. A dielectric thus carries a

polarization density PEDM ∼ nA dA, where nA is the density of nuclear spin-polarized atoms. A

time-varying polarization induces a physical electromagnetic current JEDM = ∂tPEDM, which can be

resonantly amplified by placing the dielectric in a microwave cavity with a mode of angular frequency

ma. We call this system, depicted in Fig. 4.1, a polarization haloscope.

To quickly estimate its potential, we may compare the current in a polarization haloscope

to that produced in a typical cavity haloscope. For the benchmark DFSZ model, where gaγγ ≃
0.87 × 10−3/fa [104, 103], the ratio is

JEDM

Jaγγ
≃ 10−3 × dA

dn

(
nA

5 × 1022 cm−3

)(
8 T

B

)
, (4.5)

which suggests that the signal in a cavity haloscope is larger. Furthermore, JEDM is more difficult to

calculate, as it depends sensitively on nuclear, atomic, and material properties. For these reasons,

the polarization haloscope idea was briefly raised and discarded thirty years ago [254]. However,

the rapid recent progress in cavity haloscopes motivates a thorough analysis of its potential. In

section 4.2 we show that dA ∼ dn can be achieved for certain atoms. We then consider the factors

necessary to develop an effective polarization haloscope, such as cavity design (section 4.3), material

choice (section 4.4), and nuclear spin polarization (section 4.5). We estimate experimental sensitivity

in section 4.6 and conclude in section 4.7, laying out a path towards reaching the QCD axion.

4.2 Axion-induced EDMs

The dominant nuclear contribution to the EDM of an atom with atomic number Z arises from the

P, T -violating piece of the effective nuclear electric potential [255, 256, 257, 258, 259, 260]

ϕ
(eff)
N (x) =

(
1 +

1

Ze
dN · ∇

)
ϕN (x) , (4.6)
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Figure 4.1: Atoms carry EDMs proportional to the axion field (left), aligned with the nuclear spin I.
The axion’s time variation thus produces a current JEDM in a nuclear spin-polarized dielectric, whose
effect can be amplified in a resonant cavity. For higher axion masses, the geometric overlap factor in
Eq. (4.19) can be maximized using layers of inert dielectric (top) or alternating spin polarization
(bottom).

which includes the usual electric potential ϕN of the nucleus and the response of the atomic electrons

to the nuclear EDM dN . The leading P, T -violating term in a multipole expansion of ϕ
(eff)
N is the

dipole, but it simply vanishes, in accordance with Schiff’s theorem [261] which states that the nuclear

EDM is efficiently screened by the atomic electrons. The next P, T -violating term is the octupole.

Its traceless part corresponds to an electric octupole moment, whose effects are suppressed by the

centrifugal barrier near the nucleus [255]. The traceful part yields the dominant contribution to the

atomic EDM and is described by the Schiff moment [256],

S =
1

10

∫
d3x ρN (x) r2

(
x− 5

3

dN
Ze

)
, (4.7)

where ρN is the nuclear charge density; S sources a P, T -violating electric field that polarizes the

atomic electrons, perturbing the electronic Hamiltonian by

VS = −
Z∑

i=1

eS · ∇δ3(xi) , (4.8)

where the nucleus is at the origin. The interaction VS mixes opposite parity states, which to first

order in perturbation theory gives rise to a non-vanishing atomic EDM, parallel to the nuclear spin I,

of the form

dA ≃
∑

n

⟨n|VS |0⟩ ⟨0|D|n⟩
En − E0

+ h.c. , (4.9)

where |n⟩ are atomic states of energy En and D = −∑Z
i=1 exi is the atomic EDM operator. The

result scales as dA ∝ Z2S, with a moderate relativistic enhancement for the heaviest nuclei. Scaling
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numeric results for 225Ra from Refs. [262, 263, 264, 265] yields

dA ≃ −
(
0.27 × 10−3 e fm

)
⟨Sz⟩/(e fm3) (4.10)

for 161Dy, with values within 20% for the other nuclei we will consider below. Here, ⟨Sz⟩ is the lab-

frame expectation value of the Schiff moment directed along the nuclear spin for a maximally-polarized

nucleus, M = I [259].

In perturbation theory, the Schiff moment is

⟨Sz⟩ ≃
∑

n

⟨n|VPT |0⟩ ⟨0|Sz|n⟩
En − E0

+ h.c. , (4.11)

where |n⟩ are nuclear states of energy En and VPT ∝ θa is the axion’s P, T -violating modification to

the pion-mediated internucleon interaction. For a typical spherical nucleus with mass number A and

radius R0 ≃ (1.2 fm)A1/3, we expect [256, 255]

⟨n|VPT |0⟩ ∼ (10−2 θa/mnR0) (A/m2
π R

3
0) , (4.12)

⟨0|Sz|n⟩ ∼ eR3
0 , (4.13)

En − E0 ∼ A/m2
πR

3
0 , (4.14)

which yields the parametric estimate

⟨Sz⟩ ∼ 10−2 eR
2
0

mn
θa ∼ (0.1 × e fm3) θa

(
A

102

) 2
3

, (4.15)

in agreement with detailed calculations [256, 255, 266, 267, 268, 269, 270, 46].

This yields only a small atomic EDM, dA ≪ dn, but for nonspherical nuclei there can be a large

intrinsic Schiff moment Sint in the body-fixed frame. Evaluating Eq. 4.7 gives Sint ∝ β2β3 ZeR
3
0, where

β2 and β3 parametrize the quadrupole and octupole deformation of the nuclear radius. The lab-frame

Schiff moment is then determined by averaging over nuclear orientations, ⟨Sz⟩ = Sint⟨n̂z⟩ where n̂ is the

nuclear axis. A nonzero ⟨n̂z⟩ requires P-violation and is thus proportional to θa. It can be calculated

perturbatively with an expression analogous to Eq. 4.11, the main difference being that octupole

deformations imply states with small energy gaps, En − E0 ∼ 50 keV. For significantly octupole-

deformed nuclei, β2 ∼ β3 ∼ O(0.1), various numeric factors cancel, leaving [266, 267, 268, 269, 270]

⟨Sz⟩ ∼ 10−2 ZeR
2
0

mn
θa , (4.16)

which is crucially enhanced by Z relative to Eq. 4.15. Applying Eq. 4.10, we find that for these
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161Dy 153Eu 155Gd

estimated ⟨Sz⟩ (e fm3 θa) [271] 4.3 1.0 1.2
estimated |dA| (10−3 e fm θa) 1.2 0.25 0.3

natural abundance [272] 19% 52% 15%
metal price ($/ton) [273] 300 k 30 k 30 k

T dfp/dB|B=0 (mK/T) [272] 0.08 0.26 0.05

Table 4.1: Stable nuclei with large axion-induced Schiff moments ⟨Sz⟩ and atomic EDMs dA, and their
natural abundance and price. We use the last row (equal to |γ| (I + 1)/3 where γ is the gyromagnetic
ratio [1]) to determine the fractional nuclear spin polarization fp at a temperature T in a magnetic
field B.

nuclei,

|dA| ∼
(
few × 10−3

)
e fm × θa

(
Z

102

)3(
A

102

) 2
3

, (4.17)

which, as anticipated above, is comparable to dn.

Most octupole-deformed nuclei are short-lived and thus infeasible to gather in the macroscopic

quantities required. Of the nuclei highlighted in Refs. [265, 271, 274], we identify 161Dy, 153Eu,

and 155Gd as the most promising. They are absolutely stable and, as indicated in Table 4.1, are

inexpensive and expected to possess fairly large axion-induced Schiff moments and atomic EDMs.

However, the existence of octupole deformation in these nuclei is not completely settled [275]. This

chapter motivates further experimental study. Even if none of these nuclei are octupole deformed, it

may still be possible to achieve comparable EDMs via magnetic quadrupole moments, which are

enhanced by well-established nuclear quadrupole deformations [271].

4.3 Cavity Excitation

The axion field oscillates with a phase offset and amplitude varying over the coherence time τa ∼
Qa/ma, where Qa ∼ 106. For all axion masses we consider, spatial gradients of the axion field are

negligible. The cavity response is therefore very similar to that of a conventional haloscope, with

Jaγγ replaced by JEDM ≃ ma nA dA. In our case, there is also an associated physical charge density

ρEDM = −∇·PEDM in the cavity, which produces small electric fields, but it is not of interest because

it cannot excite resonant modes [276, 277, 278].

We suppose a portion Vp of the volume V of the cavity is filled with dielectric of fractional nuclear

spin polarization fp along the p̂ direction, so that nA = fp n0 where n0 is the number density of

relevant nuclei. Adapting a standard result [279], the power deposited to the ith mode of the cavity

on resonance, ma ≃ ωi, is

Psig ≃ ma (fp n0 dA)2 (V/ϵ̄) η2i min(Qa, Qi) , (4.18)



CHAPTER 4. POLARIZATION HALOSCOPES 88

where dA is now the time-independent amplitude of the atomic EDM, Qi is the quality factor of

the mode, and the last factor accounts for the spectral width of the axion. The typical dielectric

permittivity inside the cavity is ϵ̄, and the geometric overlap factor is

ηi =

∣∣ ∫
Vp
d3x Ei · p̂

∣∣
√
V
∫
V
d3x (ϵ/ϵ̄)E2

i

. (4.19)

This definition is chosen so that ηi ∼ 1 when the cavity is completely filled with dielectric polarized

along p̂ parallel to the electric field Ei of the cavity mode. Below, we suppress mode subscripts to

simplify notation.

To probe the lowest possible axion masses, a cylindrical cavity can be completely filled with a

dielectric with p̂ along the cylinder’s axis, which yields η ≃ 0.83 for the TM010 mode. In Fig. 4.1, we

show two concrete ways to guarantee O(1) geometric overlap for heavier axions coupled to higher

resonant modes of the cavity. First, one can insert layers of another dielectric. For example, rutile

caries a negligible axion-induced current, and hence does not contribute to Vp. Since it has a very

high permittivity at cryogenic temperatures, ϵ ≳ 104 [280], thin layers would suffice to preserve a

large overlap factor. Alternatively, the cavity can be filled with dielectric whose spin polarization

alternates in direction. In either case, the mode frequency can be coarsely tuned by changing the

number of layers, and finely tuned by introducing gaps and moving the dielectric layers or endcaps

along the cylinder’s axis.

Such layered structures have been proposed, prototyped, operated, and tuned for haloscopes

targeting the axion-photon coupling [281, 282, 283, 284, 285, 286, 287, 288]. Axions can also be

effectively coupled to higher-order modes by loading cavities with dielectric wedges or cylindrical

shells [289, 290, 279, 291, 292, 293]. At high axion masses, scanning can become impeded by

mode crowding. Many innovative approaches have been considered to avoid this issue, such as

open resonators [286, 287], phase-matched, coupled, or sub-divided cavities [294, 295, 296, 297,

298, 299, 300, 246, 301, 302, 238, 303], rod or wire metamaterials [117, 304, 305], and thin-shell

geometries [306, 307]. Most of these ideas can be adapted to polarization haloscopes, though some

tuning mechanisms must be adjusted. For concreteness, we take η = 1, assume a cylindrical cavity

with aspect ratio L/R = 5, and require the intermediate layers in Fig. 4.1 be at least 1 cm thick, so

that there is a reasonable number to tune. This determines the mass range probed in Fig. 4.2.

4.4 Material Properties

To maximize the signal strength, we consider dielectric materials with a high density of the nu-

clei in Table 4.1. Unlike other approaches that require the material to be ferroelectric [116] or

piezoelectric [46], we only require the material to be insulating at low temperatures.

Some semiconducting or insulating candidate materials are nitrides XN [308], oxides XO, and
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sesquioxides X2O3 for X = Dy,Eu,Gd. Though many alternatives exist, these materials are simple

and well-studied, and most are commercially available. For a prototype setup, we consider EuN

where the abundance of 153Eu is 52% (see Table 4.1). Following other proposals [46, 116], we assume

complete isotope separation for a full-scale experiment, using DyN where the dysprosium is entirely
161Dy. In both cases, the number density of rare earth atoms is 3 × 1022 cm−3 [309, 310].

The structure of the material also directly affects the strength of the signal. The most important

effect, displayed in Eq. 4.18, is that dielectrics shield electric fields, reducing the signal power by a

factor of the permittivity ϵ̄. For our projections we take ϵ̄ ≃ 7, based on the static permittivity of

DyN [311]. This choice is conservative, as permittivity decreases at higher frequencies.

In addition, the effective atomic EDM may be modified within a crystal, where atomic orbitals are

deformed. This effect is quantified by the “electroaxionic” tensor defined in Ref. [46], and calculating

the tensor components requires a dedicated relativistic many-body calculation for each material.

In PbTiO3, two groups found suppressions of 25% [312] and 50% [313], but with comparably large

uncertainties. Thus, for this initial study we simply take dA to be the value for an isolated atom.

The other key material property is the dielectric loss tangent tan δ. For a cavity entirely filled

with dielectric, the quality factor Q of a mode obeys 1/Q = 1/Qc + tan δ, where Qc is the quality

factor due to cavity wall losses. Thus, to realize a desired Q, one must have tan δ ≲ 1/Q.

At room temperature, dielectrics display high losses due to thermal phonons. However, these

“intrinsic” losses fall steeply with temperature [314], and are negligible at the cryogenic temperatures

of polarization haloscopes. Instead, extrinsic losses due to defects and impurities dominate [315, 316]

and depend on crystal quality. Very low losses have been measured [317, 318, 319, 320], at the level

of 10−9 for sapphire and 10−8 for rutile and YAG.

These are all centrosymmetric crystals, and thereby avoid additional loss mechanisms that would

appear in more complex crystals, e.g. through acoustic phonons in piezoelectrics [314] or domain

wall motion in ferroelectrics [321]. The candidate materials we have listed above are all simple

centrosymmetric crystals. However, their dielectric losses are unknown, and dedicated cryogenic

measurements in high-quality crystals are needed. These should be carried out at low electric field

amplitudes, because high field amplitudes can mask losses due to two-level systems [322, 323, 324].

4.5 Nuclear Spin Polarization

The current in a polarization haloscope is proportional to the fractional nuclear spin polarization

fp, which is O(1%) in thermal equilibrium in typical cavity haloscope conditions (see Table 4.1).

However, for both polarization haloscopes and other approaches [116, 46] an O(1) polarization is

required for optimal sensitivity. Below we describe two potential approaches to realize this.

First, one could simply subject the dielectric to a high magnetic field B ≳ 10 T and ultra-low

temperature. At T = 2 mK, as achieved by specialized dilution fridges [325, 326], 153Eu nuclei
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possess an O(1) equilibrium polarization. For this technique, the key unknown is the time needed

to thermalize the spins. At such high B/T , theoretical estimates suggest that it is prohibitively

long [327, 328], but measured spin-lattice relaxation times are much shorter than predicted [329, 330],

which could be explained by exotic relaxation mechanisms [331, 332, 333]. Relaxation times might

be further reduced by the electric quadrupole moments of the nuclei we consider, which couple

more strongly to the lattice than magnetic dipole moments [334], or by the addition of relaxation

agents [335, 336].

Another option is frozen spin dynamic nuclear polarization (DNP), in which electrons are polarized

in a few-Tesla field at T ∼ 1 K, and their polarization is transferred to the nuclear spins by applying

∼ 1 W/kg of microwave power. This method achieves almost complete proton spin polarization and

has been extended to heavier nuclei for NMR studies [337, 338, 339, 340]. It requires the sample to

contain a concentration ∼ 10−3 of paramagnetic centers, produced by chemical doping or ionizing

radiation. To “freeze” the nuclear spins, the microwave field is removed and the sample is further

cooled to slow relaxation.

This approach has been used for decades to polarize targets for particle physics experiments [341,

342]; notably, the Spin Muon Collaboration at CERN produced frozen spin targets of liter scale [343].

Currently, frozen spin DNP is primarily developed in nuclear physics experiments [344, 345, 346, 347,

348, 349]. The resulting spin polarization is robust, with spin-lattice relaxation times of nearly a year

observed in practice [350]. For polarization haloscopes, the next step is to see how this approach can

be scaled to larger volumes, while maintaining low dielectric losses.

4.6 Projected Sensitivity

The signal-to-noise ratio is given by the Dicke radiometer equation [351],

SNR ≃ Psig

Tn

√
tint
∆νs

, (4.20)

where tint is the time spent probing each axion mass, and ∆νs = ma/(2πmax(Q,Qa)) is the signal

bandwidth. The noise temperature Tn = T + Tamp receives comparable contributions from thermal

noise, determined by the physical temperature T , and amplifier noise. Following Ref. [46], we

find that noise due to external vibrations or spin fluctuations is vastly subdominant at the GHz

frequencies of interest, even with the inclusion of paramagnetic centers as required for DNP. Note

that Q is the quality factor of the cavity mode with dielectric losses included; thus, thermal noise

automatically includes both the noise from electrons in the cavity walls and dielectric noise, by the

fluctuation-dissipation theorem.

In Fig. 4.2, we show the projected sensitivity (corresponding to SNR ≥ 2) for three experimental

setups. The two blue shaded regions indicate scanning setups which take frequency steps of size
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Figure 4.2: The projected sensitivity for three benchmark polarization haloscopes (see text for details).
The blue shaded regions indicate the reach of scanning setups, while the dashed blue line shows the
reach for an experiment which targets a single candidate QCD axion mass. We also show the ultimate
projected sensitivity of CASPEr-Electric [20] and storage ring [21] experiments, as well as existing
constraints from the cooling of Supernova 1987A [22] and Solar fusion processes [23]. Note that these
existing constraints are strictly stronger than those derived from Big Bang nucleosynthesis [24] (not
shown).

ma/min(Q,Qa) with a uniform tint, so that one e-fold in axion mass is scanned in one year. Following

existing haloscope experiments, we assume an operating temperature of T = 40 mK [239] and an

amplifier operating at the quantum limit, Tamp ≃ ma. When thermal noise dominates, we assume

the cavity is optimally overcoupled to the readout, which modestly improves the SNR by a factor of√
T/Tamp [176].

The “prototype” projection, shown in dark blue, is modeled on the ADMX haloscope [234] and

assumes a volume V = 100 L, quality factor Q = 105, and magnetic field B = 8 T, which produces a

thermal spin polarization fp ≃ 5% for 153Eu. This benchmark shows that new parameter space can

be explored with minimal investment. (However, this parameter space may be in tension with the

stability of white dwarfs [352].)

The light blue projection considers a cubic meter cavity with Q = 106 and complete spin

polarization, fp = 1. Such an experiment would require a large dilution fridge, like those developed

for other precision experiments [353, 354, 355, 356, 357], and several tons of dielectric material. In

other words, it would require investment comparable to ongoing WIMP dark matter searches [358, 359].

Though it does not reach the canonical QCD axion line defined by Eq. (4.2), it could probe orders of
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magnitude of unexplored parameter space, including non-minimal, mildly tuned QCD axion models

which solve the strong CP problem with exponentially smaller mafa [360, 361].

If ADMX, CAPP, or any other GHz-frequency haloscope [362, 363, 364, 365, 366] detects a signal

consistent with axion dark matter, a “post-discovery” setup, shown in dashed blue, can probe the

same mass. Since it sits at a single frequency, the SNR is enhanced by Q
1/2
a ∼ 103 for tint = 1 yr, as

compared to a scanning experiment. We assume noise is reduced, relative to the cuber meter setup,

by cooling to 10 mK and reducing amplifier noise by 3 dB using demonstrated vacuum squeezing

techniques [236]. We also assume a quality factor of Q = 108. To achieve this quality factor one needs

a material with tan δ ≲ 10−8, which has been measured for a number of compounds. As for wall

losses, one can achieve Qc ≫ 108 with a superconducting cavity, since polarization haloscopes do not

require large static magnetic fields. Alternatively, the mode profile can be shaped with dielectrics, a

technique which has achieved Q ∼ 107 in a liter-scale copper cavity [292]. With these enhancements,

a polarization haloscope has the unique ability to probe the minimal QCD axion.

4.7 Discussion

The QCD axion is an exceptional dark matter candidate, which arises automatically in theories which

solve other problems of the Standard Model, with a simple and predictive production mechanism.

The minimal QCD axion also has the unique advantage of possessing a defining coupling to the

Standard Model, which provides a sharp target for laboratory searches.

A polarization haloscope naturally targets higher frequencies than nuclear magnetic resonance

experiments [116]. Both approaches detect the electromagnetic fields generated by spin polarized

nuclei, but polarization haloscopes do not involve changes in the spin direction and hence do not

require long spin coherence times. One could also target kHz to MHz frequencies with our approach

by replacing the magnetic field in an LC circuit haloscope [113, 214, 114] with a polarized dielectric.

We have laid out a path towards definitively probing the QCD axion with polarization haloscopes.

No fundamentally new technologies are required, but many uncertainties remain. Precisely computing

the signal requires expertise in theoretical nuclear, atomic, and solid state physics, while the cavity

design and the selection and polarization of the material require experimental investigation. Together,

such efforts may enable the next definitive search for dark matter.



Chapter 5

Axion-Fermion Couplings

This chapter is based on Axion Dark Matter Detection by Superconducting Resonant Frequency

Conversion, by A. Berlin, R. T. D’Agnolo, S. A. R. Ellis, C. Nantista, J. Neilson, P. Schuster, S. Tantawi,

N. Toro, K. Zhou, JHEP 07, 088 (2020).

Abstract

In the presence of axion dark matter, fermion spins experience an “axion wind” torque and an

“axioelectric” force. We investigate new experimental probes of these effects and find that magnetized

analogs of multilayer dielectric haloscopes can explore orders of magnitude of new parameter space

for the axion-electron coupling. We also revisit the calculation of axion absorption into in-medium

excitations, showing that axioelectric absorption is screened in spin-polarized targets, and axion wind

absorption can be characterized in terms of a magnetic energy loss function. Finally, our detailed

theoretical treatment allows us to critically examine recent claims in the literature. We find that

axioelectric corrections to electronic energy levels are smaller than previously estimated and that the

purported electron electric dipole moment due to a constant axion field is entirely spurious.
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Conventions and Notation

We use a mostly-negative spacetime metric and natural units, ℏ = c = kB = 1, with rationalized

Heaviside–Lorentz units for electromagnetic fields (i.e., SI units with ε0 = µ0 = 1). Instead of the

chiral representation, we use the Dirac representation for the gamma matrices,

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1

1 0

)
, (5.1)

where the σi are the usual Pauli matrices. All states are normalized nonrelativistically, and all

operators are in the Schrödinger picture unless specified otherwise. In Secs. 5.3 and 5.4, we work

with complex axion and electromagnetic fields which oscillate with positive frequency, proportional

to e−iωt, such that only the real part is physically meaningful.

5.1 Introduction

Axions are among the most well-motivated extensions to the Standard Model, generically arising

as pseudo-Goldstone remnants of new approximate global symmetries broken at some high scale

and in theories involving compactified extra dimensions [97, 98, 367]. They are also motivated

from a bottom-up perspective, as their existence could explain both the microscopic origin of dark

matter [101, 100, 102] and the absence of CP violation in the strong interactions [93, 96, 95, 102].

If axions account for the local dark matter density ρ
DM

≃ 0.4 GeV/cm3, their occupancy per

quantum mode is large for axion masses ma ≲ few × 10 eV. In this case, the axion behaves

as a nonrelativistic classical field, oscillating with an angular frequency set by its mass, a(t) ≃
(
√

2ρ
DM
/ma) cosmat. This behavior is coherent over macroscopic timescales (mav

2
DM

)−1 ∼ 1 µs ×
(meV/ma) and is uniform over length scales (mavDM

)−1 ∼ 10 cm × (meV/ma), where v
DM

∼ 10−3

is the characteristic velocity of dark matter in the Galaxy. Axions generically couple to Standard

Model currents via shift-symmetric higher-dimensional operators suppressed by a symmetry-breaking

scale Λ, i.e., L ∼ (∂µa) JµSM/Λ. Most ongoing and proposed experiments search for coherent signals

arising from the axion’s coupling to photons via the Chern–Simons current [45, 230, 231, 368].

Comparatively much less attention has been paid to the axion’s coupling to color neutral fermions

f ,

L ⊃ gaf (∂µa) Ψγµγ5Ψ . (5.2)

Concretely, f can be an electron or nucleon, with mass mf and charge qf , Ψ is its corresponding

Dirac field, and gaf is a dimensionful coupling inversely proportional to the symmetry-breaking

scale.1 Independent of the axion’s Galactic abundance, such interactions induce spin-dependent

“dipole–dipole” forces between fermions [369, 370], which can be searched for by experiments involving

1Some works quantify the coupling in terms of Gaf = 2gaf or use a dimensionless coupling g̃af = 2mf gaf .
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electrons [371, 26, 372, 373, 374], nucleons [375, 376, 377, 378], or both [379, 380]. Stronger probes

are possible in the presence of axion dark matter. For low-energy experiments, its physical effects are

most directly seen in terms of the nonrelativistic single-particle Hamiltonian,

H ⊃ −gaf (∇a) · σ − gaf
mf

ȧσ · π , (5.3)

where π ≡ p − qf A is the fermion’s mechanical momentum, defined in terms of the canonical

momentum p = −i∇ and electromagnetic vector potential A. The first and second terms of Eq. 5.3

are called the “axion wind” and “axioelectric” terms, respectively, and give rise to a variety of

spin-dependent effects.

The axion wind causes spins to precess about the axion gradient, like the effect of an effective

magnetic field Beff on a magnetic dipole moment. Various experimental techniques have been

developed and proposed to search for this anomalous torque. For instance, spin-polarized torsion

pendulums [25, 48] or precision magnetometers, such as comagnetometers and nuclear magnetic

resonance setups [381, 48, 382, 20, 218, 383, 384, 27, 28, 385, 386, 221, 387, 388, 389, 390, 391,

392, 393, 394], can search for axions of mass ma ≪ µeV. Other recent proposals involve searching

for spin precession in superfluid helium [395, 396, 397], nitrogen vacancy centers [50], and storage

rings [398, 399, 400, 49, 401]. At higher axion masses, axion absorption can induce spin-flip transitions

in atoms [53, 402, 403, 404] or excite in-medium magnons [405, 406]. In the µeV − meV mass range,

several experiments [407, 408, 409, 410, 411, 29, 30, 31, 32, 52, 51] search for magnon absorption by

placing a magnetic sample in a cavity, thereby mixing the magnon with a cavity mode so that it can

be read out as a photon. These efforts, which we term “ferromagnetic haloscopes,” leverage existing

expertise in cavity magnonics. However, other methods to probe the axion-electron coupling in this

mass range have been unexplored.

The axioelectric term acts like an effective electric field Eeff directed along the spin and hence

produces a time-varying force. In analogy to the photoelectric effect, this force can ionize atoms

by the “axioelectric effect” [412, 413, 414, 415], which is used to search for, e.g., the absorption of

high-energy solar axions [416, 417, 418, 419, 36]. More recent works have considered absorption of

less energetic dark matter axions of mass ma ≲ 10 eV, which can produce electronic excitations in

molecules [57] and solids [54, 56, 420, 421, 55] or single phonons in spin-polarized materials [58].

The physical effects of the axioelectric term in the ultralight regime (ma ≪ 1 eV) are much less

well-understood. While the ability for this oscillating force to generate currents in spin-polarized

targets was briefly considered in Refs. [133, 422, 423], the prospects for detecting such effects were

never carefully analyzed. Furthermore, some recent studies have investigated axioelectric-induced

modifications to electronic energy levels [46, 424, 425], but the sizes of these shifts were only very

roughly estimated. Finally, there have been many recent independent claims that the axion-electron

coupling generates an electron electric dipole moment (EDM) [426, 47, 427, 428, 429] proportional

to the axion field value. This would seem to violate the shift symmetry of the axion field and, if



CHAPTER 5. AXION-FERMION COUPLINGS 96

10−22 10−20 10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 1

ma (eV)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2
g a
e

(G
eV
−

1
)

Ferromagnetic
Haloscopes

K-He
Comagnetometers

Torsion Pendulum
(axion wind)

Torsion Pendulum
(spin source)

Atomic Clocks Electron g − 2

Red Giants

White Dwarfs

XENONnT

Sun

QCD
Axion

Figure 5.1: Existing constraints on the axion-electron coupling. Laboratory constraints are from
torsion pendulums [25, 26], atomic clocks [27], comagnetometers [28], ferromagnetic haloscopes [29,
30, 31, 32], and electron g − 2 measurements [33, 34] (using the 2σ uncertainty of the latest
measurement [35]). Astrophysical constraints are from XENONnT solar axion searches [36] and from
considerations of additional energy loss from the Sun [37], white dwarfs [38], and red giants [39].
However, the red giant bound may be significantly weakened when uncertainties in stellar parameters
are accounted for [40]. Furthermore, all of these astrophysical constraints are relaxed in axion models
with environment-dependent couplings [41]. Bounds derived from supernova 1987A [42, 43] and Big
Bang nucleosynthesis [43, 44] are about two orders of magnitude weaker than the solar bound and
not shown here for clarity. The orange band corresponds to QCD axion models, reviewed in, e.g.,
Ref. [45].

true, would imply sensitivity up to twenty orders of magnitude stronger than existing astrophysical

bounds. Thus, the physics of the axioelectric term is currently far from clear.

In this chapter, we provide a firm foundation for the study of axion-fermion couplings, with an

emphasis on new probes of the axion-electron coupling gae. Existing constraints on this coupling are

reviewed in Fig. 5.1, while the projected sensitivities of future experiments are shown in Fig. 5.2.

We begin in Sec. 5.2.1 by reviewing the derivation of the nonrelativistic Hamiltonian of Eq. 5.3. In

Sec. 5.2.2, we compute the associated classical torques and forces in an axion background and show

how the leading effects can be expressed in terms of effective spin-coupled electromagnetic fields Eeff

and Beff. In Sec. 5.2.3, we consider the use of spin-polarized mechanical resonators to detect these

effects.

In Sec. 5.3, we show how Eeff and Beff give rise to polarization and magnetization currents,

respectively, in electron spin-polarized (magnetic) media. To detect these currents, we consider

multilayer setups like those used by dielectric haloscopes to search for the axion-photon coupling
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Figure 5.2: Proposed searches for the axion-electron coupling, with existing limits (shaded gray) as in
Fig. 5.1. The new directions we explore are shown in solid green, and discussed in the corresponding
sections. Dotted gray projections [46, 47] should be revised, as discussed in Sec. 5.5. As solid
gray lines, we show projections from torsion pendulums [48], comagnetometers [28], an electron
storage ring [49], nitrogen vacancy centers [50], ferromagnetic haloscopes using MnCO3 [51] and
YIG [52], and absorption into electronic excitations in atoms [53], superconductors [54], spin-orbit
coupled materials [55], semiconductors [56], and molecules [57], as well as into phonon excitations
in FeBr2 [58]. For each proposal, we show the most optimistic projection, though the difficulty of
experimentally realizing each one varies significantly.
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at microwave [430, 431, 432] and optical [118, 433, 434, 435] frequencies, where the signal appears

as emitted electromagnetic radiation. As shown in Sec. 5.3.1, such a system can reach QCD axion

sensitivity at optical frequencies, where the polarization current dominates. At microwave frequencies,

the magnetization current instead dominates. In this case, a multilayer setup can explore orders of

magnitude beyond astrophysical bounds, as shown in Sec. 5.3.2.

In Sec. 5.4, we revisit axion absorption into in-medium excitations. For dark photons and axions,

such results are often determined by the “energy loss function” Im(−1/ε) [436, 437, 438, 439, 440],

which has recently been applied to dark photons [438] and photon-coupled axions [440]. In Sec. 5.4.1,

we use a classical argument to show that in spin-polarized media, the absorption rate into magnons

via the axion wind term is determined by Im(−1/µ), the magnetic analogue of the energy loss

function. As for the axioelectric term, previous calculations have shown that the absorption rate

into electronic excitations scales with Im(ε) in unpolarized targets. In Sec. 5.4.2, we show that in

spin-polarized targets, it is instead proportional to the usual energy loss function Im(−1/ε) and is

thus generically screened.

In Sec. 5.5, we critically examine recent claims about the physical effects of the axioelectric

term. We show that any apparent EDM proportional to the axion field value is spurious, with no

corresponding observable effect, and that energy level shifts from the axioelectric term are smaller

than previously estimated. We conclude in Sec. 5.6 by discussing directions for future investigation.

The appendices are referred to throughout the text.

5.2 The Nonrelativistic Limit

In this section, we review the physical effects of fermion-coupled axion dark matter. We begin by

deriving the nonrelativistic Hamiltonian in Sec. 5.2.1. It is then used in Sec. 5.2.2 to compute the

torques and forces on a fermion, showing that the leading effects are simply described by effective

spin-coupled magnetic and electric fields Beff and Eeff, respectively. In Sec. 5.2.3, we consider the

sensitivity of spin-polarized mechanical resonators to these fields.

5.2.1 Deriving the Nonrelativistic Hamiltonian

We first motivate the nonrelativistic Hamiltonian in Eq. 5.3 by considering the classical limit of

the axial vector current. As shown in Appendix 5.7, in a classical single-particle state, the spatial

integral of its expectation value is essentially the fermion’s spin four-vector sµ, equal to (0, ŝ)µ in

its rest frame, where ŝ is the unit vector aligned with its spin. Thus, to first order in the fermion’s

velocity v, we have ∫
d3x ⟨Ψγµγ5Ψ⟩ ≃ (v · ŝ , ŝ)µ , (5.4)
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If we approximate ∂µa as spatially uniform, we can use Eq. 5.4 to evaluate the spatial integral of

Eq. 5.2, giving the particle Lagrangian

L ⊃ gaf (∇a) · ŝ + gaf ȧv · ŝ . (5.5)

The nonrelativistic Hamiltonian is given by H = v · p− L, where the canonical momentum is

p = ∂L/∂v = mf v + qf A + gaf ȧ ŝ . (5.6)

Identifying p → −i∇ and ŝ → σ in the Hamiltonian recovers Eq. 5.3. The first term in Eq. 5.5

couples to the spin like an effective magnetic field Beff = (gaf/µf ) (∇a) with µf = qf/2mf , while

the second is of the form L ⊃ qf Aeff · v with an effective vector potential Aeff = (gaf/qf ) ȧ ŝ. The

axion field thus exerts a torque on spins and a spin-dependent force,

τ = µf (ŝ×Beff) = gaf (ŝ×∇a) (5.7)

F = qf Eeff = −gaf
d

dt

(
ȧ ŝ
)
, (5.8)

where Eeff = −dAeff/dt is an effective spin-coupled electric field. Though this derivation is merely

heuristic, it does capture the axion’s leading physical effects.

In order to systematically extract the full set of physical effects, we take the nonrelativistic

limit of the fermion’s equation of motion, using the same procedure that is used to derive the Pauli

Hamiltonian from the Dirac equation. Starting from Eq. 5.2, the equation of motion for Ψ is

(
i/∂ −mf − qf /A+ gaf (/∂a) γ5

)
Ψ = 0 . (5.9)

In relativistic quantum mechanics, Ψ is the four-component wavefunction of a state with a single

particle or antiparticle, and Eq. 5.9 governs the evolution of the wavefunction. Specifically, the

positive-frequency solutions of Eq. 5.9 represent the wavefunctions of particles, while negative-

frequency solutions represent antiparticles. To reduce to the low-energy nonrelativistic theory,

we “integrate out” the antiparticle component using the Pauli elimination method. To make this

separation manifest, we divide Ψ into upper and lower two-component wavefunctions,

Ψ = e−imf t

(
ψ

ψ̃

)
, (5.10)

where the rapid time-dependence of the positive-frequency solution has been factored out. The

wavefunctions ψ and ψ̃ dominate for nonrelativistic particle and antiparticle states, respectively. In
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terms of ψ and ψ̃ , Eq. 5.9 is

(
i∂t − qf ϕ+ gaf (∇a) · σ

)
ψ =

(
π · σ − gaf ȧ

)
ψ̃ (5.11)

(
2mf + i∂t − qf ϕ+ gaf (∇a) · σ

)
ψ̃ =

(
π · σ − gaf ȧ

)
ψ . (5.12)

As anticipated, ψ̃ is suppressed by ∼ 1/mf compared to ψ for nonrelativistic particle states. Thus,

to economically describe a nonrelativistic particle, we can solve Eq. 5.12 to leading order in the

nonrelativistic expansion,

ψ̃ ≃ 1

2mf

(
π · σ − gaf ȧ

)
ψ , (5.13)

and then use this to eliminate ψ̃ from the equation of motion for ψ in Eq. 5.11. The result is

(
i∂t − qf ϕ+ gaf (∇a) · σ

)
ψ ≃

( 1

2mf
|π · σ|2 − gaf ȧ

mf
π · σ +

igaf
2mf

(∇ȧ) · σ
)
ψ , (5.14)

to leading order in the coupling gaf . The nonrelativistic Hamiltonian can then be identified by

i∂tψ = Hψ, which gives

H ≃ π2

2mf
+ qf ϕ− qf

2mf
B · σ − gaf (∇a) · σ − gaf

2mf
{ȧ,π · σ} , (5.15)

where we used the identity |π · σ|2 = π2 − qf B · σ. The first three terms in Eq. 5.15 form the usual

Pauli Hamiltonian, and the axion-dependent terms are in agreement with Ref. [428] (which instead

used the Foldy–Wouthuysen method [441] to decouple the antiparticle component). Expanding

the anticommutator in the final term yields {ȧ,π · σ} = 2ȧπ · σ − i(∇ȧ) · σ, where the first term

corresponds to the axioelectric term in Eq. 5.3. Note that the second term is not determined by our

heuristic classical argument; however, it is less phenomenologically interesting since it is qualitatively

similar to the axion wind, but subdominant for ma ≪ mf .

5.2.2 Torques and Forces

The Hamiltonian of Eq. 5.15 implies that the axion field imparts spin torques and forces on fermions.

To show this, we will use Ehrenfest’s theorem, d⟨O⟩/dt = ⟨∂tO⟩ + i ⟨ [H,O] ⟩, which governs the time

evolution of the expectation value of any observable O. For example, it implies that the velocity

operator v ≡ i[H,x] satisfies ⟨v⟩ = d ⟨x⟩ /dt. In the presence of an axion background, this is

v =
1

mf
(π − gaf ȧσ) , (5.16)
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which is just the quantum analogue of Eq. 5.6. Next, the expectation value of the spin operator

S = σ/2 evolves as

d

dt
⟨S⟩ = ⟨ 2µf S×B + 2 gaf S× (∇a+ {ȧ,v}/2) ⟩ . (5.17)

Discarding subdominant contributions proportional to ∇ȧ or g2af , we find that the axion field imparts

the same spin torque as an effective magnetic field

Beff ≃ gaf
µf

(∇a+ ȧ ⟨v⟩) . (5.18)

Above, the first term proportional to ∇a is the usual axion wind effect, while the additional term

proportional to ȧ follows from Galilean invariance; it represents the additional contribution to the

axion gradient in the frame of a moving fermion. Note that this new term is subdominant when the

fermion velocity is much smaller than the dark matter velocity, which applies to most laboratory

experiments.

Evaluating the force from the axion field is somewhat more involved, as it requires taking the

time derivative of Eq. 5.16. Using Eq. 5.17 to simplify the result, we find

F ≡ mf
d

dt
⟨v⟩ ≃

〈
qf E +

qf
2

(v ×B−B× v) + µf ∇(σ ·B)
〉

− gaf
d

dt

〈
ȧσ
〉

+ gaf

〈
∇(σ · ∇a) +

1

2
{σ · v, (∇ȧ)} − 1

2
(v · ∇ȧ+ ∇ȧ · v)σ

〉
,

(5.19)

where the first line is the usual electromagnetic force on a minimally-coupled spin-1/2 particle, and

the second line contains axion-induced effects. Since the gradient of an axion dark matter field is

suppressed by its small velocity, the first term in the second line dominates. It is equivalent to an

effective electric field aligned with the spin,

Eeff ≃ −gaf
qf

d

dt
(ȧ ⟨σ⟩) , (5.20)

which is consistent with our classical result in Eq. 5.8, since ⟨σ⟩ = ŝ, and agrees with Ref. [422].

Since Eeff and Beff can cause charges to move and dipole moments to precess, respectively, they

indirectly give rise to electromagnetic signals, which we will consider in Sec. 5.3. However, first we

consider their most direct effects, which are oscillating mechanical forces and torques in spin-polarized

materials.
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5.2.3 Mechanical Signals

From Eq. 5.20, we see that when a material is electron or nuclear spin-polarized and its spins precess

at angular frequency ωspin, then its spins experience an oscillating axioelectric force with angular

frequency ωsig ≃ ma ± ωspin, whose magnitude is proportional to ωsig. For concreteness, we focus

on electron-coupled axions and static electron spins, ωspin = 0. In an insulating material, where

the electrons are not free to move relative to the nuclei, forces on the electrons cause the material

to accelerate as a whole. Thus, two nearby test masses of opposite electron spin polarization will

experience an oscillating relative acceleration of magnitude

∆aae ≃
2fs gae ωsig

√
ρDM

mN
, (5.21)

where mN is the mass per atom and fs is the number of polarized electron spins per atom.

At ultralow frequencies, ωsig ≲ 10 Hz, the axioelectric acceleration is very difficult to detect

because it is suppressed by ωsig/mN . Using Refs. [442, 443, 444], we have recast the sensitivity of

future torsion pendulums, atom interferometers, and gravitational wave detectors, assuming they

can be modified to have fs ≃ 1. In each case we find that the ideal sensitivity is well below that of

existing astrophysical bounds and too weak to appear in Fig. 5.2.

Oscillating accelerations at kHz − GHz frequencies can be detected with mechanical resonators.

To analyze this case, we recast the results of Refs. [445, 446, 447], which consider how dilaton dark

matter modifies the equilibrium length of solid objects, leading to a differential acceleration across

the object. Each of these setups can in principle be converted to a probe of the axioelectric force by,

e.g., spin polarizing its two halves in opposite directions. Equating the resulting accelerations (under

the assumption that fs ≃ 1 can be realized and that the relevant O(1) mechanical form factors are

comparable) yields the curves labeled “Liquid Helium” and “AURIGA” in Fig. 5.2. Though they are

more promising, they are still much weaker than existing astrophysical bounds.

The axion wind’s spin torque can lead to stronger mechanical effects. In a material where the

orientation of electron spins is fixed relative to the atomic lattice, such as a hard ferromagnet, spin

torques are converted to torques on the lattice. For an object of length scale L, this corresponds to a

characteristic linear acceleration

∆awind ∼ fs gae∇a
mNL

∼ v
DM

maL
∆aae . (5.22)

The axion wind’s mechanical effect was already considered for torsion pendulums in Ref. [48], but,

in principle, it could also excite “toroidal” (shearing) modes in mechanical resonators. For the

resonators considered in Ref. [447], ∆awind is enhanced over ∆aae by several orders of magnitude.

However, a detailed analysis of this signature is beyond the scope of this chapter.
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Figure 5.3: Schematic representation of the axion-induced electromagnetic signals considered in
Sec. 5.3. Left: The axioelectric term’s effective electric field Eeff induces a bulk polarization current
JPa in a spin-polarized material. Right: The axion wind term’s effective magnetic field Beff induces
a surface magnetization current JMa .

5.3 Electromagnetic Signals

Unlike the axion-photon coupling, the axion-fermion coupling does not directly source electromagnetic

fields. This is immediately apparent from both of the Lagrangian forms of the interaction, either in

terms of relativistic fields (Eq. 5.2) or nonrelativistic particles (Eq. 5.5), which are independent of

the vector potential. Although the Hamiltonian form of the axioelectric term H ⊃ −(gaf/mf ) ȧ (p−
qf A) · σ does naively appear to contain a direct coupling between the axion field and the vector

potential, it is straightforward to verify that the electromagnetic Heisenberg equations of motion

(calculated using Eq. 5.15) do not involve axion-dependent source terms.

Regardless, the effective fields Eeff and Beff indirectly source real electromagnetic fields through

their effect on the motion of charges. For concreteness, we focus here on the axion-electron coupling

gae. In this case, the axioelectric field Eeff drives polarization currents in spin-ordered material,

while the axion wind field Beff induces magnetization currents on the boundary of any material

with nonzero magnetic susceptibility. These currents in turn source electromagnetic radiation,

as depicted in Fig. 5.3. Thus, dark matter experiments employing photon readout of dielectric

stacks [430, 431, 118, 432, 434, 433] can be sensitive to the axion-electron coupling if they are modified

to use appropriate materials.

To begin making this more precise, consider a linear medium with permittivity ε and permeability

µ. Since the effective fields act on electrons but do not satisfy Maxwell’s equations, we find it

conceptually useful to split the induced polarization and magnetization into a standard and axion-

induced part,

P = P0 + Pa = (ε− 1)E + (εσ − 1)Eeff (5.23)

M = M0 + Ma = (1 − µ−1)B + (1 − µ−1)Beff . (5.24)

Here, P0 and M0 are induced by electromagnetic fields exactly as in ordinary electrodynamics, while
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Pa and Ma are induced by the axion field. Note that in Eq. 5.23 we have defined εσ, the permittivity

due to the spin-polarized electrons in the sample (where εσ = 1 for an unpolarized sample). This will

be more properly defined later in Eqs. 5.55 and 5.86. We similarly decompose the in-medium current

as J = J0 + Ja, where J0 = ∂tP0 + ∇×M0, as usual, and Ja = ∂tPa + ∇×Ma. While the case

of an insulating medium may be more familiar, these equations can also be applied to conductors,

which can be described by a permittivity with Im(ε) = σ/ω, where σ is the conductivity and ω is the

angular frequency. Since J0 includes both the usual free and bound currents, only the axion-induced

current Ja appears as a source in the in-medium Maxwell’s equations. For instance, Ampère’s law

reads

∇× (µ−1 B) = Ja + ε ∂tE . (5.25)

Combining this with Faraday’s law, which is unchanged, yields the inhomogeneous wave equation

∇×∇×E + n2 ∂2tE = −µ∂tJa , (5.26)

where n =
√
εµ is the refractive index. This is the key result we will need in Secs. 5.3.1 and 5.3.2.

Explicitly, the axion-induced current contains two pieces,

Ja = JPa + JMa = (εσ − 1) ∂tEeff + ∇×
(
(1 − µ−1)Beff

)
, (5.27)

each of which can produce electromagnetic signals. The axion-induced polarization current JPa only

exists in spin-polarized materials, such as ferromagnets, or paramagnets in an external magnetic

field. The magnetization current JMa exists on the surface of any finite material with µ ̸= 1, though

it tends to be most significant in spin-polarized materials. From Eqs. 5.18 and 5.20 we see that for

static spins (d⟨σ⟩/dt = 0), Eeff depends on a second derivative of the axion field while Beff depends

on only a first derivative. We therefore expect the axioelectric induced current JPa to dominate for

large axion masses and the axion wind induced current JMa to dominate at smaller masses. In the

following subsections, we consider these two currents in turn.

5.3.1 Axioelectric Polarization Currents

Let us first consider the polarization current JPa resulting from the axioelectric field Eeff, by specializing

to a monochromatic spatially uniform axion dark matter field a ∝ e−imat . To build intuition, we

begin with the example of an infinite uniformly spin-polarized medium. In this case, we can ignore

the curl in Eq. 5.26, which then gives

E =
1 − εσ
ε

Eeff . (5.28)
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The total current is then

J = (ε− 1) ∂tE + (εσ − 1) ∂tEeff =
εσ − 1

ε
∂tEeff =

JPa
ε

. (5.29)

This equation encompasses all of the results of Ref. [422]; in particular, it shows that for large ε,

which occurs in conductors with σ ≫ ma, the axion-induced current is significantly screened. On

the other hand, it was not previously realized that the current can be resonantly enhanced when

ε approaches zero, which occurs when the axion mass matches that of a quasiparticle that mixes

with the photon, such as a plasmon or phonon [448, 117, 449, 405, 450, 451, 452, 440]. However, the

frequencies of such resonances are often not easily tunable.

In any case, dielectric haloscope and dish antenna experiments do not measure the current inside

a medium, but rather the propagating radiation produced outside of it. The simplest setup which

produces such radiation is an infinite slab of material of thickness d placed in vacuum, carrying a

uniform spin polarization lying in the slab’s plane, as shown in the left panel of Fig. 5.3. Within

the slab, the axion induces an electric field as in Eq. 5.28. However, if this was the total electric

field, then the component of the electric field tangential to the plane E∥ would be discontinuous at

the slab’s boundaries. Instead, the continuity of E∥ is restored by including plane wave solutions

of Eq. 5.26, which propagate outward from the slab; such fields also exist within the slab, though

they are exponentially damped on the scale of the skin depth 1/(Im(n)ma). In other words, the

slab’s finite thickness breaks translational invariance, providing the momentum mismatch required to

generate photons.

As shown in Appendix 5.8, enforcing continuity of E∥ and B∥/µ yields a signal amplitude

Esig =

∣∣∣∣
JPa /ma

ε+ i n cot (nma d/2)

∣∣∣∣ (5.30)

for the outgoing radiation field. For real ε and µ, the amplitude is maximized for d ≃ π/(nma), in

which case Esig = JPa /(ma ε). Note that photon-coupled axions or kinetically-mixed dark photons

also produce such signals, but through different physical mechanisms; for photon-coupled axions

the fields are sourced by effective currents which exist wherever a background magnetic field B0 is

present, while for electron-coupled axions they are from real currents, which exist only within the

slab. Despite these differences, the boundary conditions in these various model-examples have the

same form, such that the expression in Eq. 5.30 holds in all three cases [431, 118] if one formally

substitutes

JPa → √
ρDM ×





(εσ − 1) gaem
2
a/e (electron-coupled axion)

(ε− 1) gaγγ B0 (photon-coupled axion)

(ε− 1)κmA′ (kinetically-mixed dark photon) .

(5.31)
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In the second line, gaγγ is the axion-photon coupling, and in the third line, κ and mA′ are the kinetic

mixing parameter and mass of the dark photon field, which we assume is polarized tangential to the

slab (although a real experiment would have to average over its varying orientation [453, 454]).

To compare these signals, we must estimate εσ, the permittivity due to the spin-polarized electrons.

Consider a material in which the electrons in the outermost partially-filled shell are completely

spin-polarized. Those spin-polarized electrons contribute to εσ, and at low frequencies ω ≲ 10 eV,

below the characteristic scale of electronic excitations, they are also the ones that primarily contribute

to ε. Therefore, in general we expect εσ ∼ ε up to an O(1) factor. This argument is discussed in

more detail in Sec. 5.4.2, and for this initial study we simply take εσ = ε.

Under this assumption, Eq. 5.31 allows us to map between couplings which yield signals of

equivalent strength,

gae ↔ gaγγ (eB0/m
2
a) ↔ κ (e/ma) . (5.32)

As discussed in Appendix 5.8, this mapping is general, holding for an arbitrary series of spin-polarized

layers. It can thus be used to recast the sensitivity of dielectric haloscopes, provided they are modified

to incorporate spin-polarized media. The strongest sensitivity for this type of experiment is achieved

at large axion masses, at which the optical dielectric haloscopes LAMPOST and MuDHI operate.

Since LAMPOST has published projections [118], we recast them in Fig. 5.2 to yield the curve

labeled “Axioelectric Multilayer,” which shows that such a setup could have sensitivity comparable

to existing solar limits, corresponding to couplings motivated by the QCD axion.

5.3.2 Axion Wind Magnetization Currents

Next, we turn to the magnetization current JMa of Eq. 5.27. This term results from the axion wind

effective magnetic field Beff ∝ ∇a, which is nonzero due to the solar system’s motion through the

dark matter halo, i.e., ∇a ∼ ma vDM
a with vDM ∼ 10−3 the velocity of the dark matter wind. First,

note that JMa vanishes in an infinite medium with a uniform and scalar permeability µ, since from

Eqs. 5.18 and 5.27 we have in this case that JMa ∝ ∇×Beff ∝ ∇×∇a = 0. Thus, for scalar µ, the

simplest nontrivial situation is a planar slab of material of finite thickness, where the discontinuity of

the magnetization at the slab’s boundaries leads to surface magnetization currents, shown on the

right in Fig. 5.3.

Such a signal arises in any finite medium with nonzero magnetic susceptibility χm = µ− 1, but

in practice χm is small unless the medium is magnetically ordered, in which case χm is a nontrivial

tensor. Furthermore, since the axion field oscillates in time and the medium can be placed in a

tunable magnetic field, we must also consider how χm depends on frequency and external field.
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Magnetization Dynamics

The form of χm can be derived from the well-understood theory of classical magnetization dynamics.

Here we review the relevant results, following standard introductory treatments [455, 456, 457, 458].

The starting point is the Landau–Lifshitz equation, which governs the time evolution of a medium’s

magnetization density M,

dM

dt
= γM×H +

αγ

|M| M× (M×H) , (5.33)

where H = B−M is the auxiliary magnetic field, α is a small dimensionless damping parameter due

to internal losses, and γ is the in-medium gyromagnetic ratio, approximately equal to the electron’s

gyromagnetic ratio γe ≃ −e/me .

For concreteness, consider a medium prepared with high magnetization density M0 = M0 ẑ,

aligned with a large applied magnetic field B0 = B0 ẑ = H0 + M0. We are interested in the

magnetization’s response to the small axion effective magnetic field Beff ≪ B0, which contributes

small corrections M = M0 + ∆M and H = H0 + ∆H. Defining ∆M = χm ∆H, we can solve Eq. 5.33

for χm in frequency space by linearizing in the small components. This yields

χm ≃ − ωM
ω2 − (1 + α2)ω2

H + 2iα ω ωH




(1 + α2)ωH − iα ω −iω 0

iω (1 + α2)ωH − iα ω 0

0 0 0


 , (5.34)

which in the absence of damping (α = 0) is known as the Polder tensor. In the presence of damping,

the width of the resonant response is controlled by the magnetic quality factor Q ≡ 1/(2α). Here,

we have introduced the angular frequencies ωM ≡ |γ|M0 and ωH ≡ |γ|H0, and we also define

ωB ≡ |γ|B0 = ωH + ωM . Note that the maximum realistic value of the external field, B0 = 10 T,

corresponds to ωB ∼ 1 meV, such that for larger frequencies the susceptibility is necessarily strongly

suppressed. As a result, µ ≃ 1 at optical frequencies, which is why we were able to neglect the

tensorial nature of µ in Sec. 5.3.1.

It is convenient to diagonalize Eq. 5.34 by describing the transverse components with circular

polarizations, defined as M± ≡ (Mx ± iMy)/
√

2, H± ≡ (Hx ± iHy)/
√

2, and similarly for the other

fields. In this basis, the magnetic susceptibility is χm ≃ diag(χ+, χ−, 0), where the diagonal elements

are given by

χ± =
±ωM + iωM/2Q

ω ± ωH + iωH/2Q
. (5.35)

Note that for positive frequencies, only χ− can be resonantly enhanced. In other words, if the

material is driven by a positive frequency linearly polarized magnetic field (which contains equal

magnitude plus and minus circular polarization components), then on resonance its magnetization

preferentially rotates in one direction. This predominantly leads to clockwise circularly polarized
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radiation propagating along the direction of B0, and counterclockwise circularly polarized light

propagating in the opposite direction.

Form Factor for a Single Slab

Let us now return to the case of a single planar slab of finite thickness d, extending infinitely along

the xy-plane. For simplicity, we suppose that ∇a is uniform and also lies in the xy-plane. The

slab is placed inside a strong external magnetic field B0 = B0 ẑ, which fully magnetizes it along

the z-direction, normal to the slab’s surface. Note that since B · ẑ is continuous across the slab’s

boundaries, the z-component of the magnetic field inside the slab is also equal to B0. We can compute

the outgoing radiation produced by a single slab using the same method as in Sec. 5.3.1, provided

we work in a basis of circular polarizations and account for the discontinuity of (µ−1 B) × ẑ at the

slab boundaries due to the axion-induced magnetization surface currents. As shown in Appendix 5.8,

the resulting amplitudes of the outgoing radiation components have magnitude |E±
sig| = F±Beff/

√
2 ,

where

F± =

∣∣∣∣
χ±

µ± + in± cot (n±ma d/2)

∣∣∣∣ , (5.36)

is a dimensionless form factor and n± =
√
εµ± is the polarization-dependent refractive index.

Comparing Eqs. 5.30 and 5.36, we see that if F± is O(1), then the radiation amplitude due to the

axion wind is larger than that due to the axioelectric effect for all ma ≲ me vDM
∼ keV. However, a

multilayer experiment would become impractically large for ma ≪ 1 µeV and, as mentioned above,

the magnetic susceptibility is suppressed for ma ≳ 1 meV. Thus, the approach described in this

section is most useful for targeting axions at microwave frequencies, in a setup analogous to the

MADMAX dielectric haloscope that we refer to as a “magnetized multilayer” [430, 431, 432].

The external field strength B0 can easily be tuned in the laboratory; it affects ωB and ωH , and

thereby the susceptibility χ± and related quantities. We now consider how it should be chosen to

maximize the form factor F± for a given axion mass. For concreteness, we focus on the “minus”

polarization, which has permeability

µ− =
ma − ωB + iωB/2Q

ma − ωH + iωH/2Q
. (5.37)

Fig. 5.4 shows the value of F− as a function of ωB, for an axion mass of ma = 100 µeV and slabs

of various thickness d. For thin slabs, the form factor approaches a peak value of F− ≃ 1 when

ωH = ma. On the other hand, for much thicker slabs, there is a second, parametrically higher peak

when ωB is close to but slightly below ma.

These results can be understood by carefully considering limiting cases of Eq. 5.36 for fixed ma.

First, in the thin slab regime, |n−mad| ≪ 1, the cotangent in Eq. 5.36 is large and can be expanded

as cotx ≃ 1/x. The form factor has a resonant peak about ωH = ma, where the numerator χ− ≃ µ−
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Figure 5.4: The form factor F− (Eq. 5.36) for slabs of varying thickness d as a function of ωB = |γ|B0,
for a fixed axion mass of ma = 100 µeV and the material properties listed in Table 5.1. While the
form factor always has a peak near ωH = ma, it has a higher peak near ωB = ma for thick slabs.

becomes large. Near this peak, we have

F− ≃
∣∣∣∣

ωM ma d/2

ma − ωH + iωH/2Qeff

∣∣∣∣ , (5.38)

where we took Q≫ 1 and defined an effective quality factor

1

Qeff
=

1

Q
+ ωM d . (5.39)

These results are physically sensible. First, the resonant frequency ωH is the usual Kittel frequency

(i.e., the lowest, zero-momentum magnon frequency) for a thin slab in an orthogonal magnetic field.

Next, the second term in Eq. 5.39 describes radiation damping due to the emission of electromagnetic

waves. This damping ensures F− ≤ 1 on resonance, regardless of the value of Q, while increasing d

simply broadens the width of the resonant response. Thus, for thin slabs in the regime QωM d ≳ 1,

increasing the slab thickness can increase the scanning rate of an experiment, but not the peak signal

power.

Radiation damping is a familiar concern in ferromagnetic resonance studies [459, 460, 461, 462]

and is one of the main reasons that ferromagnetic haloscope experiments enclose their spin-polarized

sample in a microwave cavity. Note, however, that Eqs. 5.38 and 5.39 apply only to thin slabs;

qualitatively different behavior can occur in the thick slab limit |n−mad| ≳ 1. In this case the

cotangent cot(n−mad/2) is not necessarily large, but is instead generically O(1). From Eq. 5.37,

when the quality factor is high and the axion mass matches the Kittel frequency of an infinite

medium, ma = ωB , the permeability is small and approximately imaginary, µ− ≃ ima/(2QωM ), so
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that |µ−| ≪ |n−|. Then

F− ≃ 1

|µ− + in− cot(n−mad/2)| ≃
1

| cot(n−mad/2)|

√
2QωM
ma ε

, (5.40)

so that the form factor can be much greater than one if Q is sufficiently large. This enhancement

is possible because for thick slabs, radiation is not merely a source of energy loss. Instead, it

couples the magnon and photon degrees of freedom within the slab, forming a propagating hybrid

“magnon-polariton” mode.

As shown in Fig. 5.4, we find numerically that the highest form factors occur when ωB is shifted

slightly below the axion mass, ωB = ma − ∆ω with ∆ω > 0, even though this increases |µ−|. This

result also has a simple physical interpretation. For concreteness, suppose that ∆ω is nonzero and Q

is very high, which implies that µ− is small and approximately real. In this case, the slab acts as an

effective cavity due to the discontinuity of n− at its boundaries. When n−mad = π, the in-medium

wavelength of the magnon-polariton mode matches the slab’s thickness, so that cot(n−mad/2)

vanishes, leading to a greatly enhanced form factor. This phenomenon is familiar from other axion

searches using quasiparticle resonances [117, 451, 450, 452, 449] and remains approximately true

even at finite Q.

Signal-to-Noise Ratio for a Multilayer Setup

Now that we have discussed the outgoing radiation from a single magnetized layer, we turn to the

signal for many layers. Optimizing the response of a general multilayer experiment is analytically

intractable. Therefore, for concreteness, we focus on a “transparent mode” setup, where N slabs,

each of area A and thickness d = π/(Re(n−)ma), are separated by vacuum gaps of thickness

π/ma [463, 431]. For such multilayers, an emitted electromagnetic wave accumulates a phase of 2π

upon traveling from one slab to the next, so that the total signal amplitude emitted from the +z

side of the stack is ideally NE−
sig.2 In this case, the time-averaged signal power emitted from each

end of the stack is therefore

Psig =
1

2
N2 |E−

sig|2 A =
1

4
F2

−N
2 |B2

eff|A . (5.41)

As in the MADMAX experiment [431], this power can be focused with a horn antenna onto a pickup

circuit, which is coupled to an amplifier. We demand that the total thickness L = Nd of the slabs be

no larger than the characteristic screening length 1/(Im(n−)ma). This implies that the maximum

number of layers is

N =
Re(n−)

π Im(n−)
. (5.42)

2Radiation of the “plus” circular polarization is also emitted from this side, but its amplitude is negligible, since
generically F+ will not be resonantly enhanced and its contributions from the different slabs will not interfere
constructively. Thus, from this point onward we will only consider the “minus” polarization.
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Finally, the signal-to-noise ratio is given by the Dicke radiometer equation [351],

SNR =
Psig

Tn

√
tint
∆νa

, (5.43)

where Tn is the noise temperature, tint is the integration time, and ∆νa ≃ ma/(2πQa) is the axion

bandwidth, where Qa ∼ 1/v2
DM

∼ 106 is the effective axion quality factor. The integration time is set

by tint = (∆ωs/ma) te, where te is the total time to scan one e-fold in axion masses and ∆ωs is the

sensitivity bandwidth (i.e., the spread in axion masses for which the signal power is near its maximal

value for a fixed multilayer geometry and applied field).

To estimate the sensitivity bandwidth, we consider what happens when the axion mass is shifted

by a small amount δ from the optimal value, such that ma = ωB + ∆ω + δ. When δ = 0, radiation

accumulates a phase of 2π upon propagating from one slab to the next, for a total of 2πN through

the entire stack. When δ ̸= 0, the wave frequency is shifted, which changes the phase by a fractional

amount ∼ δ/ma. Demanding that the total change in phase is less than O(1) (so that the radiation

from each slab still constructively interferes) then yields the constraint δ ≲ ma/N , as in standard

dielectric haloscope experiments [431]. However, in our case there is another constraint: changing

the axion mass also changes the wavelength of the radiation within the slab, by a fractional amount

∆(Re(n)) /Re(n) ≃ δ/(2 ∆ω), and this quantity must also be less than ∼ 1/N . This yields the

stronger condition δ ≲ 2 ∆ω/N and therefore fixes the sensitivity bandwidth to

∆ωs = 2 ∆ω/N . (5.44)

Note that because Psig ∝ N2 and ∆ωs ∝ 1/N , the setup obeys the so-called “area law,”
∫
dω Psig(ω) ∝

N . This is a very general feature of axion dark matter experiments [464, 465] that was first observed

for dielectric haloscopes [431].

Given the above discussion, one can determine the signal-to-noise ratio in terms of ∆ω = ma−ωB
and fixed parameters. Since the applied magnetic field can be tuned experimentally, we numerically

optimize the sensitivity with respect to ∆ω. Qualitatively, moving away from ωB = ma by increasing

∆ω increases Re(µ−) (which decreases the thickness of each slab) and decreases Im(µ−)/Re(µ−)

(which increases the maximum number of layers). On the other hand, the increasing separation

between the Kittel frequency and the axion frequency eventually begins to suppress the form factor.

In the absence of other constraints, the optimal value of ∆ω is set by a trade-off between these effects.

In Appendix 5.10, we show analytically that for real ε and sufficiently high Q, the optimized

signal power scales as

Psig ∼
(
QωM
ma

)2

|B2
eff|A . (5.45)

The enhancement with ωM is simply due to the fact that a higher magnetization improves the

form factor. The unusual quadratic scaling with Q is also simple to understand; a larger quality
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Parameters Description Variable Value

Material Saturation magnetization MS 0.5 T

Magnetic quality factor Q 102

Permittivity ε 15

Expt. Slab area A 1 m2

e-fold scanning time te 1 year

Maximum number of layers Nmax 80

Maximum total material thickness Lmax 5 m

Maximum applied B field Bmax 10 T

Noise HEMT SQL

Physical temperature T 4 K 40 mK

Amplifier noise temperature Tamp 1 K

(
ma

2π × 4 GHz

)
ma

Table 5.1: Material, experimental, and noise parameters assumed when optimizing the experimental
setup (Fig. 5.5) and computing the sensitivity (Fig. 5.6) for a polycrystalline spinel ferrite multilayer.
The dielectric loss tangent is negligible in these materials, tan δε ≲ 10−4, and so the permittivity can
be approximated as real. For HEMT and SQL amplifiers, the physical temperatures correspond to
cryostat and dilution fridge cooling, respectively. The total noise temperature used in Eq. 5.43 is
Tn = T + Tamp.

factor reduces Im(µ−), and thereby improves both the resonant enhancement in the form factor

and increases the maximum possible number of layers. As a result, Eq. 5.45 can be reexpressed as

Psig ∝ QV , where V is the total volume of the experiment, as in other resonant setups.

We caution that in our discussion below, we will focus on a material for which Q is too small for

the approximations used to derive Eq. 5.45 to accurately apply. We also note that Eq. 5.45 cannot

be applied at sufficiently small axion masses, where the signal power will be further constrained by

an upper limit on the total slab thickness. Regardless, Eq. 5.45 does display the correct qualitative

dependence of the signal power on material properties.

Material Properties and Experimental Parameters

The best materials are those with high saturation magnetization MS , which sets the maximum

possible value of M0, and large magnetic quality factor Q. In addition, the permittivity ε must be

approximately real, as a large imaginary component would lower the screening length. In particular,

magnetic alloys cannot be used, as they have Im(ε) = σ/ω for a large conductivity σ. For such

materials, the screening length (i.e., the skin depth) would be well below the thickness of a single

slab at the microwave frequencies considered here.

We therefore choose to focus on ferrites, which have negligible conductivity and are widely

commercially available. The properties of these materials are well known, and discussed in detail in
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Figure 5.5: Numerically optimized values of the slab thickness and total thickness (left panel), form
factor and number of layers (middle panel), and applied external magnetic field (right panel), as a
function of the axion mass. The middle panel shows that the signal power, proportional to F2

−N
2, is

predominantly enhanced by the form factor at small ma and the number of layers at large ma. The
other panels show that a large total volume is only required at small ma, and a strong external field
is only required at large ma.

Appendix 5.10. To date, ferromagnetic haloscope experiments have exclusively used single crystal

yttrium iron garnet (YIG), as it has the highest known quality factor Q ∼ 104. However, YIG crystals

are extraordinarily difficult to grow [466], and currently YIG spheres and films can only be produced

individually at ∼ 1 mm scales. By contrast, polycrystalline spinel ferrites are mass-produced and

can be purchased at a per-kilogram cost over five orders of magnitude lower than YIG. Though they

have a relatively low quality factor Q ∼ 102, they possess a saturation magnetization MS twice as

large as that of YIG.

Thus, we will focus on polycrystalline spinel ferrites, since an experiment employing them can

benefit tremendously by the increased detector volume. The benchmark values we assume are shown

in Table 5.1 and discussed further in Appendix 5.10. We assume the material is fully magnetized,

so that M0 = MS . As for the other experimental parameters, we adopt a slab area A = 1 m2 and

e-fold scanning time te = 1 yr, similar to the MADMAX experiment. We allow a maximum external

magnetic field of Bmax = 10 T, require that the number of layers does not exceed Nmax = 80, and

cap the total thickness L = Nd of the slabs at Lmax = 5 m.

Experimental Sensitivity

For each axion mass, we numerically optimize the signal-to-noise ratio by varying ωB , which in turn

determines the form factor F−, number of layers N , slab thickness d, and sensitivity bandwidth

∆ωs. The results of the optimization are shown in Fig. 5.5, which shows how the setup qualitatively

changes as the axion mass is varied.

At small axion masses, ma ≲ 10−5 eV, the length of the setup is large, but it only requires a

weak applied magnetic field. In this regime, the number of layers is suppressed due to the constraint

L ≤ Lmax, and the sensitivity boost primarily comes from operating at small µ−, corresponding to
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a large form factor. Note that this implies the thickness of a single slab is much greater than the

spacing between slabs, so that L is approximately the total length of the multilayer setup. In this

regime, the experiment most closely resembles axion searches using tunable quasiparticle resonances,

such as TOORAD [448, 451] and ALPHA [117, 449, 450].

Increasing the axion mass increases the minimum value of |µ−| and therefore decreases the

maximum possible form factor. Thus, at large axion masses the sensitivity boost primarily comes

from having a large number of layers and is limited by the constraint N ≤ Nmax. For polycrystalline

ferrite, one can only use this many layers if the setup is operated well away from the resonance.

Numerically, we find ∆ω ≳ ωM in this regime, so that n− does not have sharp frequency dependence,

and the experiment most closely resembles the microwave dielectric haloscope MADMAX. Also

note that for ma ≳ 10−3 eV, our constraint Bmax = 10 T limits the size of B0, preventing resonant

enhancement of the form factor entirely. For axion masses near this upper limit, the required magnetic

field is large, but the total length of the setup is small, i.e., ≲ 1 cm.

For the parameter values we have chosen, the analytic approximation for the signal power in

Eq. 5.45 is only accurate in a narrow mass range centered near ma ∼ 10−5 eV. For larger axion masses,

we find numerically that the optimized signal power is an O(1) factor larger. In Appendix 5.10, we

also carry out the same computation for single crystal YIG, which we show has a sufficiently high Q

for the analytic results to work accurately. For YIG, the reach is slightly stronger, but the results

are qualitatively very similar.

The numeric values of d and L shown in the left-panel of Fig. 5.5 allow us to confirm that certain

corrections to our results are indeed negligible. First, we have treated ∇a as spatially uniform. This

mathematical assumption corresponds to the physical requirement that radiation from different slabs

interferes constructively, L≪ (ma vDM
)−1, which is indeed true here. Note that at large axion masses

we have
√
A ≳ (ma vDM

)−1, but this is acceptable since there is no requirement that radiation from

different parts of the same slab be emitted in phase. Second, we remind the reader that we have

only considered surface magnetization currents. In the beginning of this subsection, we noted that

for scalar µ, the volume magnetization current vanishes. However, it is in general nonzero for the

tensorial µ considered here, albeit suppressed by an additional gradient of the axion field. Thus, the

relative effect of the volume magnetization current is ∼ dma vDM
≪ 1, which is completely negligible.

Finally, the total noise temperature can be decomposed as Tn = Tth + Tamp + ∆T , where Tth

is due to thermal noise, Tamp is the effective noise temperature of the amplifier, and ∆T is due to

additional, reducible noise sources. By the fluctuation-dissipation theorem, thermal noise is sourced

from any part of the system that dissipates energy. This includes thermal radiation sourced from

the charges in the walls of the magnet and the thermally fluctuating spins in the multilayer, and

Johnson–Nyquist noise sourced from the resistance in the pickup circuit. However, when the entire

system is at the same physical temperature T , these contributions sum to Tth = T independently

of the details of the setup. As for the additional noise ∆T , it receives contributions from, e.g.,
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Figure 5.6: In solid green, we show the projected sensitivity at SNR = 2 to the axion-electron coupling
of a magnetized multilayer experiment based on detecting the radiation generated by the axion wind
induced magnetization current, with layers made of polycrystalline ferrite and either HEMT or SQL
amplifiers. All parameters assumed for the projections are listed in Table 5.1. We cut off these reach
curves at large axion masses when the required applied magnetic field exceeds Bmax = 10 T and
at small axion masses when the optimal thickness of a single layer exceeds Lmax = 5 m. In dashed
green and dashed blue, we show the maximum possible reach given noise-free detection of single
photon and magnon quanta, respectively (see Sec. 5.3.2 for more details). Astrophysical bounds
are as in Fig. 5.1, and the band for DFSZ axions and loop-induced couplings for KSVZ axions are
summarized in, e.g., Ref. [45].

nonthermalized magnetic impurities, vibrations of the multilayer or magnet, and Barkhausen noise

due to the relaxation of domain walls. However, these effects fall off rapidly above ∼ kHz frequencies,

and we expect they are subdominant at the GHz to THz frequencies and long integration times

relevant in this chapter [467, 468, 469, 470, 471, 472]. Thus, for this initial study we neglect ∆T .

In Fig. 5.6, we show the experimental sensitivity for various noise benchmarks, with corresponding

noise parameters shown explicitly in Table 5.1. For the line labeled “HEMT,” we have inferred an

amplifier noise temperature Tamp from manufacturer datasheets [473]. We also show a “standard

quantum limit” (SQL) benchmark with a lower physical temperature and a quantum limited amplifier.

In this case quantum noise is important, and the fluctuation-dissipation theorem implies that it

arises from a variety of sources, including quantum fluctuations in the pickup circuit voltage, and

spin-projection noise arising from the uncertainty in the transverse component of the multilayer

magnetization [474]. The details of the setup determine which of these effects contributes more to

the quantum noise seen by the amplifier, but the SQL itself always corresponds to taking Tamp = ma,

independent of these details. The detailed contributions of individual sources to the quantum noise
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do not affect this result, but may be important for detailed optimization of the detector, which we

defer to future work.

For concreteness, we set a sensitivity threshold by taking SNR = 2, though we note that this does

not have a definite statistical interpretation, as various O(1) factors have been dropped throughout

our analysis. Finally, the dashed line labeled “Single Photon” indicates a theoretical upper limit on

sensitivity; it shows axion couplings for which Psig tint = ma, corresponding to an average of a single

photon emitted within the integration time [475].

To illustrate the effect of the multilayer geometry, we can compare the photon power absorption

rate Psig in an optimized multilayer to the magnon power absorption rate Pmag in a uniform medium.

As shown in Sec. 5.4.2 and Appendix 5.9, Pmag is maximized when ωB = ma. When normalized to

the same volume V of material, we have

Pmag

Psig
=

2QωM L

(N F−)2
. (5.46)

For a setup employing direct readout of magnons, the sensitivity bandwidth is simply the ferromagnetic

linewidth ∆ωs ≃ ma/Q, which fixes the integration time as tmag
int = te/Q. Setting Pmag t

mag
int = ma

gives the line labeled as “Single Magnon” in Fig. 5.6. This represents the strongest possible sensitivity

of an experiment of equal volume but trivial bulk geometry. The fact that the single magnon

sensitivity is weaker than the single photon sensitivity shows that the magnon-polariton mode in an

optimized multilayer effectively couples more strongly to the axion field than an infinite-medium

magnon mode. Moreover, since these magnon-polaritons propagate out of the multilayer in the form

of electromagnetic radiation, it is much easier to detect them precisely.

Comments on Experimental Realization

We conclude this section with some additional comments on the experimental realization of such a

“magnetized multilayer” experiment. First, unlike the planned MADMAX experiment, the external

magnetic field here can significantly affect the medium’s properties, allowing strong sensitivity to a

very wide range of axion masses. Due to this wide mass range, the experimental implementation

is qualitatively different at each end. Referring to Fig. 5.5, at small masses (ma ≲ 10−5 eV) one

requires a large amount of material, but only a few layers and a weak external field. At larger masses

(ma ∼ 10−3 eV), a strong external field is required, but the entire stack is only a few centimeters

long.

Unlike many axion experiments, our concept never requires a magnetic field that is simultaneously

strong and large in volume, thus avoiding the need for expensive magnets; however, we do require the

magnetic field to be highly uniform. Also note that while MADMAX requires tangential magnetic

fields and thus a custom dipole magnet, we require a magnetic field normal to the slabs’ surfaces.

These can be produced by solenoidal magnets, which are more common and less expensive. In addition,
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while the signal in multilayer setups can be calibrated indirectly using reciprocity theorems [476, 477],

in our case an electron-coupled axion acts almost exactly like an oscillating transverse magnetic field,

so the response can also be calibrated by simply applying a real transverse magnetic field.

Since the sensitivity bandwidth ∆ωs is small, our setup must be tuned to scan across a substantial

range of possible axion masses. As we have noted below Eq. 5.43, a magnetized multilayer setup has

a somewhat smaller ∆ωs compared to a standard dielectric haloscope since the permeability varies

with frequency. However, this is compensated by the fact that there are two independent tuning

mechanisms. For fine adjustments, one can alter the refractive index of the material by changing

the applied magnetic field, which can be done quickly and precisely. For coarse adjustments, one

may instead adjust the spacing between the slabs, as planned for MADMAX [430]. This two-stage

strategy ensures that the amount of mechanical tuning required for our setup is never greater, even

in the regime Q≫ N .

There are a number of experimental details that we have neglected in this chapter, all of which

could be addressed in a more detailed analysis, along the lines of Refs. [478, 479]. For simplicity,

we have only considered transparent mode setups. These setups are analytically tractable, and

as discussed below Eq. 5.40 correspond to near-optimal form factors. However, other multilayer

geometries may be more flexible and effective in a real experiment; determining this will require

a detailed numeric optimization. Furthermore, we have treated the system as essentially one-

dimensional, neglecting finite size effects, and assumed the slab thickness and spacing is perfectly

uniform. Finally, we have approximated ∇a as spatially constant and have taken it to lie along the

plane of the slabs. In reality, the direction of ∇a is anti-aligned with the Galactic motion of the solar

system and thus sweeps over various directions throughout a sidereal day, incurring an O(1) penalty

to the average signal power. However, the signal also exhibits a predictable modulation, which can

help disentangle it from background. It is also important to understand the material properties in

detail. As discussed in Appendix 5.10, magnetic losses at the relevant cryogenic, low-power conditions

are somewhat uncertain and should be measured experimentally. Ideally, the permeability itself

could be measured as a function of frequency and applied field, as it entirely determines the relevant

response. We have also neglected the small magnetic anisotropy fields generated inside spinel ferrites,

which slightly affect the relationship between B0 and ωB . Finally, other materials, such as hexagonal

ferrites, could also yield good sensitivity at low cost. We defer investigation of these questions to

future work.

5.4 Absorption Into In-Medium Excitations

Absorption of electron-coupled axion dark matter produces a variety of in-medium excitations. In

analogy to the photoelectric effect, absorption through the axioelectric term gives rise to electronic

excitations. This process has been well-studied for non-spin-ordered targets, such as noble liquids [413,
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415, 414, 417, 420], semiconductors [420, 56, 421, 480], and spin-orbit coupled materials [55], which

target axions of mass ma ≳ 10 eV, 1 eV, and 1 meV, respectively.3 In spin-polarized targets,

electron-coupled axion dark matter can generate a wider range of excitations, such as meV-scale

phonons [58] and magnons [405, 52], electronic transitions between Zeeman-split levels [53], and

“nuclear magnons” in materials with strong hyperfine interactions [51].

In this section, we extend the results for two of these excitation channels. In Sec. 5.4.1, we revisit

the calculation of axion dark matter absorption into magnons. We derive the absorption rate using

the constitutive relations of classical electromagnetism, and show that it is determined by a magnetic

energy loss function, complementing previous quantum mechanical derivations [52, 405]. In Sec. 5.4.2,

we compute the axioelectric absorption rate in spin-polarized targets in two complementary ways,

and show that the result is parametrically different than in non-spin-polarized targets.

5.4.1 Classical Estimate of Absorption into Magnons

Spin-ordered targets support collective spin excitations known as magnons. Similar to phonons, the

energy scale of magnons is typically ∼ (1− 100) meV, making them useful in the search for scattering

of sub-GeV dark matter [406, 481], especially in models preferentially coupling to the electron spin.

These excitations have also been studied in the context of axion dark matter, since the wind coupling

allows an axion to be absorbed into a magnon [407, 409, 52, 405]. Pioneering work focused on the

absorption of an axion into the lowest magnon mode, sometimes referred to as the “Kittel mode,”

which can be tuned with an applied magnetic field [407, 409, 52]. However, gapped magnon modes

exist in any spin-ordered target with more than one magnetic ion in the unit cell and therefore

can be used even in the absence of an external magnetic field.4 A general formalism to understand

such axion interactions with spin-ordered targets, with and without an external magnetic field, was

developed in Ref. [405].

The axion absorption rate into magnons is typically computed (at least partially) quantum

mechanically. In particular, the dynamics of the spins are assumed to be governed by a Heisenberg-

like Hamiltonian. This Hamiltonian is diagonalized, which defines the magnon eigensystem, and then

coupled to the axion wind. This approach works for any spin-ordered target, and the absorption rate

depends on the model parameters of the Heisenberg-like Hamiltonian, which are usually determined

from a first-principles calculation. While this provides a starting point to understand general dark

matter interactions with spin, it introduces some uncertainty since the model parameters may be

difficult to measure directly. Therefore, it is useful to understand if specific calculations may be written

in terms of experimentally measurable properties, within the kinematic regime appropriate for the

incoming dark matter. Such an approach has been used for axioelectric absorption, and more recently

3For ma ≳ 1 meV, the axion-electron coupling also induces a+ e → e+ phonon transitions in non-spin-ordered
superconductors [54, 421].

4While the existence of gapped magnon modes makes the axion absorption process kinematically viable, the
usefulness of these modes is limited in simple magnets by selection rules. See Ref. [405] for more details.
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developed for light dark matter coupling via a kinetically-mixed dark photon [437, 436, 438, 439], as

well as for the absorption of electromagnetically-coupled axion dark matter in magnetized media [440].

Both of these dark matter interaction rates have been related to the “energy loss function” Im(−1/ε).

Here, we show that an analogous classical derivation can be used to derive the axion absorption rate

into magnons for a uniform bulk material in terms of a “magnetic energy loss function” Im (−1/µ),

where µ is the target permeability.

Generally, the axion dark matter absorption rate per unit target mass is determined by the

imaginary component of the axion field’s angular frequency ω [482, 483, 440],

R ≃ ρ
DM

ρ
T

Im
(
−ω2

)

m2
a

, (5.47)

where ρ
T

is the mass density of the target. The axion frequency can be evaluated by solving the

axion’s classical equation of motion,

(∂2 +m2
a) a = −gae ∂µ

(
Ψγµγ5Ψ

)
. (5.48)

Thus, the absorption rate is related to the imaginary component of the source term gae ∂µ
(
Ψγµγ5Ψ

)
.

Classically, this source term is the sum of the contributions from each individual electron in the

target, which we define as its “expectation value,”

gae
〈
∂µ
(
Ψγµγ5Ψ

)〉
≃ gae

e

∑

i

(
(∂tJi) · ŝi

)
+
gae
µB

∇ ·M , (5.49)

where the classical expectation value of the electron axial current Ψγµγ5Ψ was evaluated using the

single-particle classical mapping of Eq. 5.101. In the first term of Eq. 5.49, the subscript i indexes the

individual electrons, such that Ji ≡ evi/V is the single particle current density with V the target

volume, and ŝi is the direction of the electron spin. In the second term, µB is the Bohr magneton

and M =
∑
iMi is the total magnetization density of the target.5 The first term is dominant for

electronic excitations via the axioelectric effect and will be considered in detail in Sec. 5.4.2. The

second term governs absorption via the axion wind and will be the focus here.

As stated in Eqs. 5.18 and 5.24, the axion wind electron coupling produces an effective magnetic

field Beff which induces a magnetization Ma = (1 − µ−1)Beff. This magnetization contributes to the

second term of Eq. 5.49, which becomes

gae
µB

∇ ·M = −
(gaema vDM

µB

)2 (
1 − q̂ · µ−1 · q̂

)
a , (5.50)

5Since M enters the axion absorption rate and the usual constitutive relationships of electromagnetism in the same
way, we can perform a trivial sum rather than explicitly writing down the contributions from each electron in Eq. 5.49.
However, this is not the case for the first term in Eq. 5.49, and care must be taken in understanding the individual
electronic response.
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where q̂ is the unit vector aligned with the axion gradient. To determine the absorption rate R

in Eq. 5.47, we substitute Eq. 5.50 into Eq. 5.48, Fourier transform, and evaluate the imaginary

component of the axion frequency, which yields

R ≃
(gae vDM

µB

)2 ρDM

ρ
T

q̂ · Im
(
− µ−1

)
· q̂ . (5.51)

The last factor in Eq. 5.51, related to the imaginary part of the permeability, is the magnetic analogue

of the so-called “energy loss function,” previously identified within the context of dark matter

scattering and absorption [436, 437, 438, 439, 440]. This implies a direct connection between µ and

the magnon eigensystem derived previously in Ref. [405], which is worth exploring more generally.

Along these lines, we thus anticipate that µ also dictates the dark matter-magnon scattering rate,

originally derived in Ref. [406], exploration of which we leave to future work.

While, µ is experimentally measurable in principle, data is typically fit to the Landau–Lifshitz

model of Eq. 5.34 (see Appendix 5.10 for details). This model only accounts for the Kittel mode

resonance. In particular, absorption into the Kittel mode is controlled by 1/µ−, since q̂ · µ−1 · q̂ ≃
|ê− · q̂|2/µ− for ma ≃ ωB, where ê− is the unit vector of the minus circular polarization. From

Eq. 5.35, the magnetic energy loss function for µ− is given by

Im

(−1

µ−

)
=

ma ωM/2Q

(ma − ωB)2 + (ωB/2Q)2
. (5.52)

When ma ≃ ωB and q̂ is perpendicular to the background magnetization, Eq. 5.51 reduces to

R ≃ 2 (gae vDM)2
ρDM

ρ
T

Qnspin
ma

, (5.53)

where we defined the spin density nspin = M0/µB. This parametrically matches the magnon

absorption rate computed in Ref. [405]. Another classical derivation of this result is presented in

Appendix 5.9, which shows that it can be associated to the work done by rotating the magnetic

dipoles in the material against the field B + Beff. While we have neglected boundary conditions

throughout this section, it is also possible to include finite volume effects as was done in Ref. [484].

5.4.2 Absorption into Electronic Excitations

In this section, we show that the axioelectric absorption rate into electronic excitations is given by

R ≃
(gaema

e

)2 ρ
DM

ρT

×





3 Im [ ε(ma) ] (unpolarized target)

Im

[ −1

ε(ma)

]
(polarized target, spin splitting ≫ ma) ,

(5.54)
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where ε(ma) is the permittivity (i.e., dielectric function) evaluated at energy ω = ma and zero

momentum-transfer, appropriate for nonrelativistic dark matter. The first line of Eq. 5.54 has been

derived previously in, e.g., Refs. [413, 56, 421]. The second line is a new result and applies to

completely spin-polarized targets with a large energy splitting between electron spin states.

The key difference between the two cases in Eq. 5.54 is that R ∝ 1/|ε(ma)|2 in polarized targets

and thus is typically suppressed.6 This has a simple physical interpretation. The axioelectric force

drives each electron along the direction of its spin. In a spin-polarized target, each electron is thus

driven in the same direction, generating a coherent electromagnetic field which backreacts on the

electrons, screening the axion’s effect. By contrast, in an unpolarized target the electrons respond

incoherently, and their motion does not produce any net electromagnetic effects.

Though this screening reduces the signal rate, it can be useful for background rejection, since

counting experiments are currently limited by large dark counts [485]. More specifically, the act of

comparing polarized and unpolarized targets allows the dark count rate to be directly measured

and separated from a potential signal. Ideally, a signal then only needs to overcome fluctuations in

the background rate to become detectable, allowing the sensitivity to increase with larger exposure

(which is not the case when background systematics dominate).

Below we derive Eq. 5.54 in two complementary ways. In Sec. 5.4.2, we use the constitutive

relationships of classical electrodynamics, as was done in Sec. 5.4.1. In Sec. 5.4.2, we compute

the absorption rate quantum mechanically in terms of self-energy diagrams using the formalism of

Refs. [483, 421, 55, 486]. This more rigorous derivation produces correct O(1) factors, and allows us

to generalize the second line of Eq. 5.54 to arbitrary spin splitting in Eq. 5.83.

Classical Derivation

The axioelectric absorption rate into electronic excitations is dominantly controlled by the first term

in Eq. 5.49. In order to evaluate this term, we must determine the current density of each electron Ji.

We do this by using the classical electronic equation of motion, me ẍi = Fi, where xi and Fi are the

position of and total force acting on the ith electron, respectively. The internal forces are packaged

into their contribution to the electric susceptibility χei, defined such that in the presence of some

external electric field E, the equation of motion becomes Ji = χei ∂tE. This form also makes it clear

that χei are related to the dielectric function as
∑
i χei = ε− 1, since this gives the usual constitutive

relation
∑
i Ji = (ε− 1) ∂tE. Note that in writing this, we have assumed that the target medium is

sufficiently large (i.e., larger than the decay length in medium) so that boundary conditions can be

neglected [450, 449].

In the presence of the axion field, we must also account for the effective electric of Eq. 5.20 in

the electron’s equation of motion, such that Ji = χei
(
∂tE + (∂tEeff) ŝi

)
. Here, the electric field E

incorporates the backreaction from any coherent motion of charges induced by the axion field. From

6However, it can be enhanced when |ε(ma)| ≪ 1, corresponding to ma close to an in-medium resonance.
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the long-wavelength limit of Ampère’s law (or alternatively Eq. 5.26), this field is ∂tE ≃ −JPa /ε,

where JPa = (∂tEeff)
∑
i χei ŝi is the total polarization current induced by the axioelectric term, as in

Eq. 5.27. As an aside, note that by comparing this form of JPa to that given previously in Eq. 5.27,

we arrive at a concrete expression for the spin-polarized contribution to the permittivity, denoted as

εσ in Sec. 5.3. In particular, for a material with a net polarization along the ŝ direction, we have

εσ ≡ 1 +
∑

i

χei ŝi · ŝ ≤ ε , (5.55)

so that εσ ≃ ε for a fully spin-polarized medium.

Now, using the result for the backreaction field E in the expression for Ji, we have that the

single-particle current is

Ji ≃ χei (∂tEeff)
(
ŝi −

1

ε

∑

j

χej ŝj

)
= χei (∂tEeff) ×




ŝi (unpolarized target)

ŝ/ε (polarized target) ,
(5.56)

where in the first equality, the first term is from the direct axion interaction with the ith electron,

and the second term is due to the electric backreaction from the collective motion of many electrons.

In the second equality, we used that if electron spins of the same χei are oppositely paired, as in an

unpolarized target, then
∑
i χei ŝi = 0, and if the target is instead completely spin-polarized, then

ŝi = ŝ and
∑
i χei ŝi = (ε− 1) ŝ. From Eq. 5.56, we then have that the first term on the right-hand

side of Eq. 5.49 is

∑

i

(∂tJi) · ŝi = (ε− 1) ∂2tEeff ×





1 (unpolarized target)

1/ε (polarized target) ,
(5.57)

where the second line is in agreement with Eq. 5.29. From this point, the absorption rate R can

again be computed using Eq. 5.47. The quantity Im(−ω2) is determined by substituting Eq. 5.57 in

Eq. 5.49, and then using Eq. 5.48. This recovers the main result of Eq. 5.54, but without the factor

of three for unpolarized targets.

This mismatch occurs because the classical picture provides an incomplete description of quantum

spins. More precisely, the other classical arguments in this chapter gave correct numeric factors

because they were linear in quantum operators and therefore were guaranteed to match quantum

results in expectation by the Ehrenfest theorem. By contrast, since Ji ∝ ŝi for unpolarized targets,

the classical treatment gives an answer proportional to ŝi · ŝi = 1, while the analogous quantum

mechanical treatment would give ⟨σi · σi⟩ = 3. For the polarized case, there is no such discrepancy

because the mean spin polarization ŝ is inherently a classical vector and is treated as such in a fully

quantum calculation. Finally, we note that an alternative classical derivation of the axioelectric

absorption rate for a spin-polarized target is presented in Appendix 5.9, which shows that it can be
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associated to the work done by the force on the electrons, proportional to E + Eeff.

Matrix Element Calculation

While the derivation in Sec. 5.4.2, which is based on classical electrodynamics, elucidates some of the

underlying physics, a quantum mechanical derivation makes direct contact with electronic states in

the system and is therefore necessary for first-principles calculations. Moreover, it provides a general

framework to understand any dark matter absorption rate into electronic excitations, which can then

be simplified further by including assumptions about the target. The tradeoff is that this derivation

is more technically involved than in Sec. 5.4.2. Below, we will use the self-energy formalism recently

applied to dark matter absorption in Refs. [483, 487, 488, 489, 421, 55, 486] and refer the reader

to Refs. [16, 421] for an introduction. We will adopt absorption kinematics throughout, i.e., that

the dark matter is nonrelativistic with ∇a≪ ȧ (or, in other words, that the momentum k satisfies

k ≪ ω).

To calculate the absorption rate R, we note that the presence of interactions mixes the free axion

and photon dispersion relations. In the language of self-energies, the mixed dispersion relation of an

interacting photon with polarization λ in Lorenz gauge and an axion is given by (see, for example,

Ref. [483]) 
ω

2 − k2 − Πλ
AA −Πλ

aA

−Πλ
Aa ω2 − k2 −m2

a − Πaa




Aλ
a


 = 0 , (5.58)

where Πaa is the axion self-energy, Πλ
aA = −eλµ Πµ

aA is the mixed axion-photon self-energy projected

onto the photon polarization vector eλµ, and Πλ
AA = −eλµ Πµν

AA e
λ
ν is the photon self-energy. In

the absence of the axion, the photon self-energy simply maps onto the normal dispersion relation

for the photon, i.e., n2λ ω
2 = k2 where nλ is the refractive index for the λ polarization, giving

Πλ
AA = ω2 (1 − n2λ). The fields a and A refer to the free axion and photon states, respectively (i.e.,

the states defined in the absence of interactions between the axion and the photon).

To understand what an “axion” or “photon” looks like inside a medium, we must diagonalize the

mixed dispersion relations in Eq. 5.58, which determines the axion-like and photon-like propagation

eigenstates (sometimes also referred to as mass eigenstates). Due to the small axion coupling, the

propagation states mostly correspond to the free axion and photon eigenstates, albeit with small

admixtures of the opposing interaction states. At lowest nontrivial order (quadratic) in the coupling,

we find the dispersion relations

ω2
λ ≃ k2 +





Πλ
AA − Πλ

aA Πλ
Aa

m2
a − Πλ

AA

(photon-like)

m2
a + Πaa +

∑

λ

Πλ
aA Πλ

Aa

m2
a − Πλ

AA

(axion-like) .

(5.59)
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Analogous to the classical computation of the previous section, we must evaluate the imaginary

component of the frequency for the propagating axion-like state in order to find the energy absorbed

from the axion. Such a procedure gives, for any axion interaction and target electronic structure, the

absorption rate

R ≃ − ρ
DM

ρ
T
m2
a

Im

(
Πaa +

∑

λ

Πλ
aA Πλ

Aa

m2
a − Πλ

AA

)
. (5.60)

At the onset, Eq. 5.60 can be simplified if we assume that the target is isotropic. In this limit, the

photon self-energy is independent of polarization, Πλ
AA = ΠAA, and the sum over the photon states

can be removed using the completeness relation,
∑
λ e

λ
µ e

λ
ν = −gµν . This reduces Eq. 5.60 to

R ≃ − ρDM

ρ
T
m2
a

Im

(
Πaa +

Πi
aAΠi

Aa

m2
a − ΠAA

)
. (5.61)

These self-energies can then be computed diagrammatically using the relevant interactions

present in the nonrelativistic Lagrangian [421] (ignoring subdominant terms dependent on the axion

momentum),

LNR ⊃ −i e
me

A · ψ† ∇ψ +
e2

2me
A2ψ†ψ − igae

ȧ

me
ψ† σ · ∇ψ + gae

eȧ

me
A · ψ† σ ψ , (5.62)

where the first two terms are contributions from nonrelativistic QED, and the last two are from the ax-

ioelectric interaction, L ⊃ gae ȧψ
† π ·σ ψ/me. The self-energies in Eq. 5.61 are given diagrammatically

by

kµ−→
Πaa : a

(5.63)

kµ−→
ΠaA : a A +

kµ−→
a A

(5.64)

kµ−→
ΠAA : A A +

kµ−→
A A .

(5.65)
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Following the formalism in Ref. [421] these diagrams evaluate to

Πaa = g2ae
ω2

m2
e

Π̄σ·p,σ·p (5.66)

Πi
aA = −ie gae

ω

me

(
Π̄σi − 1

me
Π̄σ·p,pi

)
(5.67)

ΠAA = − e2

me

(
Π̄1 −

1

3me
Π̄pi,pi

)
, (5.68)

using the Feynman rules determined by the nonrelativistic Lagrangian in Eq. (5.62), and noting that

Πi
Aa = −Πi

aA. The quantities Π̄ contain all the information about the target electronic structure and

for operators O (such as momentum “pi” or identity “1” operators) are defined as

Π̄O1,O2 = − 1

V

∑

I I′

fI − fI′

ω − ∆ωII′ + i δII′
⟨I|O1|I ′⟩ ⟨I ′|O2|I⟩ (5.69)

Π̄O = − 1

V

∑

I

fI ⟨I|O|I⟩ , (5.70)

where I and I ′ index the electronic states |I⟩ with energy ωI , ∆ωII′ = ωI′ −ωI , δII′ = δ sign(ωI′ −ωI)
with δ the width of the electronic states, and V is the target volume. The filling fraction satisfies

fI = 1 if a state is occupied and fI = 0 otherwise.

We will focus on targets where the states can be indexed by a band number b and spin quantum

number s ∈ {↑, ↓}, such that a state label is given by I = {b, s}. This is possible when spin is a

good quantum number and allows the state to be split into spatial and spin degrees of freedom, i.e.,

|I⟩ = |b⟩ ⊗ |s⟩. We will find it useful to introduce self-energies with a spin index, such that Eq. 5.69

generalizes to

Π̄ss′

O1,O2
= − 1

V

∑

b b′

fb s − fb′ s′

ω − ∆ωbs b′s′ + iδbs b′s′
⟨b, s|O1|b′, s′⟩ ⟨b′, s′|O2|b, s⟩ (5.71)

Π̄s
O = − 1

V

∑

b

fb,s ⟨b, s|O|b, s⟩ . (5.72)

If the target is spatially isotropic, i.e., Π̄ss′

pi,pj = Π̄ss′

pi,pi δ
ij/3, the self-energies in Eq. 5.68 can be

simplified further, to

Πaa = g2ae
ω2

m2
e

(
1

3

(
Π̄↑↑
pi,pi + Π̄↓↓

pi,pi

)
+

2

3

(
Π̄↓↑
pi,pi + Π̄↑↓

pi,pi

))
(5.73)

Πi
aA = −ie gae

ω

me
ŝi
(

Π̄↑
1 − Π̄↓

1 −
1

3me

(
Π̄↑↑
pi,pi − Π̄↓↓

pi,pi

))
(5.74)

ΠAA = − e2

me

(
Π̄↑

1 + Π̄↓
1 −

1

3me

(
Π̄↑↑
pi,pi + Π̄↓↓

pi,pi

))
, (5.75)



CHAPTER 5. AXION-FERMION COUPLINGS 126

where ŝi = ⟨s|σi |s⟩ is the expectation value of spin (as used in, e.g., Eq. 5.20). Note that since

Π̄s
1 is simply the expectation value of the identity operator, it is straightforwardly evaluated as

Π̄s
1 = −Ns

e /V , where Ns
e is the number of electrons in spin state s.

Before computing the absorption rate in a spin-polarized target, we reproduce the standard result

for a target with no spin polarization. In the absence of a net spin polarization, fbs = fb (i.e., if a

spin-up state is filled, then so is the corresponding spin-down state). Furthermore, we assume that

the energy levels are spin independent, ωbs ≃ ωb. For a target satisfying these assumptions, we have

Π̄ss′

O1,O2
= Π̄O1,O2

, and therefore Eqs. 5.73−5.75 simplify to

Πaa = 2g2ae
ω2

m2
e

Π̄pi,pi (5.76)

Πi
aA = 0 (5.77)

ΠAA = −2e2

me

(
Π̄1 −

1

3me
Π̄pi,pi

)
. (5.78)

Notice that since Πi
aA = 0, there will be no mixing or screening effects; the photon and axion do

not directly interact, which leaves the propagation eigenstates simply as the free states (this reflects

the absence of any electromagnetic backreaction that screens the signal in unpolarized targets, as

discussed in the classical derivation above). Substituting these self-energies into Eq. 5.61 gives

R = −ρDM

ρ
T

2g2ae
m2
e

Im
(
Π̄pi,pi

)
= −ρDM

ρ
T

3g2ae
e2

Im
(
ΠAA

)
=
ρDM

ρ
T

3g2aem
2
a

e2
Im
(
ε(ma)

)
, (5.79)

where in the last step we used ΠAA(ω) ≃ ω2
(
1− ε(ω)

)
for k ≪ ω, in agreement with the first case of

Eq. 5.54.

A similar calculation can be performed to determine the absorption rate for a target that is

“super-polarized,” e.g., one where all the electrons are polarized in the spin-up ↑ state. In this case,

fb,↓ = 0, for all b, and fb,↑ = 1 when ωb↑ < 0 (corresponding to the electrons below the Fermi surface).

In this limit, some of the self-energies simplify, such as Π̄↓
O = 0 and Π̄↓↓

O1,O2
= 0. Additionally, the

contribution from Π̄↓↑
pi,pi to Im (Πaa) is negligible in the small width limit, since there are no allowed

↓ to ↑ transitions in a spin-up super-polarized target. Therefore, in this case, the self-energies in

Eqs. 5.73−5.75 reduce to

Πaa = g2ae
ω2

3m2
e

(
Π̄↑↑
pi,pi + 2 Π̄↑↓

pi,pi

)
(5.80)

Πi
aA = −ie gae

ω

me
ŝi
(

Π̄↑
1 −

1

3me
Π̄↑↑
pi,pi

)
(5.81)

ΠAA = − e2

me

(
Π̄↑

1 −
1

3me
Π̄↑↑
pi,pi

)
. (5.82)

Unlike the unpolarized case, the polarized spins do induce a mixing between the axion and the photon
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(consistent with the expectation of screening generated by an electrical backreaction, as discussed

in the classical derivation above). These self-energies can be simplified further by noticing that

Πi
aA = −igaema ŝ

i ΠAA/e, which can be used in the second term of Eq. 5.60. Additionally, note that

Im (Πaa) has two contributions in Eq. 5.80. The first term corresponds to where the spin is fixed as ↑
which incorporates the classical force described in Sec. 5.2.2. The second term instead corresponds to

a spin-flip transition, which does not have a classical analogue. The first term can be simply related

to the self-energy of the photon ΠAA which is consistent with the picture of the axioelectric effect as

a spin-coupled effective electric field (i.e., when all spins are polarized one can simply relate charges

and spins and so electrons should have a similar effect on both the axion and photon). However, this

statement does not hold for the spin-flip term. The absorption rate is then given by

R ≃ g2ae
ρ

DM

ρT

(
m2
a

e2
Im

( −1

ε(ma)

)
+

2

3m2
e

Im

(
− Π̄↑↓

pi,pi

))
, (5.83)

where the first term matches the result in Sec. 5.4.2, as expected. Since the second term includes spin-

flip transitions, it is natural that it could not be incorporated in the classical derivation. Furthermore,

in the limit of large spin splitting, when the spin-flip transitions are kinematically unavailable,

Im
(
−Π̄↑↓

pi,pi

)
→ 0, and the absorption rate reduces to Eq. 5.54. Note that the dependence on

Im(−1/ε) comes about due to the mixing of the axion with the photon and gives the same functional

form as a direct electromagnetically-coupled axion. Thus, while the couplings are different in either

case, the resulting physics is similar in the spin-polarized limit. In fact, we can also rederive the

form of the axion-induced E-field by considering the basis that diagonalizes the dispersion relation of

Eq. 5.58 to leading order, which we will label as (Ã, ã). To convert from propagation basis to the

interaction (A, a) basis, we can use the rotation matrix


A
a


 ≃


 1 ΠaA

ΠAA−m2
a

−ΠaA

ΠAA−m2
a

1




Ã
ã


 . (5.84)

From this matrix, and noting that at lowest nontrivial order the magnitudes of a and ã are the same,

we see that axion-photon mixing induces an E-field in an infinite medium of the form

Ei ≃ iωAi ≃ iω
Πi
aA

ΠAA −m2
a

ã ≃ −i Πi
aA

ε

a

ω
. (5.85)

An alternative definition of the spin-polarized contribution to the permittivity εσ can then be obtained

by equating Eqs. 5.85 and 5.28,

εσ ≡ 1 +
e2

ω2me

(
Π̄↑

1 − Π̄↓
1 −

1

3me

(
Π̄↑↑
pi,pi − Π̄↓↓

pi,pi

))
. (5.86)

For “super-polarized” spins, we can use Πi
aA = −i gaema ŝ

i ΠAA/e to explicitly show that εσ = ε;
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conversely, if the spins are unpolarized, then εσ = 1, as mentioned previously. Note that this form

for εσ is analogous to the classical sum over spin weighted susceptibilities in Eq. 5.55 where the

contributions to spin-up and spin-down states are added electron by electron.

While the derivation incorporates the entirety of electronic states, further simplifications can be

made when the core electrons are much more tightly bound than the valence electrons, as in typical

solids. In this case, the core electrons’ contributions to the self-energies are negligible, due to their

suppressed electron propagator in Eq. 5.69. This can be understood physically from the dielectric

function, which encodes the target electronic response to an impinging electric field. If the core

electrons are very tightly bound, then they respond less efficiently to an electric field. If the electronic

response can be approximated by only including the least bound electrons, then only these electrons

need to be spin-polarized for the “super-polarized” approximation discussed previously to hold. This

is a much weaker, and more realistic, condition than requiring every electron to be spin-polarized.

5.5 Dipole Moments and Energy Shifts

In this section, we discuss two cases in which simple parametric estimates can yield misleading results.

In Sec. 5.5.1, we show how one can use field redefinitions to work in a Hamiltonian lacking manifest

axion shift symmetry. This leads to apparent electric dipole moment effects, which are actually

spurious. In Sec. 5.5.2, we show that the axioelectric atomic energy level shift is smaller than the

naive expectation.

5.5.1 Spurious Electric Dipole Moments

The axion-fermion coupling in Eq. 5.2 has an approximately equivalent nonderivative form, which

has been the subject of some recent confusion. Let us first review how the nonderivative coupling is

derived. In the original Lagrangian,

L ⊃ Ψ(i/∂ −mf )Ψ + gaf (∂µa) Ψγµγ5Ψ , (5.87)

one can perform a chiral redefinition of the fermion field, Ψ → e−igafaγ
5

Ψ. This yields

L ⊃ Ψ(i/∂ − e2igafaγ
5

mf )Ψ −
q2f

8π2
gaf aFµν F̃

µν , (5.88)

where the derivative coupling has been rotated away. The last term in Eq. 5.88, which arises due

to the chiral anomaly, shifts the axion-photon coupling; it affects computations of loop-induced

processes but will be irrelevant to the physical signatures considered in this chapter. Since these two

Lagrangians are related by a field definition, they must yield precisely the same S-matrix elements

and thus the same physical predictions [490, 491]. While it may naively appear that Eq. 5.88 implies
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the presence of physical effects even for time- and space-indendent axion fields, a(x, t) = a0, this

cannot be the case, as the derivative coupling in Eq. 5.87 would simply vanish exactly.

Truncating the exponential in Eq. 5.88 at O(gaf ) and dropping the anomaly term yields a

nonderivative interaction

L ⊃ −2mf gaf aΨiγ5Ψ . (5.89)

As shown in Appendix 5.11, it results in an alternative low-energy Hamiltonian for the fermion of

the form

Halt ≃
π2

2mf
+ qf ϕ− qf

2mf
B · σ − gaf (∇a) · σ − gaf

4mf
{ȧ,π · σ} +

qf gaf
2mf

aE · σ . (5.90)

Compared to the original Hamiltonian of Eq. 5.15, Eq. 5.90 has an axioelectric term with coefficient

smaller by a factor of two, as well as a “nonrelativistic EDM” term proportional to a that seems to

violate the axion’s shift symmetry.

The resolution of this paradox is that the two Hamiltonians describe exactly the same physics, but

differ in their labeling of position states. To see this explicitly, note that the chiral field redefinition

of Ψ modifies the nonrelativistic field ψ, defined in Eq. 5.10, by a momentum-dependent phase factor,

ψ → ψ − igaf a ψ̃ ≃ exp

(
− igaf aσ · π

2mf

)
ψ, (5.91)

where we used Eq. 5.13. This implies a shift of the particle’s coordinate position by ∆x = gaf aσ/2mf .

While the original Hamiltonian in Eq. 5.15 describes the fermion using a position operator that

coincides with its center of charge, in the alternative Hamiltonian of Eq. 5.90 it is displaced from the

center of charge by ∆x, thereby leading to an EDM of d = −q∆x. In other words, the apparent

dependence on a is purely an artifact of the description. As we discuss in detail in Appendix 5.11,

the physical equivalence of these Hamiltonians is completely general and occurs because they can

be related by a unitary transformation generated by the Hermitian operator S ∝ {a,σ · π}. While

calculations of experimental observables using the alternative Hamiltonian may contain a-dependent

intermediate quantities, they must drop out of the final result.

In particular, electron EDM experiments measure the coefficient d of the full relativistic EDM

operator (d/2) Ψγ5σµνΨFµν , where σµν ≡ [γµ, γν ] /2, which reduces to −dσ ·E in the nonrelativistic

limit [492]. Several recent works [426, 47, 427] have claimed extremely strong limits on gae by

implicitly assuming that these EDM experiments constrain the coefficient of σ ·E, which carries an

a-dependent contribution in Eq. 5.90. This is incorrect, because the operator −dσ ·E produces no

O(d) energy level shift by Schiff’s theorem [261]. Instead, the signal from a true EDM arises entirely

from its relativistic effects, which are not shared by the apparent EDM induced by an axion field. As

discussed in detail in Appendix 5.11, for a constant axion field, the apparent axion-induced EDM is

spurious, and thereby does not shift energy levels or give rise to any other physical effects. These
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cancellations, which seem mysterious at the Hamiltonian level, arise from the axion’s non-manifest

shift symmetry.

On the other hand, a time-varying axion field can lead to physical effects in EDM experiments,

but they are suppressed at low ma by the small ratio of the axion mass to typical atomic energy

scales. These effects are most straightforward to calculate with the derivative coupling, since

the nonrelativistic EDM term lacks an explicit axion time derivative. Ref. [493] found that for

nonrelativistic electrons bound in an atom, the leading energy shift linear in the external electric field

is suppressed by O(m2
a/Ry2), where the Rydberg constant Ry = α2me/2 gives the scale of electronic

energy levels. As a result, the sensitivity of EDM searches to the axion-electron coupling is much

weaker than existing astrophysical bounds. By contrast, two recent works [428, 429] missed this

suppression factor, thereby overestimating the sensitivity of EDM experiments by many orders of

magnitude. As explained further in Appendix 5.11, such overestimates can be avoided by taking care

to compute the relevant physical observables for each experiment.

5.5.2 Suppressed Shifts of Electronic Energy Levels

The axion-electron coupling also shifts electronic energy levels in the absence of external fields. The

leading-order contributions to these shifts are from the axion wind, Hwind = −gae (∇a) · σ, and

axioelectric, Hae = −(gae/me) ȧπ · σ, terms in the nonrelativistic Hamiltonian of Eq. 5.15. Thus,

to first order in perturbation theory, a naive estimate for the energy level shifts to an electronic

state is ∆Ewind ≃ ⟨ψ|Hwind |ψ⟩ ∼ gae |∇a| and ∆Eae ≃ ⟨ψ|Hae |ψ⟩ ∼ gae ȧ ve, where ve ∼ Zeff α is

the characteristic electron velocity bound to an ion with effective charge Zeff.

The above estimate for the axion wind energy level shift is parametrically correct and is used

to infer the reach of atomic clock experiments. However, we illustrate here that the effect of the

axioelectric term is parametrically overestimated. To understand why, consider the leading-order

terms in the nonrelativistic electron Hamiltonian, H0 = π2/2me + V (x), where the spin-independent

potential V (x) includes, e.g., the electrostatic potential energy. For electronic states governed by

this Hamiltonian, π = ime [H0,x] and thus

∆Eae = ⟨ψ|Hae|ψ⟩ = −gae
me

ȧ ⟨ψ|π · σ |ψ⟩ = igae ȧ ⟨ψ|x · [H0,σ] |ψ⟩ = 0 , (5.92)

such that the naive leading-order energy level shift from the axioelectric term vanishes, where in

the last equality we used that H0 commutes with the spin operator, by definition. ∆Eae can be

intuitively understood as the work done by the axion effective electric field. To see this, note that in

the Heisenberg picture and using the Heisenberg equation of motion for the spin operator, ∆Eae can

be rewritten as ∆Eae = −e ⟨xH · Êeff⟩, where Êeff ≡ −(gae/e) ȧ σ̇H , in analogy with Eq. 5.20. Hence,

if the spin orientation is fixed, then Eq. 5.92 holds.

Instead, any energy level shift from the axioelectric term must arise from higher-order contributions
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to H0 that break the derivation in Eq. 5.92. For example, the relativistic kinetic energy correction

shifts [H0,x] so that it is no longer proportional to π, while the electrons’ spin-orbit or spin-spin

interactions contribute to [H0,σ]. All of these terms are suppressed by v2e relative to H0, leading

to the parametric estimate ∆Eae ∼ gae ȧ v
3
e , which is smaller than the naive estimate by a factor

of α2 ∼ 10−4 for electrons with Zeff ∼ 1. For light elements, this suppresses the projected reach

in Ref. [46], which used the naive estimate discussed previously; however, it can be alleviated for

very heavy atoms, with Z ≫ 1. Future calculations of this energy shift, such as those relevant for

Ref. [424], must be careful to account for these suppressions, as well as including any contributions

from the vector potential eA when computing ⟨ψ|π · σ|ψ⟩.

5.6 Outlook

The direct coupling of axion dark matter to Standard Model fermions leads to new experimental

signatures. We have provided a firm theoretical foundation in Sec. 5.2 that clarifies the nature of

these signatures, thereby resolving some existing disagreements in the literature in Sec. 5.5. We have

also identified several new experimental strategies, focusing predominantly on the axion-electron

coupling. Among these, the magnetized multilayer experiment discussed in Sec. 5.3.2 appears to

be the most promising. Like previous ferromagnetic haloscope concepts, it relies on detecting the

radiation emitted from the magnetization current induced by the axion wind torque on electron

spins. The enhanced sensitivity of our setup comes from a combination of various factors: the use of

inexpensive polycrystalline ferrite materials enables a much larger detector volume and a multilayer

geometry enhances the effective coupling to the axion field. As a result, orders of magnitude of new

parameter space can be explored with existing technology, for axion masses ranging from µeV to

meV.

If nearly background-free single photon detectors are developed, they would enable magnetized

multilayers to fully explore the DFSZ QCD axion model space when the abundance is set by the

well-motivated post-inflationary misalignment mechanism [494, 495, 496, 497, 498, 499, 500, 501].

Single photon detection for frequencies in the (1 − 100) µeV range has recently seen promising

advances using, e.g., Rydberg atoms and superconducting qubits, though both technologies are

relatively new and not background free [502, 503]. For higher frequencies, near a meV, transition edge

sensors and kinetic inductance detectors can be used but currently suffer from large dark counts [504].

In future work, we will explore further refinements in determining the sensitivity of a magnetized

multilayer haloscope. This includes a detailed numerical analysis that explores optimal tuning and

effects from the axion wind’s O(1) daily modulation. More generally, enhancing the axion’s effective

coupling to collective excitations in a multilayer geometry by operating slightly off resonance may

also prove useful for other experiments, such as TOORAD [451].

We also plan on further exploring the findings of Sec. 5.4.1, which showed that the axion absorption
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rate into spin excitations can be inferred directly from measurements of the magnetic energy loss

function Im(−1/µ), circumventing the need for a detailed microscopic model of magnetic materials.

In particular, it would be interesting to expand this result to more general spin-coupled absorption

and scattering of particles, which would simplify the formalism needed for dark matter searches, by

connecting the signal rate directly to experimentally measurable parameters.

Although we have focused almost exclusively on the axion-electron coupling throughout most

of this chapter, many of our results also translate to the axion-nucleon coupling. In particular,

the mechanical resonators mentioned in Sec. 5.2.3 would be sensitive to comparable values of the

axion-nucleon coupling, albeit only if O(1) nuclear spin-polarization can be achieved. Furthermore,

the magnetization current discussed in Sec. 5.3.2 also exists for nucleon couplings, but is suppressed

by the small magnitude of nuclear magnetic dipole moments. However, both of these issues may be

alleviated in materials with strong hyperfine interactions between nuclear and electronic spins [51].

There are also a number of experimental concepts we have not considered in detail. In Sec. 5.2.3,

we discussed how the axion wind may excite toroidal modes in mechanical resonators, which could

lead to competitive sensitivity in the kHz − MHz frequency range not covered by existing torsion

pendulums or electromagnetic experiments. Developing this idea further would require considering

the quality factors of such modes, the form factors for coupling to them, and mechanisms to read out

their excitations. Finally, we note that if electron spins are made to precess at an angular frequency

ωspin ≫ ma, then both the mechanical and magnetization current signatures can be upconverted

to a higher frequency ωsig ≃ ma + ωspin. Such a “heterodyne” approach has been applied to cavity

experiments for photon-coupled axions [176, 178, 123, 505], enabling sensitivity to axion masses

parametrically smaller than the cavity’s mode frequencies, but at the cost of introducing additional

noise sources, which must be carefully analyzed.

The axion-fermion coupling leads to a rich variety of experimental signatures, which have previously

been underexplored. Going forward, we hope that this work serves as a firm foundation for new ideas

and future efforts.

5.7 Appendix: Reducing the Axial Current

Here, we show two ways to take the nonrelativistic limit of the axial vector current Ψγµγ5Ψ. The

fastest is to treat Ψ as a relativistic wavefunction and decompose it into two-component spinors, as

in Eq. 5.10, which gives

Ψγµγ5Ψ =
(
ψ†ψ̃ + ψ̃

†
ψ , ψ†σψ + ψ̃

†
σψ̃

)µ
. (5.93)

Now, note that Eqs. 5.13 and 5.16 imply ψ̃ ≃ (1/2)v · σ ψ to leading order in gaf . Using this in

Eq. 5.93 then yields

Ψγµγ5Ψ ≃ ψ† (v · σ , σ
)µ
ψ + O(v2) + O(gaf ) . (5.94)
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Integrating Eq. 5.94 over space then yields Eq. 5.4, the axial current for a single particle.

Another method, which works for multi-particle states, is to treat Ψ as a quantized field with free

mode expansion

Ψ(x) =

∫
d3p

(2π)3

∑

s

(
asp us(p) eip·x + bsp vs(p) e−ip·x

)
, (5.95)

where states with momentum p and spin s are described by |p, s⟩ = asp
† |0⟩ with ⟨p, r|q, s⟩ =

(2π)3 δ(3)(p− q) δrs. In Eq. 5.95, the coefficient of the particle annihilation operator asp is a positive-

frequency mode-function which can be obtained by solving the free Dirac equation, yielding

us(p) =

√
E +mf

2E




ξs

p · σ
E +mf

ξs


 , (5.96)

where E is the energy, ξs is a two-component spinor, and we used the nonrelativistic normalization

u†s(p)us(p) = 1.

We restrict to single particle states in the presence of an axion field with approximately constant

uniform ∂µa. In this case, we can take the classical limit by computing diagonal matrix elements of

the axial vector current. As a warm up, let’s first evaluate the matrix element for the vector current

ΨγµΨ. Its spatial components have expectation values

⟨p, s|ΨγiΨ |p, s⟩ = us(p)γius(p) =
1

E
ξ†s
(
σi p · σ

)
ξs = vi , (5.97)

where v is the velocity and we used the form of the mode-functions in Eq. 5.96. The expectation

value of the temporal component is simply 1, by our normalization convention. By superposing plane

waves, one can construct one-particle wavepackets of spatial spread r momentarily centered around a

location x0, provided that r ≫ 1/m. In such a normalized state, the expectation value of the vector

current is thus approximately

⟨ΨγµΨ⟩ ≃ (1,v)µ δ(3)(x− x0) (5.98)

for small r, which is a classical particle’s number current, as expected. Similarly, for the axial vector

current,

⟨p, s|Ψγ0γ5Ψ |p, s⟩ = us(p)γ0γ5us(p) =
1

E
ξ†s p · σ ξs = v · ŝ , (5.99)

where ŝ is the unit normalized spin vector, and

⟨p, s|Ψγiγ5Ψ |p, s⟩ = us(p)γiγ5us(p) =
√

1 − v2 si +
vi v · ŝ

1 +
√

1 − v2
. (5.100)

Thus, in a normalized one-particle wavepacket state, the axial vector current is

⟨Ψγµγ5Ψ⟩ =
(
v · ŝ , ŝ + O(v2)

)µ
δ(3)(x− x0) , (5.101)
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which recovers Eq. 5.4. Note that this derivation implicitly treats ∂µa as constant because it only

considers diagonal momentum-space matrix elements; thus, it does not yield the ∇ȧ term in the full

Hamiltonian Eq. 5.15. Finally, note that the four-vectors in Eqs. 5.98 and 5.101 are not Lorentz

covariant, because they multiply a noncovariant delta function; however, they are related by a factor

of γ to the familiar four-velocity uµ and spin four-vector sµ [506, 507].

5.8 Appendix: Radiation From Slabs and Multilayers

In this appendix, we derive the results quoted in Sec. 5.3 for radiation emitted from single slabs. We

then discuss how these results are extended to calculations for multilayer setups.

Polarization Currents

First, we derive the amplitude of the radiation field outside of a single infinite slab of thickness d,

with boundaries located at z = ±d/2. As discussed in Sec. 5.3.1, at the high frequencies relevant

for the axioelectric polarization current, we can neglect the tensorial nature of µ. For concreteness,

suppose the slab’s spin polarization lies along x̂. Solving Eq. 5.26 for the electric field within each

region gives

Ex = e−imat ×





Esig e
−imaz z < −d/2

Ein cos(nmaz) + JPa /(imaε) −d/2 < z < d/2

Esig e
imaz z > d/2 ,

(5.102)

where Esig and Ein are complex amplitudes and we used the fact that the polarization current, and

hence the field, is symmetric about d = 0. Imposing continuity of Ex at z = d/2, we have

Ein cos(nmad/2) +
JPa
ima ε

= Esig e
imad/2 . (5.103)

Furthermore, since there is no axion-induced surface current in this case, By/µ is also continuous at

the boundary, such that Faraday’s law yields

in

µ
Ein sin(nmad/2) = Esig e

imad/2 . (5.104)

Solving this system of equations, we arrive at Eq. 5.30.

In a situation involving many interfaces, such as a multilayer dielectric haloscope, it is not

practical to directly solve for Ex in each region by simultaneously imposing all of the boundary

conditions. Instead, the solution can be built up by considering the outgoing radiation generated at

each interface. Each of these waves then propagates through the rest of the stack, as in ordinary

electrodynamics. Thus, let us continue by considering an interface at z = 0 between two mediums

with scalar permittivities ε1,2 and permeabilities µ1,2, assuming uniform spin polarization along x̂.
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For the axioelectric polarization current, the resulting electric field is

Ex = e−imat ×




Eγ1 e

−in1maz + Ea1 z < 0

Eγ2 e
in2maz + Ea2 z > 0 ,

(5.105)

where Eai = JPa,i/(imaεi). Imposing continuity of E∥ and B∥/µ, we have

Eγ1 + Ea1 = Eγ2 + Ea2 , (5.106)

(−n1/µ1)Eγ1 = (n2/µ2)Eγ2 , (5.107)

whose solution is

Eγ1 = −Eγ2 = (Ea2 − Ea1 )
ε2n1

ε1n2 + ε2n1
. (5.108)

If both media are maximally spin-polarized, with εσ,i = εi, then the difference of Eai above simplifies

to

Ea2 − Ea1 =

(
εσ,1 − 1

ε1
− εσ,2 − 1

ε2

)
Eeff =

(
1

ε2
− 1

ε1

)
Eeff . (5.109)

In this case, Eq. 5.108 exactly matches the analogous result for the axion-photon coupling in, e.g.,

Sec. 3.1 of Ref. [431], after making the replacment gaγγ aB0 → −Eeff. Thus, in Sec. 5.3.1 we may

directly recast results from conventional dielectric haloscope calculations, as stated in Eq. 5.32.

More generally, the layers can have different degrees of spin polarization, which leads to more

flexibility than in a conventional dielectric haloscope. If ε2 is large, then Ea2 − Ea1 is maximized

when ε1 = 1. As such, the most aggressive forecast for the LAMPOST optical dielectric haloscope

in Ref. [118] assumed vacuum gaps between layers. These are mechanically challenging at optical

wavelengths and thus have been avoided by current LAMPOST and MuDHI prototypes. However,

here we can achieve the same enhancement in Ea2 −Ea1 with arbitrary ε1 by simply not spin-polarizing

that medium, such that εσ,1 = 1. This case does not directly map onto a conventional dielectric

haloscope, but we expect it yields a similar signal enhancement without the need for vacuum gaps.

Magnetization Currents

For the axion wind induced magnetization current, we assume that ∇a is uniform and lies in

the slab’s plane. As discussed in Sec. 5.3.2, we can treat the circular polarizations of the generated

electric field separately. These polarizations have amplitudes

E± = e−imat ×





−E±
sig e

−imaz z < −d/2,
E±

in sin(nmaz) −d/2 < z < d/2,

E±
sig e

imaz z > d/2 ,

(5.110)
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where we used the fact that the magnetization current, and hence the field, is antisymmetric about

d = 0. At z = d/2, E± is continuous while B±/µ± jumps by M±
a , giving

E±
in sin(n±mad/2) = E±

sig e
imad/2 (5.111)

− in±
µ±

E±
in cos(n±mad/2) = E±

sig e
imad/2 +M±

a . (5.112)

Solving these equations and using the definition of Ma in Eq. 5.24, along with B±
eff = Beff/

√
2, then

yields Eq. 5.36.

Once again, to understand a general multilayer, we first consider the radiation emitted from a

single interface at z = 0. In this case, the radiation is due to a surface current Ka = M
∥
a,1 −M

∥
a,2 at

the boundary. The radiation field is

E± = e−imat ×




E±

1 e
−in1maz z < 0

E±
2 e

in2maz z > 0 .
(5.113)

The relevant boundary conditions,

E±
1 = E±

2 , (5.114)

(−n1/µ1)E±
1 = (n2/µ2)E±

2 +K±
a , (5.115)

determine E±
1,2 to be

E±
1 = E±

2 = K±
a

µ1 µ2

µ1 n2 + µ2 n1
. (5.116)

Note that this is a completely different structure compared to the analogous result in Eq. 5.108, and

hence has no simple mapping to a conventional dielectric haloscope.

5.9 Appendix: Power Absorption in Classical Electrodynam-

ics

The power absorbed from the axion field in a spin-polarized medium, through either the axioelectric

or axion wind terms, can be computed classically by considering the work done on the electrons.

Similar arguments have been used for photon-coupled axions [117, 452, 449] and dark photons [489].

For electron-coupled axions, one must take care to account for the work done by both the real

electromagnetic fields E and B and the effective fields Eeff and Beff.

First, consider absorption through the axioelectric term in an infinite medium with εσ ≃ ε. Both

E and Eeff do work on the electrons, since the net force is proportional to their sum. Applying

Eq. 5.28 gives E + Eeff ≃ Eeff/ε, and combining Eqs. 5.27 and 5.29 gives a total current density
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J = (ε − 1) ∂tEeff/ε. The time-averaged power dissipated in the medium per unit volume is then

given by a generalized form of Ohm’s law,

P

V
=

1

2
Re
(
(E + Eeff) · J∗) ≃ ma

2
|E2

eff| Im
(−1

ε

)
, (5.117)

where the factor of 1/2 accounts for the time average.

Next, consider absorption through the axion wind term in an infinite medium with a constant

background magnetization M0 and magnetic field B. In this case, the work done is associated with

the rotation of magnetic dipoles in the presence of B and Beff. Accounting for both of these fields

gives

P

V
=

1

2
Re
(
(H + Heff) · (∂tM)∗

)
=

1

2
Re
((

B + Beff −M0 −Ma

)
·
(
∂t(M0 + Ma)

)∗)
. (5.118)

Since M0 is constant and the induced magnetization Ma is orthogonal to M0 and B, the expression

above reduces to

P

V
=

1

2
Re
(
(Beff −Ma) · (∂tMa)∗

)
=
ma

2
|B2

eff| Im
(
−q̂Tµ−1q̂

)
, (5.119)

where we applied Eq. 5.23, used the fact that µ is Hermitian, and defined q̂ as the unit vector

pointing along the axion gradient. The dominant contribution to the power comes from the resonantly

amplified “minus” circular polarization. Its permeability, given in Eq. 5.37, corresponds to

Im

(−1

µ−

)
=

ma ωM/2Q

(ma − ωB)2 + (ωB/2Q)2
. (5.120)

The power absorption rate is maximized when the axion frequency matches the infinite-medium

Kittel frequency, ma ≃ ωB, and q̂ is perpendicular to the background magnetization. In this case,

we have
P

V
=

1

2
|B2

eff|QωM . (5.121)

Alternatively, if one averages over all directions of q̂, then the power is reduced by a factor of 2/3.

The results above for the power density P/V match those of Sec. 5.4 after rescaling to a rate

per unit target mass, R = (P/V )/(ρT ma), and substituting in the definitions of the effective fields.

In particular, Eq. 5.117 corresponds to the second line of Eq. 5.54 after substituting |E2
eff|/2 =

(gaema/e)
2 ρDM , and Eq. 5.119 reduces to Eq. 5.51 after substituting |B2

eff|/2 = (gae vDM/µB)2 ρDM .

Though the derivations here assumed infinite media, they also apply to finite media, provided that

the characteristic size of the medium is much larger than the screening length and boundary conditions

are unimportant. Moreover, these calculations can be straightforwardly generalized for arbitrary

geometries, provided one accounts for how the boundary conditions affect the real electromagnetic

fields, as was done in Ref. [449]. On the other hand, since in-medium fields and currents are always
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macroscopically averaged, these arguments cannot be applied to unpolarized media, where those

quantities would simply vanish. For the unpolarized case, one must instead use the methods of

Sec. 5.4.

5.10 Appendix: Analysis of Ferrite Multilayers

In this appendix, we justify the choices of ferrite material properties listed in Table 5.1, discuss

analytic estimates of the signal power in a multilayer setup, and present numeric results for single

crystal YIG.

Properties of Ferrite Materials

Ferrite materials are well-studied [508, 509, 510, 511], and here we present some of their measured

properties. First, for polycrystalline spinel ferrites, we infer the saturation magnetization and

microwave permittivity ε from a commercial datasheet [146]. This datasheet also gives the microwave

permittivity of YIG, which is comparable to that of the spinel ferrites. The saturation magnetization

of YIG significantly increases when it is cooled. In particular, at cryogenic temperatures it is

MS = 0.25 T [512], half that of spinel ferrite.

Ferrites can be fabricated with small dielectric losses, tan δε = Im(ε)/Re(ε) ≲ 10−4, which are

largely due to the presence of divalent Fe ions or other impurities [508]. Thus, magnetic losses

dominate for all materials we consider here. The magnetic quality factor Q is the most difficult

parameter to infer; for simplicity, we first focus on Q for single crystal YIG.

The quality factor of undoped single crystal YIG spheres has been directly measured at room

temperature and ranges from Q ∼ (0.7−1.8)×104 at microwave frequencies [513, 514, 515]. However,

for YIG, Q has a complex dependence on temperature. It is generally inferred from the linewidth of

the ferromagnetic resonance, ∆H ≃ H/Q. As the temperature is reduced, the linewidth is observed

to initially reduce, but then sharply increase below T ∼ 100 K [516, 517, 512]. These trends are

understood theoretically to be arising from the reduced density of thermal phonons and the increased

effect of fast-relaxing rare earth ions, respectively [510]. At even lower temperatures, T ≲ 10 K, the

linewidth reduces again as the effects of rare earth ions freezes out. However, recent measurements

down to T = 30 mK have found that the linewidth increases again due to coupling to two-level

systems [518, 519]. Remarkably, the linewidth at such low temperatures is comparable to that at

room temperature, even though the loss mechanisms are completely different. Given this ambiguity,

in our discussion below, we adopt an intermediate value of Q ∼ 104 for single crystal YIG.

In polycrystalline materials, the resonance linewidth is much larger. For instance, Ref. [146] found

that ∆H ≲ 200 Oe for a millimeter wave ferrite. Taking this number at face value and assuming that

this material is accurately described by Eq. 5.33 then yields Q ∼ 20. However, in reality the linewidth

for polycrystalline materials is mostly due to inhomogeneities in the material’s microscopic structure
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and, thus, cannot be used to infer the damping away from resonance [520, 521, 522]. Instead, one

must measure the frequency-dependent “effective linewidth” ∆Heff, which determines the parameter

Q appearing in Eq. 5.37. Away from resonance, ∆Heff is much smaller than ∆H for polycrystalline

materials and can even approach the value of ∆H for single crystals [523]. For instance, Ref. [508]

quotes a linewidth of ∆Heff = 4 Oe for lithium ferrites, corresponding to Q ∼ 103. However, given the

many other uncertainties, we adopt a conservative intermediate value of Q ∼ 102 for polycrystalline

spinel ferrite.

In both cases, a detailed estimate of the experimental sensitivity requires dedicated measurements

in appropriate conditions. Since magnetic losses depend on the geometry of the sample and applied

field, such measurements should use thin slab samples with an orthogonal applied field. They must

also be performed at cryogenic temperatures and low input power, well away from resonance.

Analytic Estimates

As noted in Sec. 5.3.2, the quality factor of polycrystalline spinel ferrite is too low to derive

accurate, simple analytic expressions. However, for single crystal YIG, analytic approximations

provide an excellent description of the numeric result. In deriving them below, we assume that ε is a

real O(1) number and ∆ω ≪ ma, ωM . We also assume that the setup is operated many linewidths

away from the resonance, ∆ω ≫ ma/Q, which increases the screening length and allows the use of

many layers. These approximations are consistent provided that Q≫ 1 and QωM/ma ≫ 1, which

are satisfied, for both polycrystalline ferrite and YIG, for all masses we consider.

In this regime, the transparent mode slab thickness is

d ≃ π

ma

√
ωm
ε∆ω

, (5.122)

which is much larger than the vacuum gaps between slabs. The sensitivity bandwidth is

∆ωs ≃
π

2

ma

Q
, (5.123)

which scales with Q just as in typical resonant experiments. The number of layers grows with ∆ω,

N ≃ 4Q

π

∆ω

ma
, (5.124)

which is large when ∆ω ≫ ma/Q, as anticipated. Finally, the form factor has nontrivial dependence

on ∆ω, even though we have fixed Re(n−)mad = π, because the argument of the cotangent in

Eq. 5.36 has an imaginary part. In particular, the form factor is approximately

F− ≃
∣∣∣∣

1

µ− in tan(i/2N)

∣∣∣∣ ≃
∣∣∣∣

1

µ+ n/2N

∣∣∣∣ ≃
∣∣∣∣
∆ω

ωM
+
π
√
ε

8Q

ma√
ωM ∆ω

∣∣∣∣
−1

, (5.125)
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Figure 5.7: Analogue of Fig. 5.5, but for single crystal YIG.

so that increasing ∆ω decreases the cotangent term, leading to a peak in F− at nonzero ∆ω.

The signal power is determined by the product N F−, which monotonically increases with ∆ω until

it saturates at N F− ∼ (4/π) (QωM/ma) at frequency separations ∆ω ≳ ∆ω0 ≡ (ma
√
ε ωM/Q)2/3.

In this regime, N and F− are inversely proportional, yielding a simple estimate for the signal power,

Psig ≃ 4

π2

(
QωM
ma

)2

|B2
eff|A . (5.126)

Now, we can perform some cross-checks. First, note that for a fixed ∆ω, the total volume of

the slabs scales as V = N Ad ∝ Q, so that Eq. 5.126 can be rewritten as Psig ∝ QV as generically

expected. Second, Eq. 5.126 was derived without considering the limits on the number of layers and

total slab length, both of which increase with ∆ω. Demanding that these limits do not take effect

until the maximum signal power is reached at ∆ω ≳ ∆ω0 implies

Nmax ≳

(
QωM
ma

)1/3

(5.127)

maLmax ≳

(
QωM
ma

)2/3

, (5.128)

where we have dropped numeric factors. For both materials, Eq. 5.127 is true for all masses we

consider, and Eq. 5.128 is true only in the upper half of the mass range. For lower masses, the signal

power is limited by the constraint on L.

Finally, for self-consistency we must ensure that the optimal ∆ω is not too large for our approx-

imations to break down. Since it is favorable to increase ∆ω whenever our approximations hold,

its value is dictated by either Nmax or Lmax. When the limit comes from the former, N = Nmax,

demanding that ∆ω ≪ ωM ,ma yields the condition

Q≫ Nmax, (ma/ωM )Nmax . (5.129)
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Figure 5.8: Analogue of Fig. 5.6, but for single crystal YIG. We assume material parameters
MS = 0.25 T, Q = 104, and ε = 15, while all other parameters are as in Table 5.1.

For single crystal YIG, this is satisfied for the entire mass range we consider, but for polycrystalline

ferrite it is not satisfied at all; in the latter case a signal power higher than Eq. 5.126 is possible.

Sensitivity with Single Crystal YIG

For the sake of comparision, we compute the sensitivity for single crystal YIG, corresponding to

MS = 0.25 T, Q = 104, and ε = 15, using the same procedure as in Sec. 5.3.2. Some intermediate

quantities from the numeric calculation are shown in Fig. 5.7. They are qualitatively similar to the

corresponding results for polycrystaline ferrite, but they match the analytic results quite closely for

ma ≳ 3 × 10−5 eV, where the multilayer is not limited by Lmax.

The resulting sensitivity for a YIG multilayer setup is shown in Fig. 5.8. Numerically, it is only

slightly greater than the result in Fig. 5.6 for polycrystalline ferrite. Though the signal power is

enhanced by Q2, this improvement is partially cancelled by the decrease in ωM and in the sensitivity

bandwidth. In addition, the signal power for polycrystalline ferrite is somewhat greater than the

approximate analytic result in Eq. 5.126. Overall, for a magnetized multilayer setup, using single

crystal YIG provides only a small sensitivity enhancement at a greatly increased cost.

5.11 Appendix: Equivalence of the Nonderivative Coupling

The axion-fermion coupling has equivalent derivative and nonderivative forms, which we denote with

subscripts d and n, respectively. For brevity, we will drop all other subscripts in this appendix,
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replacing qf , mf , and gaf with q, m, and g, respectively. In this chapter, we have focused mostly on

the derivative form of the coupling,

Ld = g (∂µa) Ψγµγ5Ψ . (5.130)

In Sec. 5.5.1, we discussed how this coupling is equivalent at O(g) via a field redefinition to a

nonderivative form

Ln = −2mgaΨiγ5Ψ , (5.131)

where we neglected the axion-photon coupling generated by the chiral anomaly. In this appendix,

we explain how these couplings are equivalent at the level of their nonrelativistic Hamiltonians. In

Sec. 5.2.1, we showed that, up to higher-order terms in 1/m, the derivative coupling Ld corresponds

to

Hd = H0 − g (∇a) · σ − g

2m
{ȧ,π · σ} , (5.132)

where H0 is the usual Pauli Hamiltonian. In Appendix 5.11.1, we will show that Ln instead

corresponds to

Hn = H0 − g (∇a) · σ − g

4m
{ȧ,π · σ} +

q g

2m
aE · σ , (5.133)

to the same order in 1/m. In Appendix 5.11.2, we show that Hd and Hn are related by a unitary

transformation and thereby physically equivalent. These results are consistent with those in recent

works.

The two Hamiltonians superficially do not appear to be physically equivalent, which has led to

substantial recent confusion. First, Hd and Hn do not have the same coefficient for the axioelectric

term. In Appendix 5.11.3, we show that the axioelectric term encodes measurable relative acceleration

effects. As a result, when one considers a multi-particle Hamiltonian, Hn necessarily contains

complicated additional terms which precisely compensate for the smaller coefficient of its axioelectric

term. Second, for constant a, Hn contains a term of the form dσ ·E with d ∝ q a, which appears to

violate the axion’s underlying shift symmetry. In Appendix 5.11.4, we explain why this “nonrelativistic

EDM” term has no O(a) physical effects in the nonrelativistic limit. The essential reason is that

such a term is just an artifact of choosing to describe an ordinary charged particle with a shifted

position operator. Of course, as we discuss in Appendix 5.11.5, true EDMs do have physical effects,

but those effects arise solely through their higher-order and relativistic corrections. By contrast,

this axion-induced spurious EDM does not share these corrections and therefore does not produce a

signal proportional to a in any EDM experiment, reflecting the axion’s underlying shift symmetry.
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5.11.1 Deriving The Nonderivative Hamiltonian

To derive Hn, we use the Pauli elimination method, as in Sec. 5.2.1. For Ln, the fermion’s equation

of motion is

(i/∂ −m− q /A− 2im ga γ5) Ψ = 0 , (5.134)

which in terms of two-component fields is

(i∂t − qϕ)ψ = (π · σ + 2im ga) ψ̃ (5.135)

(i∂t + 2m− qϕ) ψ̃ = (π · σ − 2im ga)ψ . (5.136)

In these equations, the axion coupling always appears with the fermion mass m, so we must work to

higher order in the nonrelativistic expansion to capture the desired O(g/m) terms in the Hamiltonian.

To do so, we write ψ̃ as

ψ̃ =
1

2m
(π · σ − 2im ga)ψ − i∂t − qϕ

2m
ψ̃ (5.137)

=
1

2m

(
1 − i∂t − qϕ

2m

)
(π · σ − 2im ga)ψ + O(1/m3) , (5.138)

where we iterated Eq. 5.137 to reach Eq. 5.138. Substituting this back into Eq. 5.135 yields

(i∂t − qϕ)ψ ≃ 1

2m
(π · σ + 2im ga)

(
1 − i∂t − qϕ

2m

)
(π · σ − 2im ga)ψ , (5.139)

which is accurate up to O(1/m3) terms. Note that this power counting argument treats the momentum

as O(1), so that an expansion in 1/m is also an expansion in velocity.

At this point, we can read off a fiducial Hamiltonian H̄n by defining i∂tψ = H̄nψ. As shown in

Refs. [524, 525], the g-independent terms at O(1/m2) will contain the usual fine-structure corrections

to the Pauli Hamiltonian. We are instead interested in the O(g/m) terms, which can arise from

either the first or last factor in Eq. 5.139. The contribution from the first factor of Eq. 5.139 is

H̄n ⊃ iga

(
1 − i∂t − qϕ

2m

)
π · σ ≃ igaπ · σ − ga

2m
qȦ · σ , (5.140)

where we used the fact that (i∂t − qϕ)ψ = O(1/m) and can thus be neglected. The last factor of

Eq. 5.139 gives

H̄n ⊃ π · σ
(

1 − i∂t − qϕ

2m

)
(−iga) (5.141)

≃ −igaπ · σ − g (∇a) · σ − ga

2m
q(∇ϕ) · σ +

ig

2m
(∇ȧ) · σ − gȧ

2m
π · σ . (5.142)
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Combining the two yields the O(g/m) part of the Hamiltonian,

H̄n ⊃ −g (∇a) · σ +
ga

2m
qE · σ +

ig

2m
(∇ȧ) · σ − gȧ

2m
π · σ . (5.143)

However, this Hamiltonian is not physically appropriate, as it is not Hermitian. The reason is

that the equations of motion preserve the norm of the full four-component wavefunction Ψ, which is

∫
d3xΨ†Ψ =

∫
d3xψ†ψ + ψ̃

†
ψ̃ ≃

∫
d3xψ†

(
1 +

(π · σ)2

4m2
− g (∇a) · σ

2m

)
ψ , (5.144)

where we used Eq. 5.138 and again dropped O(1/m3) terms. We thus define a renormalized two-

component wavefunction whose norm is preserved,

ψnr ≃M ψ ≡
(

1 +
(π · σ)2

8m2
− g (∇a) · σ

4m

)
ψ , (5.145)

which defines the rescaling coefficient M . This subtlety was irrelevant for the derivation of Hd in

Sec. 5.2.1, since there the contributions to M started at O(g/m2). The physical Hamiltonian is then

identified using i∂tψnr = Hnψnr, giving

Hn ≃ H̄n + [M, H̄n] + i∂tM . (5.146)

As discussed in Refs. [524, 525], these M -dependent correction terms are essential for reproducing

fine-structure corrections; to give a more recent application, such a field renormalization is also

required to derive correct results in heavy quark effective theory [526, 527]. For our purposes, we

are interested in the g-dependent correction term, i∂tM ⊃ −ig (∇ȧ) · σ/4m. Including this term,

we arrive at the claimed result Eq. 5.133, which matches the one found in Ref. [428] using the

methods of Foldy–Wouthuysen transformations. The Pauli elimination method was also used in

Refs. [426, 427, 429], yielding the same EDM term, though only Ref. [429] kept track of the full

Hamiltonian.

5.11.2 Equivalence of the Hamiltonians

Truncating the Interaction

Before we explain why Hd and Hn are equivalent, let us first dispatch a red herring. It is

tempting to conclude that the mismatch arises from truncating the exponential at O(g) in the full

nonderivative form of the interaction in Eq. 5.88, resulting in Ln. Historically, this was the resolution

to a related puzzle which arose in the study of pion-nucleon interactions, which have “pseudovector”

and “pseudoscalar” forms closely analogous to Ld and Ln, respectively. In terms of our axion-based

language, Dyson claimed that the couplings were equivalent on the basis of the axion wind terms
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being the same [528]. However, the two couplings give different amplitudes at O(g2) [529], and

it was quickly realized that the couplings were only equivalent up to additional interaction terms

of O(g2) [530, 531, 532]. To give a more recent example, for axions produced in supernova, both

axion-nucleon and pion-nucleon interactions are relevant. Both interactions can be rotated to the

nonderivative form, but in that case the cross-term (gm/fπ) N̄a πN must be kept to compute a

correct axion bremsstrahlung rate [533, 534, 535].

By contrast, in our case there is nothing wrong with truncating at O(g). We are focusing on

axion dark matter searches, where all relevant amplitudes are O(g), since O(g2) and higher effects

are negligible. Furthermore, the mismatch between the Hamiltonians starts at O(g), so it cannot be

resolved by considering higher-order terms.

Incidentally, we note that Ln is often derived by applying integration by parts to Ld, and then

“simplifying” with the free Dirac equation. This is not exact, but it yields the correct result because

applying the equations of motion preserves S-matrix elements up to the addition of higher-order

terms that are negligible here [536].

Unitary Equivalence

To relate the two Hamiltonians, we note that any quantum theory can be reparametrized by

applying a unitary transformation to the states. In particular, for any Hermitian operator S, we can

define “primed” states by |ψ′⟩ = eiS |ψ⟩. If the original states evolve as i∂t |ψ⟩ = H |ψ⟩, the primed

states evolve as i∂t |ψ′⟩ = H ′ |ψ′⟩, where

H ′ = eiS (H − i∂t) e
−iS = H + i[S,H] − ∂tS + O(S2) . (5.147)

In particular, suppose we start with the derivative Hamiltonian, H = Hd, and choose

S = −β g

4m
{a,π · σ} , (5.148)

where β is a dimensionless parameter. Working to O(g/m), the primed Hamiltonian is then

H ′ ≃ Hd + β
g

4m
{ȧ,π · σ} + β

q g

2m
aσ ·E . (5.149)

For β = 1, we recover the nonderivative Hamiltonian Hn. Evidently, this transformation is the

nonrelativistic Hamiltonian analogue of the field redefinition used to convert Ld to Ln. Of course, the

fact that the Hamiltonian can be transformed in appearance does not imply that experimental results

are ambiguous. If an experiment measures an observable A in the original picture, then in the primed

picture it measures a primed observable A′ with the same matrix elements, ⟨ψ|A |ψ⟩ = ⟨ψ′|A′ |ψ′⟩,
which implies that operators transform correspondingly as

A′ = eiS Ae−iS = A+ i[S,A] + O(S2) . (5.150)
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Since matrix elements match by construction, experimental results are exactly the same in either

picture.

This insight was crucial to resolve an old controversy in the theory of pion-nucleon interactions.

In our language, Refs. [537, 538] pointed out that the coefficient of the axioelectric term could be

modified by a unitary transformation. This led to confusion, with some claiming that pion absorption

amplitudes were ambiguous. However, in Ref. [539], it was pointed out that such a transformation

also generates an additional term involving the nuclear potential (the analogue of the EDM term

above), and that when this is properly accounted for, all physical results are unchanged.

A similar lesson can be drawn from the relativistic quantum mechanics of spin-1/2 particles, where

a unitary transformation can be used to map the Dirac representation to the Foldy–Wouthuysen

representation [441]. In the latter representation, the so-called “Zitterbewegung” (or jittering) of

the fermion’s position and spin is eliminated, but its coupling to electromagnetic fields becomes

nonlocal [540, 541]. Despite these radical differences, the two representations are perfectly physically

equivalent. Similarly, we will see that all values of β give equivalent physical predictions, but β = 0

is by far the easiest choice to work with. For any β ̸= 0, proper calculations of physical observables

will display “mysterious” cancellations that reflect the non-manifest axion shift symmetry.

5.11.3 The Physical Axioelectric Term

In this section, we set the axion gradient ∇a to zero for simplicity. We also consider only neutral

particles, q = 0, so that we can discuss the axioelectric term in isolation. In this case, the primed

Hamiltonian in Eq. 5.149 is

H ′ ≃ p2

2m
−
(

1 − β

2

) gȧ
m

p · σ . (5.151)

Thus, for neutral particles it appears that one can shift the coefficient of the axioelectric term to

an arbitrary value, without any other consequences. On this basis, Ref. [428] concluded that the

axioelectric term is unphysical for neutral particles, and should be eliminated by choosing β = 2.

The problem with this reasoning is that for a single particle, any force, whether real or fictitious,

can be removed by performing a unitary transformation which maps the laboratory frame to the

particle’s frame. The difference between the two cases is that real forces can produce relative

accelerations between distinct colocated particles, while fictitious forces do not. By this standard,

the axioelectric force is real and its effects can be measured experimentally.

To see this explicitly, we must generalize Eq. 5.151 to a Hamiltonian with multiple interacting

particles. One simple way to do this is to consider a Lagrangian with two neutral fermion fields Ψ1

and Ψ2 of mass m, with interactions

L(12)
d = g (∂µa)

(
Ψ1γ

µγ5Ψ1 + Ψ2γ
µγ5Ψ2

)
+ cΨ1Ψ1Ψ2Ψ2 , (5.152)

where c is a coupling constant for the contact interaction. Following the same procedure as in
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Sec. 5.2.1 yields

i∂t ψ1 ≃
( p21

2m
− gȧ

m
p1 · σ1 − cΨ2Ψ2

)
ψ1 , (5.153)

where a similar equation holds for ψ2. In the limit where there is a single nonrelativistic well-localized

particle of each type, we can simplify the bilinears as in Appendix 5.7, giving a Hamiltonian

H ≃ p21
2m

+
p22
2m

− c δ(3)(x1 − x2) − gȧ

m
(p1 · σ1 + p2 · σ2) . (5.154)

Finally, applying the unitary transformation generated by Eq. 5.148 to each particle yields

H ′ ≃ p21
2m

+
p22
2m

− c δ(3)(x1 − x2) −
(

1 − β

2

)
gȧ

m
(p1 · σ1 + p2 · σ2)

+
β

2

ga c

m
(σ1 − σ2) · ∇1δ

(3)(x1 − x2) . (5.155)

For the unprimed Hamiltonian in Eq. 5.154, the axioelectric term produces a measurable relative

acceleration effect. For example, if the particles begin in their lowest bound state, with different

spin directions, then a time-varying axion field can induce a transition to an excited state. On the

other hand, for the primed Hamiltonian in Eq. 5.155 with β = 2, the axioelectric term is indeed

rotated away, but it is replaced with a new term which induces precisely the same transitions. Similar

reasoning would hold for any interaction between a particle and a measurement apparatus. One is

free to work with H ′, but for β ̸= 0 it will always contain complicated additional terms which encode

the physical effect of the axioelectric force.

One might argue that the final term in Eq. 5.155 is only present because we chose to start with

the derivative form of the interaction. Indeed, if we had started with

L(12)
n = −2mga

(
Ψ1iγ

5Ψ1 + Ψ2iγ
5Ψ2

)
+ cΨ1Ψ1Ψ2Ψ2 , (5.156)

then the corresponding nonrelativistic Hamiltonian would be Eq. 5.155 with β = 1 but without the

final term. However, Eq. 5.156 is not an appropriate choice of Lagrangian because it violates the

shift symmetry of the axion. The correct way to derive L(12)
n is to start from Eq. 5.152 and apply a

chiral field redefinition, which instead yields

L(12)
n = −2mga

(
Ψ1iγ

5Ψ1 + Ψ2iγ
5Ψ2

)
+ cΨ1e

2igaγ5

Ψ1 Ψ2e
2igaγ5

Ψ2 . (5.157)

It is straightforward to check that the nonrelativistic Hamiltonian corresponding to this Lagrangian

is indeed given by Eq. 5.155 with β = 1. In other words, regardless of what Lagrangian we start

from, the axioelectric force is most directly described by taking β = 0.
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5.11.4 The Unphysical Nonrelativistic EDM Term

In this section, we instead set the axion gradient ∇a and time derivative ȧ to zero for simplicity, so

that we can discuss the nonrelativistic EDM term in isolation. In this case, the primed Hamiltonian

in Eq. 5.149 is

H ′(x,p) ≃ (p− qA)2

2m
+ q ϕ− q

2m
B · σ − dE · σ , (5.158)

where d ≡ −βq ga/(2m), and all of the external fields above are evaluated at x. The final term in

Eq. 5.158 is indeed the nonrelativistic limit of the contribution of a true EDM to the Hamiltonian

density, HEDM = (d/2) Ψγ5σµνΨFµν . However, perhaps surprisingly, the term −dE · σ in isolation

has no O(d) physical effects in the nonrelativistic limit, so that Eq. 5.158 does not directly imply

physical effects proportional to the axion field.

Energy Levels of Bound Electrons

The simplest and most general way to see this is to note that H ′ is unitarily equivalent to Hd,

which has no nonrelativistic EDM term. Crucially, unlike the axioelectric term in Appendix 5.11.3,

the Hamiltonian without the nonrelativistic EDM term does not contain any other O(d) terms, so its

effect can truly be removed without consequence. This remains true even when interparticle Coulomb

interactions are included.

In particular, EDMs are often measured through the energy level shifts they induce in atoms

placed in an external, constant electric field. If the atoms are described nonrelativistically, with only

pairwise Coulomb interactions, then a nonrelativistic EDM term can be eliminated at O(d) by a

unitary transformation generated by S ∝ π · σ. Since this S is time-independent, Eq. 5.147 implies

that it preserves energy levels. We thus conclude that nonrelativistic EDMs do not have any O(d)

effects on atomic energy levels, which is simply the famous statement of Schiff’s theorem [261].

Shifting the Position Operator

While the physical equivalence of Hn and Hd decisively rules out an O(d) EDM, it is unintuitive

that the −dE · σ term is unphysical for charged particles. This is because such a term seems to

suggest the generation of electric dipole radiation and spin precession in an electric field. Indeed,

the neutron EDM can be measured using the latter effect [542]. However, the situation for charged

particles is fundamentally different. The reason is that a particle of charge q can always be artificially

described by a position operator shifted relative to the usual one by ∆x, which introduces an electric

dipole moment d = q∆x. This is the fundamental reason an EDM term appears in Eq. 5.158, and it

implies that the same physical effects can be described without it.

To make this statement more precise, consider the position operator x in the unprimed Hamiltonian,

which has no EDM term. As usual, the acceleration of the particle is proportional to E(x), its static

Coulomb field is centered at x, and when the particle accelerates, the electric dipole radiation it
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produces is governed by d2x/dt2. In light of these facts, we say that x is the particle’s “center of

charge” xq. However, after a unitary transformation to H ′, Eq. 5.150 implies that the center of

charge becomes

x′
q = x + (d/q)σ + O(d2) , (5.159)

which is shifted from x precisely as anticipated in the previous paragraph. By construction, the

center of charge evolves the same way in both pictures, so that any effect of the apparent EDM can

be equivalently explained without it.

For example, suppose a free electron is placed in a uniform magnetic field B0, so that the spin

precesses at the Larmor frequency ωL = qB0/m. If the particle is at rest under the unprimed

Hamiltonian, dx/dt = 0, then dxq/dt = 0, which implies that no electric dipole radiation is produced.

When we consider the same situation under the primed Hamiltonian, the particle has a precessing

EDM, but simultaneously orbits in a circle of radius d/q in the opposite direction at the cyclotron

frequency ωc = qB0/m. These two effects compensate each other, so that dx′
q/dt = 0 and, again,

no electric dipole radiation is produced. Conversely, if the particle were at rest under the primed

Hamiltonian, electric dipole radiation would be produced, but it would be equivalently described

under the unprimed Hamiltonian as a consequence of the particle’s circular motion.

EDM-Induced Spin Precession

Similarly, it naively seems possible to unambiguously identify the EDM through its effect on spin

precession, but this is also impossible. To illustrate this point we will consider two more thought

experiments.

First, Ref. [426] proposed an approach which is analogous to certain searches for the neutron

EDM. Its authors claimed that if an electron was placed in a uniform electric field, the EDM would

cause its spin to precess, resulting in an observable transverse magnetic field from its magnetic dipole

moment. This led Ref. [47] to project very strong experimental sensitivity for atomic magnetometers,

shown in Fig. 5.2. However, this idea has a fundamental problem. If the electron was free, it would

immediately accelerate out of the experimental apparatus. If it was instead bound in a nonrelativistic

atom, it would experience zero average electric field and hence undergo no spin precession [543].

Therefore, the experiment proposed in Ref. [426] cannot work as stated. For a free electron,

we could instead allow the electron to fly away, but subsequently measure its spin dynamically.

Concretely, suppose a free electron is prepared at rest with vertical spin, and then experiences a

uniform horizontal electric field. After passing through this field it encounters a Stern–Gerlach

apparatus, i.e., a vertical but nonuniform magnetic field, where the field gradient deflects the electron

according to its spin. This appears, in principle, to be a way to measure the EDM-induced spin

precession without requiring it to be bound.

The problem with this idea is that the unprimed Hamiltonian, with no EDM, yields the same

deflection. In this picture, the electron’s location is shifted by (d/q)σ, so it flies through the
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Stern–Gerlach apparatus off center, yielding an additional qv×B Lorentz force. It is straightforward

to show that the center of charge behaves the same way to O(d) in both pictures. Once again, the

apparent EDM effect can be equivalently explained without an EDM.

5.11.5 True EDMs and Spurious EDMs

There are many experiments, reviewed in Refs. [544, 545], which are sensitive to constant electron

EDMs. Unfortunately, the shift symmetry of the axion implies that a constant axion field cannot

produce a signal in any of them. Here, we explain how a number of these experiments work and

elaborate on why they cannot measure an axion signal.

Scattering and Spin Precession of Free Electrons

A true electron EDM affects the relativistic scattering of electrons on nuclei [546, 547, 548]. True

EDMs can also cause spin precession when a particle moves at relativistic speeds through a magnetic

field; this was used in the first searches for the electron and muon EDM [549, 550, 551, 552] and today

is relevant in storage ring experiments. Crucially, both of these signatures do not follow from the

nonrelativistic EDM term, but rather come from relativistic corrections present in the true EDM’s

full Hamiltonian density, HEDM = (d/2) Ψγ5σµνΨFµν .

Since the axion contributes a nonrelativistic EDM term of O(ga/m), such corrections would first

appear in the Hamiltonian at O(ga/m2). However, Ref. [428] computed the Hamiltonian out to this

order and showed that the O(ga/m2) terms actually exactly vanish for a constant uniform axion

field.7 In other words, while a true EDM and a constant axion field modify the Hamiltonian in the

same way at leading order in the nonrelativistic expansion, the axion does not induce the relativistic

corrections that make true EDMs observable for free particles.

Energy Levels of Bound Electrons

The most sensitive modern electron EDM experiments measure shifts of atomic or molecular

energy levels. As we have discussed in Appendix 5.11.4, Schiff’s theorem states that O(d) shifts of

atomic energy levels vanish in the nonrelativistic limit. Therefore, to find a nonzero effect one must

either work to O(d2) [553, 554] or account for relativistic effects such as length contraction, in whose

presence there are O(dv2) energy level shifts [555, 556, 557].

Recalling that our expansion in 1/m is equivalent to an expansion in v, these facts naively suggest

that a constant axion field shifts energy levels at O(g2a2/m2) and at O(ga/m3), respectively. The

problem with this reasoning is, again, that a constant axion field does not enter the Hamiltonian in the

same way as a true EDM. The two have the same nonrelativistic limit, but differ in their relativistic

and higher-order corrections. In order to compute these purported axion-induced energy level shifts

7Note that Ref. [428] uses a different convention for the coupling; in their variables the nonrelativistic EDM term is
O(1/m2) and the leading relativistic corrections to it are O(1/m3).



CHAPTER 5. AXION-FERMION COUPLINGS 151

consistently, one must expand the Hamiltonian to O(g2a2/m2) and O(ga/m3), respectively. This

produces additional terms which completely cancel off any energy level shift. Although such a lengthy

computation has not been explicitly demonstrated in the literature, such a cancellation must occur

to all orders due to the underlying shift symmetry of the axion. These “mysterious” cancellations

are the hallmark of a non-manifest symmetry and are one of the reasons it is often easier to work

with manifest symmetries.

Recasting EDM Experiments

In an EDM experiment of measurement time τ , Ref. [427] asserted that the axion-induced

nonrelativistic EDM term acts like a constant true EDM when maτ ≪ 1, thereby claiming a bound

on the axion-electron coupling many orders of magnitude stronger than existing bounds. However,

this is incorrect; as we have just discussed, the signal from a true EDM arises from relativistic

corrections which are not shared by the spurious axion EDM.

On the other hand, when the axion field has nontrivial time dependence, a term proportional to

a(t)σ ·E can produce observable effects, such as shifts in electronic energy levels. However, such

shifts are generally suppressed by powers of ma/Ry, where Ry = α2me/2 is the scale of electronic

energy levels. For example, Ref. [493] showed that the energy level shift for bound electrons, linear

in the external electric field, is suppressed by (ma/Ry)2.

Recently, Refs. [428, 429] noted that for free electrons, axion-induced effects are suppressed by

powers of maτ . For example, Ref. [429] computed the time evolution operator for a free particle,

from t = 0 to t = τ , and noted that it depended on the quantity

1

τ

∫ τ

0

dt deff(t) ≡ 1

τ

∫ τ

0

dt (d(t) − d(τ)) , (5.160)

where deff is an “effective” EDM. The left-hand side has a simple physical interpretation given by

Eq. 5.159; for a free particle at rest in the primed picture, it is simply q times the difference of the

center of charge’s final location and its average location. Eq. 5.160 is indeed suppressed for maτ ≪ 1,

and unsuppressed for maτ ≳ 1. However, Refs. [428, 429] assumed without justification that the

signal in a bound electron EDM experiment is not suppressed when maτ ≳ 1, even though it is

governed by completely different observables. Thus, for maτ ∼ 1 these works overestimate the signal

strength for bound electrons by powers of Ry · τ ≫ 1.

Color Charged Fermions

Throughout this chapter, we have exclusively considered the case where Ψ is a color neutral

fermion. The story is somewhat different when Ψ is a quark field, since the chiral field redefinition

leading to the nonderivative coupling Ln also produces a term proportional to aGµν G̃
µν . Both
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this term and Ln can produce true hadronic EDMs for a constant axion field a. If one starts with

only a derivative coupling, then their contributions will cancel, in accordance with the fact that the

derivative coupling Ld itself vanishes for constant a. But in a generic QCD axion model, there will

be true hadronic EDMs induced, which can be probed by both existing EDM experiments and in

dedicated experiments which resonantly amplify the effect at nonzero ma [381]. For a recent review

of such efforts, see Ref. [558].



Chapter 6

Stellar Shocks From Dark Asteroids

This chapter is based on Stellar Shocks From Dark Matter Asteroid Impacts, by A. Das, S. A. R. Ellis,

P. Schuster, K. Zhou, Phys. Rev. Lett. 128, 021101 (2022).

Abstract

Macroscopic dark matter is almost unconstrained over a wide “asteroid-like” mass range, where

it could scatter on baryonic matter with geometric cross section. We show that when such an

object travels through a star, it produces shock waves which reach the stellar surface, leading to a

distinctive transient optical, UV and X-ray emission. This signature can be searched for on a variety

of stellar types and locations. In a dense globular cluster, such events occur far more often than flare

backgrounds, and an existing UV telescope could probe orders of magnitude in dark matter mass in

one week of dedicated observation.

153
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6.1 Introduction

Astronomical and cosmological observations have provided all evidence for dark matter (DM) thus

far. Stars, substellar objects, and stellar remnants therefore comprise natural venues for probing the

nature of DM. The capture of particle DM is well-studied, and can result in signatures ranging from

heating [559, 560, 561, 562] and modifications of stellar structure [563, 564], to outright destruction by

the formation of a black hole [565, 566, 567]. DM candidates light enough to be produced thermally

in stars, such as the axion, can also be constrained by stellar cooling rates [568].

However, DM could also be in the form of objects of macroscopic mass and size, a possibility

which is consistent with all cosmological constraints [569, 570, 571]. While macroscopic DM arises

in many theoretical scenarios, it is difficult to detect terrestrially primarily because such objects

are rare, given the low local DM density. As MDM increases, experimental searches require either

large detection volumes or long integration times. For example, for MDM ≲ 105 kg, limits on

macroscopic DM passing near the Earth can be set with tabletop experiments, calorimeters, and

gravitational wave detectors [572, 573], or searches for fast-moving meteors [574, 575, 576] and seismic

waves [577, 578]. However, for MDM ≳ 10−20M⊙, corresponding to a heavy asteroid, macroscopic

DM would not have collided with Earth since the advent of human civilization, and setting constraints

requires speculative appeals to geologic history [579, 580]. Unambiguously probing the mass range

10−20M⊙ ≲MDM ≲ 10−11M⊙ of “dark asteroids” will therefore require looking to the stars.

In this chapter, we point out that because dark asteroids move supersonically in stars, dissipation

through any non-gravitational interaction will generate shock waves. This allows the dissipated

energy to quickly propagate to the stellar surface, where it is released in the form of a transient,

thermal ultraviolet (UV) emission. Crucially, such events are correlated with the local DM density,

but uncorrelated with the underlying activity of the star. Next-generation survey telescopes would

detect such events without requiring a dedicated search, while existing telescopes could find them by

monitoring regions of high DM density. This would constitute a DM direct detection experiment on

astronomical scales, with the stars as the detector volume.

A detailed overview of models that produce dark asteroids is beyond the scope of this chapter,

but the reader can keep several scenarios in mind. Self-interactions in the dark sector allow models

as simple as asymmetric DM [581] to build up composite objects of high multiplicity in the early

universe [582, 583], and support compact structures [584, 585, 586]. Additionally introducing a

lighter, oppositely-charged particle allows dark atoms to form, providing an alternative cooling

mechanism which can generate large DM structures [587], while charging the DM under a non-

Abelian gauge group naturally allows dark nucleosynthesis [588, 589]. An even richer dark sector,

which could result from mirroring part or all of the Standard Model, allows the formation of mirror

stars [590, 591, 592, 593]. Phase transitions in the dark sector can also produce large dark objects, for

both bosonic and fermionic DM [594, 595, 596, 597], with the density determined by the temperature

of the phase transition.
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For concreteness, we will introduce our signature by assuming that all DM is in the form of

spherical dark asteroids with the same mass MDM and radius RDM. We further assume that they

scatter baryons elastically with geometric cross section σ = πR2
DM, enter the star head-on, and do

not disintegrate while passing through the star. In the final section, we discuss how these properties

can arise and how the signature changes when they are relaxed.

6.2 Stellar Collisions

We compute stellar profiles with MESA [598, 599, 600, 601, 602], assuming solar metallicity and the

settings recommended by MIST [603], and match them at the photosphere to atmospheric profiles

computed with PHOENIX [604]. When a dark asteroid enters a star of mass M⋆ and radius R⋆, it

will be traveling at roughly the escape velocity vesc =
√

2GM⋆/R⋆, and is therefore hypersonic, with

Mach number Ma ∼ 100. It is accelerated inward by gravity, and dissipates energy due to a drag

force ρσv2cd/2, where cd ≃ 1 for a supersonic sphere [605]. For most of the parameters we consider,

the dark asteroid remains hypersonic until it either dissipates most of its energy to drag, or reaches

the hot stellar core.

Describing the resulting production and propagation of shock waves is a complex hydrodynamic

problem. However, it can be decomposed into simpler problems each solvable by controlled approxi-

mations, as shown in more detail in the Supplemental Material. First, because the dark asteroid is

hypersonic, Ma ≫ 1, its passage can be treated as an instantaneous deposition of energy Fdr per

unit length, which creates a cylindrical blast wave. Numeric blast wave solutions are known, and

are used to model meteors traversing the Earth’s atmosphere [606, 607]. The shock wave becomes

weak after it travels a characteristic radial distance R0 =
√

2Fdr/p ∼ MaRDM, and asymptotically

approaches an N-wave profile, a weak shock solution characterized by a pressure discontinuity ∆p

and length L. Following Ref. [606], we match a blast wave onto an N-wave profile at distance 10R0,

where the shock strength is ∆p/p = 0.06, the length is L = 2.8R0, and roughly half of the original

energy remains in the shock wave.

To treat the propagation to the stellar surface, we use standard results from weak shock theory [608,

609]. In particular, the propagation of a weak shock wave through a slowly varying medium can be

described by geometric acoustics. Because the speed of sound decreases with distance from the center

of the star, the ray paths refract radially outward. We propagate each piece of the shock front along

such a ray. For an acoustic wave, if the wavefront area evolves as A(s) along a ray, then the pressure

amplitude varies as ∆p ∝
√
ρcs/A(s), while the period L/cs remains constant. The discontinuities of

an N-wave cause additional dissipation: when the shock wave travels a length L, there is a fractional

increase in L, and a fractional decrease in shock strength and total energy, of order ∆p/p.

Finally, as each piece of the shock front approaches the stellar surface, the decreasing density and

pressure cause a rapid increase in the shock strength. For the DM masses and radii of interest here,
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the shock becomes strong, ∆p/p ≳ 1, below the photosphere, at optical depths up to ∼ 102. Analytic

solutions exist to describe the arrival of a strong shock wave at the edge of a star [610]. To roughly

approximate these results, we assume that once the shock wave becomes strong, its remaining energy

heats the stellar material above it to a uniform temperature Tf , which sets the typical frequency

band of emission. This is reasonable because convection in the shocked region near the stellar surface

will effectively smooth out temperature gradients. The timescale for energy release is then dictated

by the rate of blackbody radiation from the surface, and is typically on the order of hundreds of

seconds.

This treatment is compatible with previous work on shock waves in stars. In massive stars just

prior to core collapse, convection can excite acoustic waves [611] which then steepen into weak

shocks, which dissipate in the same way as they travel outward [612, 613]. Refs. [614, 615] considered

the strengthening of a shock wave near the surface of a star; consistent with this chapter, we find

that our shocks are insufficiently energetic to eject mass, as they emerge with a typical speed√
kBTf/mp ≪ vesc.

In Fig. 6.1, we show the total shock energy released from the surface of a Sun-like star, and the

typical final temperature Tf . The qualitative features of this plot can be readily understood. For

higher RDM, the dark asteroid stops near the stellar surface, and a small portion of the surface is

heated to a high temperature. As RDM decreases, the shock waves are primarily produced deeper in

the star, with a shorter wavelength. This increases the dissipation they experience as they propagate

out to the surface, decreasing the energy released. At the smallest radii, drag is insufficient to prevent

the dark asteroid from passing through the entire star, so that only part of its energy is deposited,

leading to a rapid fall-off in signal energy.

Since a strong shock has ∆T/T ∼ 1, the temperature Tf roughly tracks the local temperature

at the depth where the weak shock becomes strong again; as a result, it is relatively insensitive to

MDM and RDM, and typically peaks in the far UV. At lower densities, Tf rapidly rises because the

dark asteroid stops so close to the surface that the shock never becomes weak. At the very lowest

densities shown, the dark asteroid stops above the photosphere. In this extreme case, the emission

spectrum is not necessarily thermal, and depends on the detailed physics of the resulting plasma.

We do not study this regime because it is in tension with cosmological constraints, but we expect

photons to be released at up to X-ray energies, ϵ ∼ mpv
2
esc ∼ 104 eV.

Similar results apply to other star types, and are shown in the Supplemental Material. The main

difference is that for equal MDM and RDM, the signal energy is higher for more compact objects,

such as red and brown dwarfs, because their density profiles rise more steeply with depth, causing

the dark asteroid’s energy to be deposited closer to the surface. Conversely, the signal energy is

significantly lower for giant stars, because of their extended envelopes.
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Figure 6.1: Contours of energy release (solid), characteristic temperature (dashed), and penetration
depth (dotted) for a dark asteroid impact on a Sun-like star. We show bounds from the CMB
limit on DM-baryon scattering [59], heating of cold gas clouds [60] (though see also Ref. [61]), and
microlensing [62] (though see also Refs. [63, 64, 65]). We do not show constraints from femtolensing
of gamma-ray bursts [66], which are weakened by finite source size effects [67].

6.3 Observational Prospects

Dark asteroids are expected to produce rare transients on all types of stars, with a frequency

dependent on the stellar and local DM parameters. For a star moving with a DM halo, averaging

over a Maxwellian velocity distribution for the DM yields a collision rate [616]

Γ =

√
8

3π

ρ
DM
vd

MDM
πR2

⋆

(
1 +

3v2esc
2v2d

)
(6.1)

where vd is the velocity dispersion. The final term accounts for the focusing effect of gravitational

attraction. In all cases we will consider, vesc ≫ vd, giving

Γ ≃ (4 × 10−5 yr−1)
M⋆

M⊙

R⋆
R⊙

10−15M⊙
MDM

ρ
DM

0.4 GeV/cm3

270 km/s

vd
. (6.2)

As shown in the inset of figure 6.2, we expect a brief X-ray emission as the dark asteroid passes

through the stellar atmosphere, followed by a gradual optical and UV emission as the shock wave

produced inside reaches the surface of the star. Since most of the energy emerges in the UV, and

cooler stars emit relatively little in this band, it is easiest to search for these events as UV transients.
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The light curve would also have a long tail as the violently heated patch of the stellar surface

gradually cools, which could be targeted for follow-up optical observation. Note that we have treated

all collisions as head-on, though the high degree of gravitational focusing implies that most collisions

are glancing. Our calculation is thus maximally conservative, because it gives the shock waves the

longest possible path to the surface. Accounting for the impact parameters would increase the signal

strength and temperature, and could also increase visibility to X-ray telescopes.

Upcoming transient surveys could detect dark asteroid collisions on nearby stars without requiring

a dedicated search. Among star types, K dwarfs are promising targets, as they have significantly

larger masses and radii than M dwarfs, but also have a higher number density and negligible UV

emission compared to hotter stars. As a concrete example, we consider ULTRASAT [617], a proposed

wide-field UV transient explorer designed to detect distant supernova shock breakouts, which will

also monitor many nearby stars. We compute the maximum distance from which ULTRASAT could

observe dark asteroid collisions at SNR ≥ 5, conservatively counting only impacts on K dwarfs, and

approximate the star density as uniform out to 1 kpc from the Earth. The observable region of

parameter space is cut off at high RDM because the signal temperature becomes too high, at low

RDM and MDM because the signal energy becomes too low, and at high MDM because the events

become too rare.

A similar region could be probed by the upcoming LSST survey [618], but estimating the event

rate is more difficult because of LSST’s complex observing strategy and multiple filters. In addition,

since LSST would be able to see events at a significantly larger distance d ≳ kpc, a more detailed

model of the galactic stellar and DM densities would be required, along with estimates of UV

extinction. Exoplanet searches such as TESS [619] and the planned PLATO mission [620] have

exceptionally large fields of view, but observe in the red, which reduces the sensitivity because of

stellar variability and shot noise. However, these instruments could effectively detect transients on

cool red dwarfs or brown dwarfs, which thereby probes lower RDM, as shown in the Supplemental

Material.

Because the local DM density is low, a potential obstacle for any local search is the background

from stellar superflares, which occupy a similar temperature and energy range. Observations from

Kepler [621, 622] and TESS [623] find no superflares on the vast majority of FGK dwarfs, and almost

none on those that are not rotating rapidly, which allows highly active stars to be excluded from

observation. However, for any individual event, it would be difficult to rule out the possibility of a

superflare without further information. For example, follow-up observations could determine the

detailed light curve, which could fall off more slowly for dark asteroid impacts because the energy

emerges from within the star rather than from its atmosphere. Simultaneous observation with other

instruments could rule out flares using spectral information, as they are expected to have a significant

radio and X-ray component.

An alternative strategy is to perform a focused search in a region where the impact rate per star
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Figure 6.2: Contour plot showing observability. We shade regions where impacts on K dwarfs within
1 kpc would be seen by ULTRASAT, and impacts on Sun-like stars in 47 Tuc would be seen by HST,
at least once per year and week of observation on average, respectively. In both cases, we demand
SNR ≥ 5. For 47 Tuc, we show two possible values of the core DM density, as discussed in the main
text, and require the rate of dark asteroid impacts to exceed superflares of similar energy by at least
an order of magnitude. A schematic light curve for three frequency bands is shown in the inset.

is significantly higher. As a concrete example, we consider 47 Tuc (NGC 104), a well-studied nearby

(d ∼ 4 kpc) globular cluster which has a dense core and negligible UV dust extinction [624].

While the DM content of globular clusters today is not known [625, 626], they are thought to

have formed in large DM subhalos [627, 628], with computational studies suggesting an initial DM

mass of about 260 times the stellar mass [629]. Tidal stripping and DM thermalization are expected

to have reduced the DM content of the globular cluster since formation [630], with ∼1% remaining

today [631]. We assume this formation history holds for 47 Tuc, and model the DM distribution

with an NFW profile [632]. Gravitational interactions transfer kinetic energy to the dark asteroids

and lighter stars, which we account for by coring the DM profile [633] and taking a relatively heavy

benchmark star of solar mass.

From the above procedure, detailed in the Supplemental Material, we infer a core DM density

ρ
DM

≃ 4M⊙/pc3. Since the velocity dispersion is vd ≃ 12 km/s, the collision rate per star is

almost 4 orders of magnitude higher than in the local region, even though DM is still a vastly

subdominant component of the core. For most of the parameters we consider, the event rate exceeds

the rate of superflares of comparable energy on Sun-like stars [622] by orders of magnitude. Yet our

estimate is conservative, as a recent analysis with similar assumptions [559] found a core DM density
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ρDM ≃ 25M⊙/pc3 [634]. Furthermore, we neglect adiabatic contraction of the DM halo [635, 636],

which would significantly increase the core density, and we do not consider the possibility of a DM

cusp due to an intermediate-mass black hole [637, 638], within which the DM density would be

enhanced by orders of magnitude.

To monitor 47 Tuc, we consider the Wide Field Camera 3 instrument on the Hubble Space

Telescope (HST), using the F225W filter. This instrument’s field of view is sufficient to capture most

of the DM core, and the UV filter alleviates stellar crowding [639]. In Fig. 6.2, we show the region

where at least one event with SNR ≥ 5 is expected in one week of continuous observation. HST has

in fact already monitored 47 Tuc for over a week to search for exoplanets [640], though these optical

and infrared observations are less useful for our purposes due to stellar backgrounds. Since the event

rate scales as 1/MDM, new parameter space could be probed with as little as one hour of dedicated

UV observation.

6.4 Discussion

For concreteness, we have focused on specific assumptions and experimental searches, but our results

also apply more generally. For instance, we have taken elastic scattering as a generic benchmark, but

specific models can give rise to nonelastic interactions, such as catalyzing proton decay, annihilating

with ordinary matter, or absorbing part of the dissipated energy. We have also assumed a geometric

cross section for baryon scattering because it is the result of any sufficiently strong interaction that

is not long-ranged, but the dark asteroid can be partly transparent to baryons, or interact by a

long-range force, yielding a smaller or larger cross section respectively. These effects can be accounted

for by simply scaling the energy deposited per length, Fdr, as long as R0 ≳ RDM.

The assumption of geometric cross section implies relatively strong DM interactions with the SM,

and it is interesting to see how this can be compatible with existing constraints. As shown in Fig. 6.1,

cosmological constraints are relatively weak, essentially because dark asteroids would be extremely

rare, and the constraint from DM self-interaction in the Bullet cluster is orders of magnitude weaker.

Strong DM constituent interactions with the SM could be accommodated if, for example, the dark

asteroid was composed of “dark atoms” comprised of oppositely charged particles bound by a dark

U(1). If the constituent has mDM ≲ 100 MeV, and less than 1% is unbound, terrestrial constraints

require that the DM-nucleon cross section not exceed σSI ≲ 10−29 cm2 [641, 642]. A dark asteroid

of density g/cm
3

containing 100 MeV constituents with this SM interaction strength would have a

mean free path of ∼ 100 m, so that the assumption of opacity holds for the regions of interest of

Fig. 6.2.

Our rough estimates of the collision rate and signal energy could be refined in many ways. We

have taken all dark asteroids to have the same mass MDM, though a realistic production mechanism

would lead to a range of masses. This would not necessarily harm prospects for a local search, as
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impacts of heavier dark asteroids could be seen from further away. Dark asteroids could pass through

a star but lose sufficient energy to be captured, ensuring subsequent collisions. This enhancement of

the event rate occurs for a wide range of MDM because most collisions are glancing, and leads to

the intriguing possibility of followup detection. Finally, our treatment of the shock propagation and

convective energy transport near the surface could be improved with detailed analytic arguments or

numerics, which would also yield the detailed shape of the light curve.

Collision events have been investigated in related contexts, though the results are qualitatively

different. Primordial black holes passing through stars deposit a small amount of energy through

dynamical friction, but the result is too weak to observe [643, 644]. Dark asteroids could also trigger

supernova in white dwarfs by depositing energy in their interiors [645, 646]. The survival of white

dwarfs therefore implies a strong constraint on macroscopic DM due to the long effective integration

time, but it only applies to dark asteroids of roughly nuclear density, which can penetrate the white

dwarf’s crust.

Within the Standard Model, the closest analogue to a dark asteroid impact would be a comet

impact [647]. However, comets are expected to be rare outside of planetary systems, with the

interstellar comet density bounded orders of magnitude below the DM density [648]. Comets are

also “rubble piles” which fall apart before even reaching the stellar surface, leading to a qualitatively

different signature. By contrast, in simple dark sector models the binding energy of a dark asteroid

may easily exceed its kinetic energy, which is only about (vd/c)
2 ∼ 10−6 of its total mass energy,

implying that ablation is a small effect.

Many additional directions could be explored in future work. For instance, the high DM density

at the galactic center would make it ideal for a focused search, though one would have to model

its distinct stellar populations and use a sightline with low extinction. Globular clusters besides

47 Tuc could be promising, especially if new nearby clusters are found, or confirmed to contain

an intermediate-mass black hole. Milky Way satellite galaxies are more distant but are known to

host a high DM density, and could likely be used to probe higher MDM. At the opposite end of the

mass range, impacts on the Sun are expected to occur annually for MDM ≲ 10−19M⊙, and would be

energetic enough to be easily detected by solar observatories. It would be interesting to see if the

resolution of these instruments permits such impacts to be distinguished from solar flares. In many

of these cases, it may be possible to find impact events in a reanalysis of archival data.

The possibility of detecting dark asteroid impacts in nearby stars provides an interesting target for

UV transient searches with small satellites [649, 650, 651], while more powerful instruments would be

well-suited for focused searches. These observations are enabled by the rapid advance of time-domain

astronomy, which we have shown provides an unusual route to discovering the nature of dark matter.
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6.5 Appendix: Supplemental Calculations

6.5.1 Details of Shock Calculation

In this section, we give further details on the shock wave calculation described in the main body,

which is depicted in Fig. 6.3. The initial cylindrical blast wave has been calculated numerically [652],

and following Ref. [606], its shock strength can be fit as

∆p

p
≃ 2γ

γ + 1

0.4503

(1 + 4.803x3)3/8 − 1
(6.3)

where x = r/R0, and we set γ = 5/3. For x = 10, the shock wave profile closely approximates an

N-wave. The paths of the shock rays for the N-wave are calculated by applying the principle of least

time to the sound speed profile c(r) computed by MESA.

To propagate the N-wave, we use the formulation of Ref. [609], which states that the pressure

profile can be written as

∆p(ℓ, t) = B(ℓ) g(ψ) (6.4)

where ℓ is the arc length along a shock ray. Here, the scaling B(ℓ) ∝
√
ρc/A(ℓ) accounts for energy

conservation as the local density, sound speed, and shock front area A(ℓ) change, and B(0) = 1. The

pressure profile is a function of

ψ = t− τ(ℓ) + g(ψ)A(ℓ) (6.5)

where τ is the travel time, dτ = dℓ/c. In the absence of nonlinear effects, ψ = t− τ , indicating that

the wave maintains its temporal profile. The shock age A accounts for the nonlinearity of the wave,

with dA = (βB/ρc3) dℓ and β = (γ + 1)/2. The pressure profile for an N-wave with initial pressure

amplitude ∆p0 is

g(t) =




−∆p0 t/T0 −T0 ≤ t ≤ T0

0 otherwise
(6.6)

where L0 = 2cT0. Plugging this into the previous results, the pressure amplitude ∆p, length L, and

total shock wave energy E evolve as ∆p = ϵB∆p0, L = L0/ϵ, and E = ϵE0, where

ϵ(ℓ) =
1√

1 + (∆p0/T0)A(ℓ)
. (6.7)

Dissipation by photon diffusion is also present, but it is subdominant for all of the parameter space

probed in Fig. 2 of the main body.

To calculate the total energy release, we discretize the dark asteroid’s trajectory. For each segment,

we match to an N-wave, which determines ∆p0 and T0. This determines the initial N-wave energy



CHAPTER 6. STELLAR SHOCKS FROM DARK ASTEROIDS 163

Figure 6.3: Depiction of the phases of shock propagation (left). A cylindrical blast wave solution
is matched to an N-wave (right) when the shock become weak. The N-wave is propagated along
acoustic rays, and becomes strong and deposits its energy near the surface.

for the segment,

E0 ≃ 2

3

(∆p0)2

ρc2
(AT0c) (6.8)

which is approximately half the energy dissipated by the dark asteroid in that segment. We then

integrate ϵ(ℓ) along each shock ray until the shock becomes strong again. To calculate the final

temperature of each piece of the surface, we take the remaining energy ϵE0 of the shock wave and

assume it uniformly heats the patch of the surface above it, calculating the heat capacity using the

MESA profile. The typical final temperature Tf is defined by an energy-weighted median.

Two main features of this formalism determine the qualitative behavior of Fig. 1 of the main

body. First, the fractional energy dissipation when the shock wave travels a length L is (∆p/p)(β/γ),

as can be shown by expanding Eq. (6.7). (This is equivalent to Eq. (15) of Ref. [613] up to a factor

of 2, which arises because Ref. [613] considers a train of N-waves, while we consider only a single

N-wave.) Therefore, there is a significant loss of energy when the shock originates from deep inside

the star, cutting off sensitivity to low RDM. Second, the typical initial length L0 is not RDM, as

might naively be expected, but the much larger R0 ∼ MaRDM. This allows a significant fraction of

the energy to escape, even though we consider RDM much smaller than stellar scales.

For very low RDM, shock dissipation is very effective, so the shock remains weak all the way to

the photosphere, and continues traveling outward through the stellar atmosphere. The total energy

release is highly suppressed, as indicated at the bottom of Fig. 1 of the main body, but Tf can be

much higher due to the high temperatures of the chromosphere and corona. The detection prospects

would thus be quite different from the UV signals primarily considered in this chapter.

For the opposite limit of large RDM and low dark asteroid densities, the dark asteroid stops

very close to the surface, and the stellar profile changes significantly on the scale R0, rendering the
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cylindrical blast wave solution inapplicable for large x. In these cases, we match at x = 2 when

possible (which we have checked yields almost identical results, in general, to matching at x = 10).

However, when the shock starts so close to the surface that it never becomes weak, our calculation

breaks down entirely, and we simply assume that all the energy escapes, leading to the vertical

contours at the top of Fig. 1 of the main body. To very roughly estimate Tf in this case, we assume

the volume along the shock rays is heated to a uniform temperature.

To illustrate these points, we show results for brown dwarfs and red giants in Fig. 6.4. In red

giants, the shock waves lose the vast majority of their energy and remain weak all the way to the

surface, where the emission is at temperature Tf ∼ T⋆. This makes it difficult to observe dark

asteroid impacts, even though the rate per star is high. For brown dwarfs, the energy released is

high even for very low RDM, but the stellar density profile rises so rapidly that the caveat mentioned

in the previous paragraph applies to a wide range RDM ≳ 1 km. To get a reliable estimate of Tf in

this regime, it may be useful to compare to detailed hydrodynamic studies of comets [653] and rocky

planets [654] impacting Jupiter.

6.5.2 Modeling of 47 Tuc

To find the collision rate between dark asteroids and stars in 47 Tuc, we must estimate the distribution

of both species. For the stellar matter, we fit the surface density data reported by Ref. [655] to a 2D

King model [656],

Σ(r) = k

(
1√

1 + (r/rc)2
− 1√

1 + (rt/rc)2

)2

, (6.9)

where the core radius rc and tidal radius rt are as reported in Ref [655]. Our best fit to the surface

density in the GC core yields k ≃ 6 × 104 M⊙/pc2, and the resulting model agrees to within 30%

everywhere within r < 30 pc, which is sufficiently accurate for our estimates. Assuming the GC is

spherically symmetric, we use the Abel transform,

ρ⋆(r) = − 1

π

∫ ∞

r

dΣ(y)

dy

dy√
y2 − r2

, (6.10)

to obtain the 3D stellar density profile shown in Fig. 6.5.

To model the DM density profile, we assume the globular cluster formed in a DM-rich halo with

initial total DM mass MDM,tot ≃ 260M⋆,GC = 2 × 108M⊙, as inferred from Ref. [629]. We model

this formation halo with an NFW profile [632],

ρ
NFW

(r) =
ρ0(

r
a

) (
1 + r

a

)2 , (6.11)

where a is the scale radius. Here, the reference density is defined in terms of the concentration
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parameter c as

ρ0 =
MDM,tot

4πa3

(
ln(1 + c) − c

1 + c

)−1

. (6.12)

We infer the values of a and c using the estimated age of 47 Tuc of 11.5 ± 0.4 Gyr [657, 658],

corresponding to a formation redshift zf ≃ 3.0 ± 0.5 in a ΛCDM cosmological history. To do this, we

set MDM,tot to the halo’s virial mass

M200 = (200ρc(zf ))
4

3
πr3200, (6.13)

defined as the mass corresponding to an average halo density 200 times the critical density of the

universe at formation, ρc(z) = 3H(z)2/8πG. In a Λ-CDM universe, H(z) = H0

√
Ωm(1 + z)3 + ΩΛ,

where H0 ≃ 67.4 km/s/Mpc today and Ωm = 1 − ΩΛ ≃ 0.315 [659], from which we obtain r200 =

4600 ± 600 pc. The scale radius a is equal to r200/c.

Finally, to compute c, we use the semi-analytic results of Ref. [660] (which are consistent with

the more recent analyses in Refs. [661, 662] for our halo mass), which yield c(z,M200) = 5.8 ± 0.7.

We therefore choose the parameters c = 5.8 and a = 790 pc for the profile shown in Fig. 6.5. Note

that the zf dependence in c and r200 roughly cancels, imply little uncertainty in a. Therefore, our

results are relatively insensitive to uncertainties in the age of 47 Tuc.

After the globular cluster’s formation, the DM is heated through gravitational interactions with

stars, which cores the DM profile. Given a typical DM energy E ∼MDMv
2
rms, the rate of change of

DM energy due to these interactions is [633]

dE

dt
≃ 8(6π)1/2G2ρ⋆MDM ln Λ

(
v2rms + v2⋆,rms

)3/2 (E⋆ − E), (6.14)

where ln Λ ∼ ln(0.4N⋆) is the Coulomb logarithm [663] and N⋆ is the number of stars in the core of

the globular cluster, v⋆,rms is the rms speed of the stars, and E∗ is the average stellar kinetic energy.

Assuming vrms ∼ v⋆,rms and noting that E⋆ ≫ E, the typical heating timescale is

theat =

∣∣∣∣
1

E

dE

dt

∣∣∣∣
−1

∼ 0.0814v3rms

G2M⋆ρ⋆ ln Λ
. (6.15)

Setting theat to the estimated age of 47 Tuc, M⋆ to a solar mass M⊙, and vrms to the measured

velocity dispersion v0 = 12.3 km/s [655] yields ρ⋆ ≃ 86M⊙/pc3. We therefore assume the DM profile

is cored when the stellar density exceeds this value, which corresponds to coring the NFW profile

obtained above at rheat ≃ 5.6 pc.

As a check that our procedure yields sensible results, integrating the cored NFW profile out to

the tidal radius of 47 Tuc gives a total DM mass of 1.9 × 106M⊙, which is roughly consistent with

the results of the Jeans equation solution models of Ref. [626] for NGC 2419. It should be noted,
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however, that 47 Tuc, owing to its greater proximity to the galactic center than NGC 2419, might

have experienced greater stripping of its DM halo.

6.5.3 Event Rate and Telescope Sensitivity

We estimate the observable event rate for a search on nearby stars as

Γtot ≃
1

2

(
4

3
πd3max

)
Ω

4π
n⋆Γ (6.16)

where dmax is the maximum distance at which the events can be observed, n⋆ is the stellar density,

and Ω is the angular field of view. The factor of 1/2 is because impact events can only be seen from

one side of the star. We consider K dwarfs with benchmark M⋆ = 0.7M⊙ and R⋆ = 0.75R⊙, and

following Ref. [664], we estimate the local density of K dwarfs to be n⋆ = 0.0135 pc−3 on the basis of

a local census.

The currently planned field of view of ULTRASAT [665] is Ω = 200 deg2. To find the maximum

distance, we assume the signal energy is released isotropically, so that the observed flux at a distance

d is

F ≃ Esig

texp

2

4πd2
(6.17)

where the factor of 2 is again because events are only visible from the hemisphere of impact, and the

timescale is texp = max(ttyp, 300 s), to account for ULTRASAT’s cadence. We then calculate the AB

magnitude of the events in the ULTRASAT band 220–280 nm, assuming a blackbody spectrum of

temperature Tf . For the events we consider, star noise is subdominant, and the limiting magnitude

for detection at SNR ≥ 5 given a total exposure time 900 s is 22.3. We scale this sensitivity to a time

texp and use it to determine dmax, which we cap at 1 kpc.

For a search in 47 Tuc, the event rate is

Γtot ≃
∫ rmax

0

dr (4πr2)n⋆Γ. (6.18)

Because of mass segregation, we take the stars in the core to be Sun-like, M∗ = M⊙ and R∗ = R⊙.

Since the distance to 47 Tuc is d = 4 kpc, we integrate out to rmax = 2.5 pc, accounting for the field

of view of the WFC3 instrument of HST. We calculate the AB magnitude of the events in the same

way as for ULTRASAT, using the F225W filter, which is most sensitive to wavelengths 210–260 nm.

We infer a sensitivity threshold over a timescale texp = max(ttyp, 300 s) using the measured sensitivity,

at SNR = 5, to sources of magnitude 26.3 in an exposure time 5400 s [666].

Note that because the signal energy varies over orders of magnitude over the parameter space, the

region probed is relatively insensitive to order one factors. For instance, taking a higher threshold,

such as SNR ≥ 10, or removing the factors of 2 discussed above, would not qualitatively change

Fig. 2 of the main body.
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Figure 6.4: Analogues of Fig. 1 of the main body for other star types. The differences in signal
energy at the lowest dark asteroid density are due to the differences in escape velocity at the surface.
Shock dissipation is less severe for brown dwarfs, because dark asteroids are stopped more quickly.
It is much more severe for red giants, because even low density dark asteroids can penetrate to a
substantial depth.
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Figure 6.5: Our modeled stellar and DM density profiles for 47 Tuc. We also show the field of view
of HST, which encompasses the entire stellar core, but only part of the DM core.



Chapter 7

Invisible Vector Meson Decays

This chapter is based on Probing Invisible Vector Meson Decays with the NA64 and LDMX Experi-

ments, by P. Schuster, N. Toro, K. Zhou, Phys. Rev. D 105, 035036 (2022).

Abstract

Electron beam fixed target experiments such as NA64 and LDMX use missing energy-momentum

to detect the production of dark matter and other long-lived states. The most studied production

mechanism is dark Bremsstrahlung through a vector mediator. In this chapter, we explore a

complementary source of missing energy-momentum signals: Bremsstrahlung photons can convert

to hard vector mesons in exclusive photoproduction processes, which then decay to dark matter

or other invisible particles, such as neutrinos. We find that existing NA64 data can improve the

leading constraints on invisible light vector meson decays, while a future run of LDMX could improve

them by up to 5 orders of magnitude. For the examples of a dark photon and a U(1)B gauge

boson mediator, accounting for meson decays substantially enhances these experiments’ sensitivity,

especially to thermal relic dark matter of mass mχ ≳ 0.1 GeV.

169
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Br(V,M → inv) Br(V,M → νν̄) Br(V,M → γ +Xinv) Br(V,M → γνν̄)

ρ0 – 2.4 × 10−13 [3] – unknown

ω < 7 × 10−5 [685] 2.8 × 10−13 [3] – unknown

ϕ < 1.7 × 10−4 [685] 1.7 × 10−11 [3] – unknown

J/ψ(1S) < 7 × 10−4 [687] 2.7 × 10−8 [690] < 1.7 × 10−6 [691] 7 × 10−11 [692]

Υ(1S) < 3 × 10−4 [688] 1.0 × 10−5 [690] < 4.5 × 10−6 [693] 2.5 × 10−9 [681]

π0 < 4.4 × 10−9 [689] see caption < 1.9 × 10−7 [74] 2 × 10−18 [694]

η < 1.0 × 10−4 [686] see caption ≲ 5 × 10−4 [695] ∼ 2 × 10−15 [694]

η′ < 6 × 10−4 [686] see caption ≲ 2 × 10−6 [695] ∼ 2 × 10−14 [694]

Table 7.1: Summary table for invisible and radiative decays of flavorless vector mesons V and
pseudoscalar mesons M . Most experimental bounds are as in Ref. [2], except for invisible π0 decay
and radiative η and η′ decay. The experimental bounds on invisible decays tag decays of a heavier
meson and search for missing mass corresponding to the given meson, while those for radiative decays
search for missing mass from an invisibly decaying X. In the Standard Model, these processes occur
through decays to neutrinos. Note that for the pseudoscalar mesons, decays to two neutrinos are
proportional to m2

ν because of helicity suppression. Thus, decays to four neutrinos may dominate,
but they are also extremely rare [3], being suppressed by (GFm

2
M )4.

7.1 Introduction

Light dark matter (DM) in the sub-GeV mass range has received a surge of interest over the last decade,

triggered by its potential to explain several direct and indirect detection anomalies [667, 668, 669],

and more generally by its viability as a WIMP-like thermal relic in simple dark sector models. Such

models generically predict meson decays with missing energy, and several works explored flavor

violating decays of B mesons, D mesons, and kaons [670, 671, 672], and invisible and radiative decays

of light flavorless mesons [673, 670] and heavy quarkonia [674, 675, 676, 677]. More recently, invisible

and radiative decays of light flavorless mesons [678, 679] and heavy quarkonia [680, 681, 682, 683, 684]

into DM have been reconsidered from an effective field theory perspective.

Motivated by these predictions and others, flavor factories have set limits on invisible meson decay,

as we show in Table 7.1. Invisible decays of the light mesons ω, ϕ, η, and η′ have been searched for

at BES [685, 686], and the leading constraints on the invisible decay of heavy quarkonia J/ψ and Υ

have been set at BaBar [687, 688]. Recently, NA62 [689] has set a stringent limit on invisible decays

of π0 mesons.

In this chapter, we describe a new method for detecting invisible meson decay. Existing searches

tag the invisibly decaying meson by producing it through the decay of a heavier meson. By contrast,

missing energy/momentum experiments such as NA64 [696, 697] and LDMX [698, 699] are sensitive

to any process in which a beam electron transfers most of its energy to invisible particles, leading

to a missing energy signal with no accompanying penetrating particles. The exclusive production

and invisible decay of an energetic meson contributes to this inclusive missing energy signal. As a
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result, such experiments may be used to simultaneously set limits on the invisible branching ratios

of all kinematically accessible mesons, potentially strengthening existing constraints by orders of

magnitude. These electron beam experiments are conventionally interpreted as probes of the DM

coupling to electrons, but as we will see, their sensitivity to invisible meson decays also offers a

powerful probe of the DM or light mediator couplings to quarks.

We will consider dark sector models where the DM particle χ interacts with a vector mediator A′

which in turn interacts weakly with quarks, focusing on the well-motivated examples of a kinetically

mixed dark photon [700, 701] and a U(1)B gauge boson [702, 703, 704, 705]. (For reviews of

dark sectors and dark photons, see Refs. [706, 707, 708, 709].) Such models can be probed by

the invisible decays of flavorless vector mesons. This signature is particularly promising because

photons impinging on nuclei can efficiently convert into these mesons, through exclusive forward

photoproduction reactions that transfer little energy to the recoiling nucleus or nucleon. Our work

thus complements Ref. [710], which focuses on invisible decays of light pseudoscalar mesons.

A simple estimate demonstrates the potential of our approach. At NA64 or LDMX, the sequence

of events that leads to a missing energy/momentum signal from invisible vector meson decay is

shown in Fig. 7.1. The expected yield of the vector meson V through exclusive photoproduction

is NV = NefbrempV , where Ne is the number of electrons on target, fbrem is the fraction that

produce a hard Bremsstrahlung photon, and pV is the probability the photon undergoes an exclusive

photoproduction process.

Most photons initiate an electromagnetic shower through a photon-conversion process, with cross

section σγN→e+e−N ≃ 7mN/9X0, where mN is the mass of the nucleus and X0 is the radiation

length. The photoproduction cross section is σγN→V N = fVnucAσ
V
0 , where σV0 is the cross section for

exclusive photoproduction on a single nucleon, and fVnuc is an order-one correction factor. Thus,

pV ≃ 9

7

σV0 X0f
V
nuc

mp
= 10−5 X0

12.86 g/cm2

σV0
1 µb

fVnuc
1.0

(7.1)

where we have normalized to the radiation length for copper. Typically σV0 is on the order of 1 µb,

so that given the LDMX Phase II design parameters Ne = 1016 and fbrem = 0.03, we expect meson

yields on the order of 109 to 1010. This leads to the strong projected bounds on invisible vector

meson decay shown in Fig. 7.2. As we will see, at high mA′ , the corresponding sensitivity to dark

sector models exceeds that due to A′ Bremsstrahlung, largely because the latter is parametrically

suppressed by (me/mA′)2.

The rest of the chapter is structured as follows. In section 7.2, we describe in greater detail how

invisible meson decay can give rise to missing energy/momentum signals at NA64 and LDMX. In

section 7.3, we estimate the exclusive photoproduction yields of the relevant vector mesons, reserving

details for the appendix. We calculate the invisible branching ratios in the dark photon and U(1)B

models in section 7.4, and show the resulting projected constraints in section 7.5. We conclude by
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Figure 7.1: Schematic depiction of the DM signal at LDMX from A′ Bremsstrahlung (top) and
invisible vector meson decay (bottom). In the former, DM is produced through an on- or off-shell
A′ in the target. In the latter, a hard photon is produced in the target, and converts to a vector
meson V in an exclusive photoproduction process in the calorimeter. The vector meson then decays
invisibly to DM via mixing with the A′.

discussing potential future directions, such as experimental studies and applications to neutrino

physics, in section 7.6.

7.2 Missing Energy/Momentum Experiments

Fixed target experiments have emerged as a powerful probe of light dark sectors [711, 712, 713]. In

this chapter, we focus on the missing energy approach [714], exemplified by NA64, and the missing

momentum approach [715], exemplified by the proposed LDMX experiment. In both cases, individual

electrons from a low-intensity electron beam are tagged and directed at a target. Dark matter

production through A′ Bremsstrahlung, shown at the top of Fig. 7.1, leads to an observed final

state consisting solely of a much lower-energy (and transversely deflected) recoil electron, with the

rest of the energy carried by the produced DM particles, which pass through the detector without

interacting. These events are identifiable with order-one efficiency by measuring the electron’s energy

loss with downstream tracking and/or calorimeters, together with the absence of other detected

particles that could have carried the energy away. Missing energy/momentum experiments must

measure the detector response to one electron at a time, which limits their event yield. Nonetheless,

they can match or exceed the sensitivity of much higher-luminosity beam dump experiments to

weakly coupled light DM, as beam dumps are only sensitive to the small fraction of DM production

events where the DM rescatters in a downstream detector.

In the missing energy approach, the target is the front of the electromagnetic calorimeter itself.

By contrast, in the missing momentum approach, DM production occurs in a thin target separated

from the electromagnetic calorimeter, allowing the electron to be subsequently deflected and tracked
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Figure 7.2: Bounds on invisible meson decay, summarizing information from Tables 7.1 and 7.3. We
show the best current bound, our projected 90% C.L. exclusions for four experimental benchmarks
(assuming zero background events), and the invisible branching ratio within the SM due to decays to
neutrinos.

downstream of the target. This enables a higher degree of background rejection, as well as in situ

background measurements that would lend credence to any claimed discovery.

In both experimental approaches, electrons often produce hard Bremsstrahlung photons in the

target which carry away the majority of their energy, and such events must be rejected extremely

reliably. A key potential source of background is the case where the hard photon initiates a

hadronic shower through an exclusive photoproduction process, such as γp → π+n or γN →
NKSKL. Reliably rejecting these photonuclear reactions is an important design driver for the

downstream electromagnetic and hadronic calorimeters, which has been studied in detail for LDMX

in Refs. [698, 699].

The main point of this chapter is that the exclusive photoproduction of vector mesons, γN → V N ,

can also be an important source of real missing energy/momentum signals. These vector mesons

carry almost all of the original photon’s energy, and decay well before directly interacting with any

other nuclei in the calorimeters. If they decay to invisible final states such as DM, as shown at the

bottom of Fig. 7.1, then the entire process leaves no trace of the original photon besides the recoil

energy of the nucleus or nucleon. Therefore, it is crucial to understand the efficiency with which

these recoils survive vetoes used by NA64 and LDMX to reject Standard Model backgrounds. While

this is ultimately an experimental question, we will argue below that these survival probabilities

should be of order one.
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As discussed in the following section, meson production proceeds through both coherent and

incoherent processes. Coherent production involves scattering off an entire nucleus, and is peaked

at very low momentum transfer q ≲ 1/rnuc. Even for a light target nucleus such as silicon, this

corresponds to recoil kinetic energies below 100 keV. Such energy depositions are unobservably

small, especially given the likelihood that the nucleus would never even reach active material of the

calorimeter. Thus, coherent meson photoproduction produces an unambiguous missing energy signal.

It accounts for most of the light meson yield at NA64, and about half of the meson yield at LDMX.

However, it is form factor suppressed for heavy mesons, such as ϕ mesons at LDMX and J/ψ’s at

NA64.

In these cases, incoherent production dominates; it leads to recoils off individual nucleons, with

characteristic momentum transfer ∼ 500 MeV. Therefore, the nucleons receive a typical kinetic

energy ∼ 100 MeV, and recoil at wide angles of 50◦ to 70◦ from the beamline. These energies are

near the sensitivity limits of the detectors.

For example, a proton with 50 MeV kinetic energy at these angles would stop within one tungsten

absorber layer of the LDMX ECal, and thus could be completely undetectable. By contrast, a

200 MeV proton could travel through 5 to 10 layers and leave a short track, similar to those LDMX

has proposed to use to reject short-lived charged kaon backgrounds [699]. These higher-energy

proton recoils may also be vetoed by NA64’s selections on the lateral and longitudinal shape of the

electromagnetic shower [714]. When the scattered nucleon is a neutron, it would miss the NA64

HCal completely due to the wide production angle and so is presumably undetectable, but the veto

efficiency of the LDMX side HCal for wide-angle, low-energy neutrons is marginal (e.g. see Fig. 50 of

Ref. [698]).

Properly determining the signal efficiency for incoherent meson production is thus an experimen-

tal question that requires detailed simulation and, preferably, in situ performance measurements.

Nucleons with recoil energies below 50 MeV are virtually assured to appear as missing energy, while

those with recoil energies up to 200 MeV would survive vetoes with an order one probability. For

this chapter, we therefore take a kinetic energy cutoff of 100 MeV for both protons and neutrons at

NA64 and LDMX. However, as discussed below, our results are generally not qualitatively sensitive

to the choice of cutoff.

We note that at LDMX, the pT distribution of missing-energy events from meson photoproduction

and invisible decay matches that of ordinary Bremsstrahlung, not the higher-pT spectrum expected

from A′ Bremsstrahlung. Therefore, electron pT does not offer any additional discriminating power

between the meson-induced signal and Bremsstrahlung-initiated background. This does not impact our

sensitivity analysis, which is based on LDMX projections that assume sub-single-event backgrounds

before any additional electron pT requirements. However, it does limit the toolkit available for

distinguishing a meson-induced signal from mismodeled backgrounds.

We will numerically estimate meson yields for four experimental benchmarks, described in
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Table 7.3. First, we consider both existing NA64 data using a 100 GeV beam, and the results of

a future run with roughly 20 times more electrons [87] at similar energies. At NA64, an event is

potentially identified as signal if more than half of the energy is missing. On the basis of the thick

target Bremsstrahlung results of Ref. [716], we estimate that a fraction fbrem ≈ 0.5 of the electrons

result in a hard photon carrying at least this much energy, and since the Bremsstrahlung spectrum is

roughly flat, we take a typical photon energy of 75 GeV. For LDMX, we consider the two nominal

stages of running described in Ref. [698], assuming a thin, 10% radiation length tungsten target.

For the 4 GeV “Phase I” benchmark, the trigger requires the electron to lose more than 2.8 GeV of

its energy, which occurs via Bremsstrahlung to a fraction fbrem ≈ 0.03 of the electrons, resulting in

photons with typical energy 3.5 GeV. For the 8 GeV “Phase II” benchmark, we double these energy

numbers.

7.3 Vector Meson Photoproduction

Our next task is to refine our estimate of the exclusive photoproduction yield NV . Proton beam

dumps face a similar problem, as in their case, pseudoscalar meson decay is an important source

of DM. Typically, the reach of a proton beam dump experiment is estimated using Monte Carlo

simulations (e.g. see Refs. [717, 718, 719]), which are tuned to match data at the ∼ 25% level.

However, this approach is unnecessary for our purposes. Particle transport Monte Carlo programs

such as Geant4 [720] excel at modeling the complex secondary interactions that occur for typical

photons. This level of modeling is not required for our study, where photons only undergo a single,

exclusive photoproduction process, and the vector mesons produced in these reactions decay well

before interacting with any matter in the downstream detector.

In fact, a simulation-based approach is also inadequate, as neither Geant’s hadronic models nor

particle physics Monte Carlos such as Pythia [721] include careful modeling of exclusive photopro-

duction processes. Pythia’s parton-based modeling is designed for the deep-inelastic regime, while

our reactions of interest are in the diffractive regime. Meanwhile, Geant4 [722] does not include

short-lived resonances in its hadronic models, but rather treats reactions such as γp → ρp as a

component of, e.g., γp→ π+π−p. More specialized programs such as GiBUU [723] do propagate the

light vector mesons through nuclei, but no semiclassical procedure can adequately describe coherent

photoproduction, which often accounts for most of the meson yield. For heavy nuclei and high

photon energies, neglecting coherent photoproduction underestimates the yield by up to an order of

magnitude.

Therefore, we will focus on estimating the yield transparently from a combination of theory and

experimental measurements. Of course, to study more experimentally subtle questions, such as the

probability of vetoing a recoiling nucleon from incoherent photoproduction, the models discussed below

would need to be embedded into a Monte Carlo program with appropriate systematic uncertainties.
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Figure 7.3: Differential cross sections for coherent (dashed) and incoherent (solid) ω photoproduction.
We also show contours of nucleon recoil energy for the incoherent process.

To begin, we refine Eq. (7.1) to account for the fact that the calorimeters are comprised of layers

containing different nuclei. Weighting by the photon survival probability yields

pV =

∫ ∞

0

exp

(
−
∫ x

0

7ρ(x′)
9X0(x′)

dx′
)
ρ(x)σV0
mp

fVnuc(x) dx. (7.2)

For both NA64 and LDMX, this integral is largely determined by the composition of the front of the

electromagnetic calorimeters. At NA64, most of the mesons are photoproduced in the lead absorber

layers, with most of the remainder from carbon in the plastic scintillator [697]. For LDMX, about

half of the mesons are photoproduced from carbon, silicon, and oxygen in the preshower, while most

of the rest are photoproduced in the tungsten absorber layers [724]. Note that in general, pV is

higher for materials with lighter nuclei, because the radiation length scales as X0 ∼ A/Z2, due to

coherent scattering off the Z protons.

The per-nucleon exclusive photoproduction cross section σV0 has been thoroughly measured for

all relevant mesons in the entire energy range of interest. We extract the light vector meson cross

sections in Table 7.3 from the theoretical fit of Ref. [725]. For the ϕ meson, Pomeron exchange is the

dominant contribution, explaining the characteristic slow rise in cross section with energy. For the

ρ and ω mesons, exchanges of light mesons such as the f2(1270) and π0 dominate for low energies,

while Pomeron exchange takes over at high energies, explaining why the cross section remains fairly

high at NA64 energies.
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Ne Ee Eγ fbrem σρ
0(µb) σω

0 (µb) σϕ
0 (µb) Nρ Nω Nϕ

NA64 (cur.) 2.8× 1011 100 GeV 75 GeV 0.5 9 0.8 0.7 7× 106 5× 105 5× 105

NA64 (ult.) 5× 1012 100 GeV 75 GeV 0.5 9 0.8 0.7 1.2× 108 9× 106 8× 106

LDMX I 4× 1014 4 GeV 3.5 GeV 0.03 23 5 0.4 1.1× 109 1.9× 108 1.1× 107

LDMX II 1016 8 GeV 7 GeV 0.03 16 1.9 0.5 3× 1010 3× 109 5× 108

Table 7.2: Total electrons on target Ne, electron energy Ee, and estimated fraction fbrem of electrons
that yield hard Bremsstrahlung photons (with typical energy Eγ), for our four benchmarks, as
discussed in section 7.2. We also show the per-nucleon exclusive light vector meson photoproduction
cross sections and the estimated total meson yields, calculated as described in section 7.3. The
estimated number NJ/ψ of J/ψ mesons produced at NA64, not shown in the table, is 6×103 (current)
and 1.1 × 105 (ultimate).
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Naively, the cross section for nuclei is simply the incoherent sum AσV0 , but the computation of

the correction factor fnuc is nontrivial. To proceed, we must note that mesons can be exclusively

photoproduced through two distinct processes. In the coherent process, the nucleus remains in its

ground state and recoils as a whole, leaving it with negligible kinetic energy; it is peaked at very low

momentum transfer, with a scale set by the radius of the nucleus. In the incoherent process, the

meson recoils off an individual nucleon, and the characteristic momentum transfers are somewhat

higher, being set by Pomeron physics. These qualitative features are shown in Fig. 7.3.

We separate the contributions of these processes by defining finc,coh = σinc,coh/Aσ0, where

fnuc = finc + fcoh. Naively, the cross section for the incoherent process scales as A, but it is

suppressed by absorptive final state interactions. In the limit of a very large, opaque nucleus, the

effective number of nucleons participating is determined by the geometric cross section of the nucleus,

Aeff ∼ r2nuc ∼ A2/3, leading to the rough scaling finc ∼ A−1/3. It is further suppressed by nuclear

shadowing, a destructive interference effect most important at high photon energies.

In the coherent process, the photoproduction amplitude is coherently summed over the nucleons,

leading to a forward differential cross section dσcoh/dt|θ=0 that naively scales as A2. The coherent

peak extends up to t ∼ 1/r2nuc ∼ A−2/3, implying a rough scaling fcoh ∼ A1/3, though it is also

suppressed for heavy nuclei by absorptive final state interactions. In contrast to the incoherent process,

the coherent cross section increases at higher photon energies, because a lower longitudinal momentum

transfer q∥ ≈ m2
V /Eγ is required to produce the meson, leading to constructive interference across

the entire nucleus. These qualitative features are shown in Fig. 7.4.

The coherent and incoherent cross sections on nuclei can be measured separately, since coherent

production is peaked at very low momentum transfer. For the light vector mesons, the coherent cross

sections have been thoroughly measured decades ago, for a wide variety of nuclei and photon energies,

and a standard Glauber optical model fits the data; we estimate that the theoretical uncertainty is

at most 25%. The subleading incoherent cross section is less well-measured, and the data is more

ambiguous; here we estimate an uncertainty of up to 50%. Further details on the theoretical modeling

and experimental measurements may be found in the appendix, but for the purposes of estimating

the reach, the conclusion is simply that fnuc is close to one for most energies and nuclei we consider,

as shown in Fig. 7.5. We compute the entries in Table 7.3 by additionally requiring that the nucleon

recoil energy be less than 100 MeV for the incoherent process, which decreases the incoherent yield

by up to 50%. However, as shown in the appendix, our results are not strongly dependent on the

precise choice of cutoff; it is usually the uncertainty on the coherent and incoherent cross sections

that dominates.

We may also consider heavier vector mesons, and the most promising example is J/ψ photopro-

duction at NA64. Following HERA data [726], we estimate a per-nucleon elastic photoproduction

cross section of σ
J/ψ
0 = 15 nb at NA64 energies. Photoproduction of J/ψ on nuclear targets may

also be described by optical models, which have been recently refined within the leading twist
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fV,X (MeV) ρ ω ϕ

ūγµu 157 136 8

d̄γµd −148 142 8

s̄γµs 0 −10 233

JµEM 154 46 −75

JµB 2.8 89 83

Table 7.3: Form factors describing the coupling of a light vector meson V to a current X.

approximation to treat ultraperipheral ion collisions at the LHC (e.g. see Ref. [727]). Fortunately, it

is much more straightforward to treat the lower center-of-mass energies at NA64, Wγp ∼ 10 GeV. In

this case, the high longitudinal momentum transfer strongly suppresses coherent photoproduction

and nuclear shadowing in incoherent photoproduction. Furthermore, final state interactions are

relatively unimportant because the J/ψ-nucleon cross section is several times smaller than for the

light vector mesons [728]. We may thus estimate fcoh ≈ 0, finc ≈ 1, with accuracy comparable to our

other yield estimates.

NA64 can also produce Υ mesons, but the cross sections at its energies are orders of magnitude

smaller than for J/ψ, making it uncompetitive with the current BaBar constraint. Meanwhile, at

LDMX energies, Υ production and incoherent J/ψ production are kinematically forbidden. Coherent

J/ψ production is kinematically allowed, but our optical models are not necessarily trustworthy in

this very high momentum transfer regime; in any case, they predict a very strong suppression. We

thus consider only J/ψ production at NA64, yielding the final column of Table 7.3.

7.4 Invisible Branching Ratios

Given the meson yields shown in Table 7.3, LDMX and NA64 can place a 90% C.L. limit Br(V →
inv) ≤ 2.3/NV on the invisible branching ratio of each relevant meson, assuming zero background

events and neglecting theoretical uncertainty, yielding the results shown in Fig. 7.2. We expect that

current NA64 data could already set a strong limit on the invisible decays of the ρ meson, improve the

bounds for ω and ϕ by about an order of magnitude, and improve the J/ψ bound by roughly a factor

of 2. Of course, actually setting such limits would require a more detailed analysis of theoretical

uncertainties and experimental efficiencies, since our projections consider only statistical uncertainty.

Future NA64 data will improve on all of these results by roughly a factor of 20. In particular,

the resulting limit on J/ψ invisible decay would be competitive with the projected limit Br(J/ψ →
inv) ≤ 3 × 10−5 from a future run of BES III [729]. LDMX could further improve on the light meson

results by orders of magnitude, highlighting the potential of missing energy/momentum experiments

as precision probes of meson physics.

To constrain specific dark sector models, we must compute the expected invisible branching ratio
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of each meson. For concreteness, we focus on dark sectors with pseudo-Dirac fermion DM, and a

vector mediator with interactions

L ⊃ ϵeA′
µJ

µ
X + gD A

′
µχ̄γ

µχ (7.3)

where ϵ is the kinetic mixing parameter, and JµX =
∑
q cq q̄γ

µq stands for the electromagnetic current

JµEM (cq = Qq) or the baryon current JµB (cq = 1/3). For the U(1)B model, we also assume a loop-

suppressed kinetic mixing ϵe/(4π)2 with the photon. This does not affect the meson decay signature,

but is relevant for computing the reach from A′ Bremsstrahlung and the thermal relic target below

the two-pion threshold. For the dark sector parameters, we take benchmarks αD = g2D/4π = 0.5 and

mA′/mχ = 3.

To compute the invisible branching ratios for light vector mesons, we first find the relevant form

factors, defined by ⟨0|JµX |V (ϵ)⟩ = imV fV,Xϵ
µ. From the results of Appendix C of Ref. [730], which

accounts for ϕ-ω and ρ-ω mixing, we infer the first three rows of Table 7.3, giving the couplings fV,q

to light quark currents q̄γµq. Note that fρ,s vanishes because we are ignoring the small effect of ρ-ϕ

mixing, but this does not qualitatively affect the results. Next, we straightforwardly infer the bottom

two rows of Table 7.3. Here, fω,EM is suppressed due to a partial cancellation between the u and d

components, while fρ,B is strongly suppressed, because it is only nonzero due to mixing effects.

The amplitude for an on-shell vector meson V to decay to χχ̄ through a virtual A′ is

M =
ηµν − qµqν/m2

A′

q2 −m2
A′

(gDϵe)(ū(p)γνv(p′))(mV fV,Xϵµ) (7.4)

where qµ is the meson’s momentum. Squaring and summing over final spins and averaging over

initial meson polarizations ϵµ gives the decay rate

ΓV→χχ̄ =
αD(ϵe)2f2V,X

3

(m2
V + 2m2

χ)
√
m2
V − 4m2

χ

(m2
A′ −m2

V )2 + Γ2
A′m2

A′
(7.5)

in the frame of the meson. The resonant peak is cut off by the width ΓA′ of the A′ due to decay to

DM, where for our dark sector model,

ΓA′

mA′
=
αD
3

√
1 − 4m2

χ/m
2
A′ (1 + 2m2

χ/m
2
A′). (7.6)

for on-shell A′. (These results can equivalently be derived by considering mixing with the A′ in the

vector meson dominance framework, e.g. see Ref. [83].) The expected number of missing energy

events via production of V is then NV ΓV→χχ̄/ΓV .

However, in the above derivation, we have implicitly applied the narrow width approximation for

the vector meson V by taking it to be on-shell. A more accurate expression is obtained by averaging

Eq. (7.5) over the spectral density of photoproduced V ’s, or equivalently, by treating both V and A′
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as intermediate states in the full γN → χχ̄N process. In particular, when ΓA′ ≪ ΓV but the two

resonances overlap, |mA′ −mV | ≲ ΓV , it is more accurate to apply the narrow width approximation to

the A′. Assuming a Breit–Wigner lineshape for both resonances, the resulting correction is equivalent

to multiplying Eq. (7.5) by ΓV /ΓA′ and replacing ΓA′ with ΓV in the denominator. We apply this

correction when showing results for the ρ meson, which is about twice as wide as the A′ for nearby

masses, resulting in a flattening and broadening of the resonant peaks.

When the masses are widely separated, |mA′ −mV | ≫ ΓA′ ,ΓV , the situation is more subtle. Here,

the spectral density has two distinct contributions. The contribution at q2 ≈ m2
V corresponds to

the standard result from on-shell V ’s, while the additional contribution at q2 ≈ m2
A′ corresponds to

production of far off-shell vector mesons that mix with a nearly on-shell A′. The contribution of this

second peak can be comparable or even greater, especially when αD ≪ 1. It cannot be interpreted in

terms of an invisible branching ratio of the ρ, but it does enhance the signal rate. However, properly

evaluating this contribution would require a more detailed treatment of the momentum-dependence of

the photon-ρ Pomeron vertex, the final-state phase space, and the spectral shape of the ρ. Therefore,

we conservatively neglect it in this initial study.

Finally, for the J/ψ(1S), we compute the invisible decay width by comparing it to the decay

width to e+e−, as in Ref. [731]. Because the quarks carry spin 1, the quark spinor bilinear ūγµv is

purely spatial, which implies that the longitudinal term in the A′ propagator does not contribute to

the amplitude. As a result, the two decay widths are identical up to constants and kinematic factors,

giving

Br(J/ψ → χχ̄)

Br(J/ψ → e+e−)
=
αD
αe

(
ccϵ

Qc

)2 mV (m2
V + 2m2

χ)
√
m2
V − 4m2

χ

(m2
A′ −m2

V )2 + Γ2
A′m2

A′
(7.7)

where we used me ≪ mV = mJ/ψ. In the limit mχ,mA′ ≪ mV , the final factor reduces to unity,

leaving the expected ratio of couplings.

7.5 Projected Reach

For a specific dark sector model, the expected number of signal events is Nsig =
∑
V NV Br(V → inv),

and if no signal and background events are seen, a 90% C.L. limit may be set on the model by

imposing Nsig < 2.3. In Fig. 7.6, we show the current and projected constraints on the dark photon

model from individual mesons. As indicated in the left panel, current constraints on the invisible

decays of J/ψ and the light vector mesons are not competitive with the leading experimental bounds.

However, as shown in the right panel, missing energy experiments can improve the latter constraints

by up to 5 orders of magnitude, in the case of LDMX Phase II. When combined with the projected

improved measurements of J/ψ and Υ invisible decays, we find that meson decays alone can probe a

substantial portion of the thermal freeze-out “target” region of couplings for mχ ≳ 0.1 GeV.

In Fig. 7.7, we show the same results for a U(1)B gauge boson mediator. In this case, most
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Figure 7.6: Constraints on the dark photon model with fermionic DM. At left, we show existing
constraints from current bounds on invisible vector meson decays, as well as those from the beam
dumps LSND [68, 69], E137 [70, 71], MiniBooNE [72], and COHERENT [73], radiative pion decay at
NA62 [74], the missing energy experiment NA64 [75, 76], production in e+e− collisions at BaBar [77],
and precision measurements of the Z0 mass at LEP [78]. At right, we show the strongest projected
90% C.L. exclusions from invisible decays of each meson alone. For the light vector mesons and J/ψ,
these constraints will come from LDMX and NA64, respectively, assuming zero background events.
For the Υ, we take the projected limit Br(Υ → inv) < 1.3 × 10−5 from Belle II [79].
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Figure 7.7: Same as Fig. 7.6, but in the U(1)B model. In this case, the leading existing constraints
are from CCM [80, 81] (rescaled to mA′/mχ = 3 using Ref. [82]), NA62 [74] (recast for a U(1)B
gauge boson using Ref. [83]), MiniBooNE [72] (rescaled to αD = 0.5), and rare processes K → πX
and Z → γX, which have 1/m2

A′ enhanced rates due to the U(1)B anomaly [84, 85]. These latter
constraints are shaded more lightly at right, since they may be removed by coupling to a nonanomalous
current such as B − 3Lτ . Thermal relic curves assume a loop-suppressed kinetic mixing with the
photon, and are computed as in Ref. [86].
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Figure 7.8: Projected 90% C.L. exclusions for the four experimental benchmarks described in
Table 7.3, assuming zero background events, in the dark photon (left) and U(1)B (right) models,
both with fermionic DM. For comparison, we also show projections for Belle II [79], and for A′

Bremsstrahlung at LDMX Phase II [86] and a future run of NA64 [87]. For projections from proton
beam experiments, see Ref. [88].
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constraints on dark photons do not apply, because they depend on the dark photon’s coupling to

electrons. Instead the strongest constraints for most masses come from precision measurements of

rare processes, which are enhanced due to the U(1)B anomaly, though invisible Υ decay remains the

strongest constraint at high masses. Despite these strong existing bounds, the projected future reach

from meson decay probes new parameter space for mχ ≳ 0.1 GeV, and covers almost the entirety of

the thermal freeze-out region. The sensitivity to invisible ρ meson decay is suppressed by a small

form factor, as noted above, but this is compensated by increased sensitivity to invisible ω decays.

Referring to Table 7.1, invisible decays to neutrinos in the Standard Model remain a negligible

background for the light vector mesons, even at LDMX Phase II. However, they imply that any

future meson decay experiment will only be able to probe 2 to 3 orders of magnitude beyond LDMX

Phase II, before running into a “neutrino floor” that slows further progress. For the J/ψ, this floor

is a few orders of magnitude beyond the NA64 (ultimate) projections, while Belle II will nearly reach

the Υ floor. Conversely, by searching for invisible meson decays, LDMX and NA64 will also be

sensitive to neutrino-quark interactions from physics beyond the Standard Model. As we discuss in

section 7.6.3, they could provide the leading bounds on several effective operators that are otherwise

difficult to probe with upcoming neutrino experiments.

In Fig. 7.8, we show the constraints on dark sectors for our four experimental benchmarks. The

main qualitative feature is that in all cases, meson decay improves the reach of these experiments for

mA′ ≳ 0.5 GeV. In this regime, the reach due to A′ Bremsstrahlung is weak, due to the (me/mA′)2

suppression of the Bremsstrahlung cross section, and the fact that the higher momentum transfer

begins to resolve heavy nuclei. In the case of NA64, meson decay does not currently probe new

parameter space. However, it will allow future runs of NA64 to probe the thermal freeze-out region at

masses around the resonances mA′ ≈ mV , up to an order of magnitude higher in mass than through

A′ Bremsstrahlung alone. Meson decay also extends the reach of LDMX upward in mass, by roughly

a factor of 2. We note that the reach from Belle II is highly complementary: when combined with

LDMX, the thermal freeze-out region from MeV to GeV masses will be well explored.

For the U(1)B model, meson decay dramatically improves the reach of both NA64 and LDMX,

since the A′ Bremsstrahlung channel is penalized by the loop-suppressed coupling to electrons.

Typically, these experiments are viewed as probing mediator couplings to electrons, while proton

beam experiments probe couplings to quarks. The meson decay signature discussed here shows that

electron beam experiments can have competitive sensitivity to quark couplings.

The constraints we show fall sharply at threshold, 2mχ = mV , but in fact, heavier dark matter

can be produced in these experiments through the decays of heavier mesons, such as the resonances

ω(1420) and ρ(1450) of the light vector mesons. The main obstacle to predicting this sensitivity is

the lack of data on photoproduction cross sections for these resonances. We expect the sensitivity to

be lower, due to the larger width of the resonances, but potentially still high enough to probe new

parameter space. Similarly, for the J/ψ, one can consider production of excited charmonium states
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such as ψ(2S).

It is also interesting to consider how the reach due to meson decay depends on the dark sector

parameters ϵ, αD, mχ, and mA′ . First, both the thermal annihilation cross section and the invisible

meson decay rate are proportional to ϵ2αD, which implies that for a fixed mass ratio R = mA′/mχ,

both of these curves are roughly independent of αD on a y vs. mχ plot. Therefore, invisible meson

decay maintains its relative sensitivity to the thermal freeze-out region for lower αD, though the

reach due to A′ Bremsstrahlung improves. (However, as mentioned in Section 7.4, the invisible decay

rate might actually be enhanced at lower αD because of the contribution of off-shell vector mesons

mixing with on-shell A′.)

The effect of changing the mass ratio R is shown in Fig. 7.9. For low mA′ , increasing R rapidly

improves the reach in y of both A′ Bremsstrahlung and meson decay, because y ∝ 1/R4, while

in this regime the A′ Bremsstrahlung rate is proportional to 1/R2, and the invisible meson decay

rate is independent of R. Increasing R allows invisible meson decay to probe very high mediator

masses, mA′ ≫ mV , even though the mixing with the vector meson is lowered. In this regime A′

Bremsstrahlung would be strongly suppressed because of the high momentum transfer required to

produce the A′, but invisible meson decay is not, as the momentum transfer is set by mV rather

than mA′ .

Because invisible meson decay proceeds through off-shell mediators, it also occurs in the “forbidden”

regime R < 2, where an on-shell A′ cannot decay to DM. In this case, there may be complementary

constraints from visible A′ decay, and there is still a predictive thermal target for sufficiently high

mA′ and αD [86]. However, the potential to reach these targets through the meson decay signature

is weaker because of the scaling with R mentioned in the previous paragraph.

7.6 Future Directions

7.6.1 Additional Meson Decays

We have focused on the invisible decay of vector mesons as a probe of dark sectors with vector

mediators, but there are numerous potential extensions. First, missing energy experiments will also

set leading, but weaker limits on the invisible decay of pseudoscalar mesons. NA62 has set a strong

bound on invisible π0 decay, which seems difficult to improve upon, but the bounds on invisible η

and η′ decay are quite weak. Since these mesons have a different spin from the photon, they cannot

be photoproduced by Pomeron exchange. Instead, their exclusive photoproduction is described by

Reggeon exchange, leading to cross sections that rapidly fall with energy [732, 733]. This suppresses

the yield of these mesons at NA64, though both NA64 and LDMX should still be able to significantly

improve bounds for η and η′.

In a similar vein, it could be interesting to investigate the invisible decay of scalar mesons

(JPC = 0++), such as the f0(980) and a0(980), as these provide complementary information to the
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Figure 7.9: Projected 90% C.L. exclusions from invisible vector meson decay at LDMX Phase II
in the dark photon model, for several choices of the mass ratio R = mA′/mχ. Thermal targets are
shown for R = 3, and are roughly independent of the mass ratio except when R− 2 is small.

invisible decay of vector mesons. However, there is currently little data on the photoproduction of

these mesons, with the first measurements only made comparatively recently [734, 735].

The invisible decay of neutral kaons has never been measured, and both NA64 and LDMX should

be able to set strong bounds, without requiring a kaon beam. We note, however, that there are

several complications that suppress the potential sensitivity. First, as for η and η′, the exclusive

photoproduction cross sections for KS and KL fall rapidly with energy. Due to conservation of

strangeness, kaon photoproduction converts a nucleon to a hyperon. This implies a minimum energy

deposition in the calorimeters of about 200 MeV when the hyperon decays; determining the associated

veto efficiency requires further detector study. Finally, the KL is sufficiently long-lived that there is

a substantial penalty from demanding that it decay before interacting with the calorimeters.

Mesons can also undergo radiative decays, into a photon plus missing energy. For both LDMX and

NA64, the signal efficiency for such a process is penalized because the photon must carry sufficiently

little energy. This is relatively unimportant at NA64, where the photon may carry a substantial

fraction of the meson’s energy, but at LDMX we require the photon to be soft enough to completely

avoid detection in the calorimeters, which requires it to be emitted nearly backwards in the meson’s

frame. It may be possible to partially circumvent this penalty by allowing a small amount of energy

to be detected in the calorimeters, but this could introduce other backgrounds, which would require

a more detailed study to evaluate.
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mediator coupling V → χχ̄ V → γχχ̄ M → χχ̄ M → γχχ̄

scalar q̄q ✓

pseudoscalar q̄γ5q ✓ ✓

vector q̄γµq ✓ ✓

axial vector q̄γµγ5q ✓ ✓

Table 7.4: Quark couplings to mediators that can cause invisible and radiative decays of vector
mesons V (JPC = 1−−) and pseudoscalar mesons M (JPC = 0−+).

In particular, missing energy experiments could improve bounds on radiative η and η′ decay by

orders of magnitude, extending existing constraints associated with radiative π0 decay to higher A′

mass. Constraints on this process could also be set using existing data at BES [736] and KLOE [737],

and much stronger future constraints could come from “η-factory” experiments [738], such as the

upcoming JEF [739] and proposed REDTOP [740].

7.6.2 Additional Dark Sectors

We have focused on dark sectors with vector mediators because they are probed by invisible vector

meson decay, but as indicated in Table 7.4, the other meson decays discussed in the previous section

can probe other types of mediators. Here we consider each possibility in turn.

First, we note that vector mediators can also be probed through radiative pseudoscalar meson

decays. For the reasons given in the previous subsection, we expect that the associated constraints

will be weaker, for the models considered in this chapter, than those from invisible vector meson

decays. On the other hand, when mA′ < mM , the A′ can be produced on-shell in the decay M → A′γ,

giving an radiative decay rate independent of αD. It could therefore be a leading constraint in models

with αD ≪ 1, such as U(1)B models with αD ∼ αB .

Scalar mediators can be probed by radiative vector meson decays. In the minimal case of a

Higgs-mixed scalar, the mediator couples to quarks proportionally to their mass, and thus our

signatures are not competitive with collider and B meson constraints [741], which already exclude

most of the thermal relic target. On the other hand, it may be possible to probe new parameter

space in models where the scalar preferentially couples to light quarks [742, 743, 744].

Axial vector mediators can lead to invisible pseudoscalar and radiative vector meson decay, and

in minimal models, they couple universally to up-type and down-type quarks [745]. However, axial

vectors are very strongly constrained through the FCNC processes K → πA′ and B → KA′, which

occur with 1/m2
A′ enhanced rates due to the vector’s coupling to a nonconserved current [85]. This

will be the strongest constraint at low mA′ , but our meson decays may be competitive for A′ masses

above the K → πA′ threshold. A similar story applies for pseudoscalar mediators [746], as they

behave like the longitudinal components of light axial vectors.

Our results could also be generalized by changing the type of DM considered. We have focused on



CHAPTER 7. INVISIBLE VECTOR MESON DECAYS 190

pseudo-Dirac DM because it is a simple option consistent with all cosmological constraints. It is also

a conservative choice, since its thermal freeze-out region is the most difficult to probe. However, we

do not expect any of our results to qualitatively depend on this choice. The coupling of the mediator

to quarks crucially determines which meson decays are allowed because the initial meson states have

definite P and C. But since the DM is generally produced at least semi-relativistically, it does not

necessarily exit in the s-wave, which implies that the particular coupling of the mediator to DM is

not as important. Therefore, we expect similar results to apply for scalar and Majorana DM, except

that the falloff of the sensitivity near threshold, mV ≈ 2mχ, may differ. For this reason, we have not

shown constraints from DM direct detection, which depend sensitively on the type of DM.

Finally, new physics that explicitly violates flavor could give rise to invisible or radiative neutral

kaon decays [747, 748], but this must compete with stringent existing flavor constraints, such as

from K+ decays. For instance, in a sterile neutrino model, these constraints imply Br(KL → νν) ≲

10−10 [749], which could possibly be probed by dedicated searches, but is likely out of reach of the

strategy described in this chapter. On a related note, one can consider models where the dark sector

particles carry baryon number, which can then lead to baryon decays with missing energy [750], such

as the invisible decay of neutral hyperons [751]. At NA64, this can appear as a missing energy signal

if the hyperon is produced by, e.g. γp→ K+Λ at large momentum transfer, so that it carries most of

the photon’s energy. However, the dark sector particle masses must fall within a narrow window so

that the analogous nucleon decays are kinematically forbidden, to avoid much stronger constraints

on proton and neutron decays, and there are again potentially strong but model-dependent flavor

constraints.

7.6.3 Neutrino Constraints

Independent of dark matter, the signatures discussed here can be used to test any model that enhances

meson decays with neutrinos in the final state. For example, a new gauge boson that couples to

both quarks and neutrinos can mediate invisible vector meson decay or radiative pseudoscalar meson

decay. Assuming the quarks and neutrinos have comparable charges, the latter process is likely

more sensitive since it is suppressed by only g2, where g is the gauge coupling, while the former is

suppressed by g4.

Many of the strongest constraints on new light gauge bosons, such as electron beam dump

experiments, rely on the coupling to electrons. Thus, light gauge bosons that couple to a combination

of B, Lµ, and Lτ [752, 753, 754, 755] are subject to fewer constraints. As a concrete example, a

light B − 3Lτ gauge boson would be nonanomalous, assuming the introduction of a right-handed

neutrino, and predominantly decay invisibly to τ neutrinos. The leading direct constraints on such a

particle are largely from measurements of radiative pseudoscalar decays [756], which, as mentioned

in section 7.6.1, could be significantly improved upon by missing energy experiments.

However, there are also much stronger indirect constraints on such gauge bosons, due to constraints
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on neutrino non-standard interactions from measurements of neutrino oscillations [757, 758]. Therefore

it may be more interesting to take a more model-independent, effective field theory point of view. As

shown in Ref. [759], a number of four-fermion operators involving strange quarks or tau neutrinos are

unconstrained by measurements of neutrino oscillations or the CEνNS process. For these operators,

the best existing constraints come from the relatively weak bounds on invisible vector meson decay,

and the potential 5 order of magnitude improvement of these bounds at LDMX would resolve this

blind spot.

7.6.4 Experimental Prospects

The potential of the invisible meson decay signal immediately suggests several avenues of further

study, to refine our rough estimates. As a first step, Monte Carlo simulations could be used to

compute the flux and spectrum of Bremsstrahlung photons, account for the detailed composition of

the front of the calorimeters where photoproduction dominantly occurs, and to better understand

the detector (non-)response at NA64 and LDMX to the recoil energy left behind. The optical models

used for the meson yields, which we estimate have uncertainties ranging from 25% to 50%, could

be substantially improved by dedicated photoproduction measurements on nuclei at the relevant

energies. Ideally, however, one would additionally perform in situ measurements to assess the meson

yield and experimental efficiency, such as by “removing” tracks from meson production and decay in

real events. At LDMX, it may also be possible to measure mesons produced in the target itself.

Meson production could also be considered as an explicit factor in the LDMX experimental design.

For example, because of the A/Z2 scaling of the photoproduction probability pV , the meson yield

could be significantly enhanced using a preshower primarily composed of light elements. However,

this would also increase photonuclear backgrounds, presenting a tradeoff against the reach from A′

Bremsstrahlung. In addition, since mesons can also be photoproduced in the target itself, the meson

yield could be enhanced by, e.g. replacing the tungsten target with a thicker titanium target.

Further study of vector meson production and decay is highly motivated for a number of

experiments. At electron beam dumps such as E137 or the proposed ILC beam dump [760], the

exclusive photoproduction processes described here account for only a small fraction of the mesons

produced. However, these mesons are highly energetic, leading to forward boosted dark matter

that is more likely to hit a distant detector; it would thus be interesting to consider whether this

effect could extend the beam dumps’ reach. At NA64, there is already an opportunity to claim

leading constraints on the invisible decays of ρ, ω, ϕ, and J/ψ, if the experimental and theoretical

uncertainties can be accurately quantified. Finally, at future runs of NA64 and at LDMX, exploring

this signature is essential to assessing the ultimate sensitivity to dark matter.
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7.7 Appendix: Optical Model for Meson Photoproduction

As discussed in section 7.3, exclusive photoproduction includes both a coherent process, where the

nucleus remains in the ground state and recoils as a whole, and an incoherent process, representing

the effect of photoproduction off individual nucleons. Both of these processes are well described

by a Glauber optical model. Such models have a long history; we will follow the notation of the

most comprehensive review [761], but its results do not differ significantly from the first theoretical

expressions written over fifty years ago, e.g. see Ref. [762]. First, the coherent differential cross

section for photoproduction of a vector meson V is

dσc
dt

=
dσ0
dt

∣∣∣∣
θ=0

∣∣∣∣
∫
d2b dz ei(qT ·b+q∥z)n(b, z) exp

(
−σV

2
(1 − iαV )

∫ ∞

z

dz′ n(b, z′)

) ∣∣∣∣
2

(7.8)

where (dσ0/dt)|θ=0 is the forward differential cross section for photoproduction of V off a single

nucleon, n(b, z) is the nucleon number density, qT and q∥ are the transverse and longitudinal

momentum transfer, σV is the scattering cross section of V on nucleons, and αV is the ratio of

the real to the imaginary part of the V -nucleon scattering amplitude. The first exponential factor

represents the difference in phases due to photoproduction at different points in the nucleus, while

the final factor accounts for absorption as the meson leaves the nucleus.

These absorptive final state interactions have a significant effect, as shown in Fig. 7.10. Of course, in

reality, final state interactions actually produce other particles, and Monte Carlo simulations indicate

that a substantial fraction of the inclusive meson yield arises from “sidefeeding”, i.e. production in

these secondary reactions [723]. However, for missing energy experiments we require a hard vector

meson to carry the vast majority of the photon energy, so we are primarily interested in exclusive

meson production; it is thus reasonable to treat the final state interactions as purely absorptive.

The coherent cross section is dominated at very low momentum transfer, |t| ≪ m2
p, and in this

regime t ≈ −(q2∥ + q2T ), where q∥ ≈ m2
V /2Eγ is the minimum momentum transfer. In the high energy

limit q∥rnuc ≪ 1, the coherent peak extends to qT ∼ 1/rnuc, leading to the narrow coherent peaks

shown in Fig. 7.11. For heavy nuclei at few-GeV energies, we have q∥rnuc ≳ 1, which leads to the

suppressed coherent cross sections shown in Fig. 7.4.

It is interesting to compare these results to the cross section for A′ Bremsstrahlung, which

can be estimated in the Weizsäcker–Williams approximation (e.g. see Ref. [711]). The integral in

Eq. (7.8) effectively defines a form factor qualitatively similar to the elastic nuclear form factor in A′

Bremsstrahlung, with both falling off for t ≳ 1/r2nuc. However, A′ Bremsstrahlung is a 2 → 3 process

with an intermediate virtual photon, leading to a differential cross section additionally weighted

by (t− tmin)/t2 which softens the dependence on rnuc. This is responsible for the Z2 scaling of A′

Bremsstrahlung at low mA′ , in contrast to the rough A4/3 scaling for coherent photoproduction.

Because tmin ∼ (m2
A′/2Ee)

2 for A′ Bremsstrahlung, the falloff in A′ Bremsstrahlung for high

mA′ is similar to the falloff in coherent photoproduction for high mV . However, the absorptive
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term in Eq. (7.8) implies that not all nucleons in a heavy nucleus effectively contribute to coherent

photoproduction. This effectively lowers the nuclear radius by an order-one factor, which is the

reason the meson decay signature reaches somewhat higher in mA′ than A′ Bremsstrahlung before

being significantly form factor suppressed. For example, at LDMX Phase II, the finite beam energy

suppresses coherent ϕ photoproduction by a factor of ∼ 4, but it suppresses A′ Bremsstrahlung at

mA′ = mϕ by over two orders of magnitude.

Next, the incoherent differential cross section is

dσi
dt

=
dσ0
dt

∫
d2b dz n(b, z) exp

(
−σV

∫ ∞

z

dz′ n(b, z′)

)

×
∣∣∣∣1 −

∫ z

−∞
dz′′ n(b, z′′)

σV
2

(1 − iαV )eiq∥(z
′′−z) exp

(
−σV

2
(1 − iαV )

∫ z

z′′
dz′′′ n(b, z′′′)

) ∣∣∣∣
2

. (7.9)

Here, the first factor accounts for absorption, while the final factor is a “shadowing” correction

accounting for destructive interference between photoproduction at z, and photoproduction at z′′

followed by scattering at z. (This equation has a misprint in Ref. [761], which we have corrected.)

Both of these effects are comparably important for heavy nuclei, as shown in Fig. 7.10. Because

shadowing is a coherent effect, it becomes more important at high energies, leading to the decrease

of finc with increasing energy shown in Fig. 7.4. Measurements of the angular distribution dσ0/dt

are well-described by exponentials e−B|t|, and following the most recent measurements, we take

B = 6.4 GeV−2 for ρ [763], B = 5.4 GeV−2 for ω [764], and B = 3.0 GeV−2 for ϕ [765, 766]. For

the J/ψ, we take B = 4.7 GeV−2 as measured by HERA [726]. These quantities determine the

differential cross section at high momentum transfer, shown in Fig. 7.11.

As discussed in section 7.2, we demand a nucleon recoil energy Tp ≤ 100 MeV for incoherent

photoproduction, but the precise veto efficiency is somewhat uncertain. However, because the LDMX

and NA64 calorimeters are dominantly comprised of heavy nuclei, where coherent photoproduction

generally dominates, the choice of cutoff does not qualitatively affect our results. Varying the cutoff

by a factor of 2 affects the light meson yields at NA64 by less than 5%, while at LDMX it affects the

ρ and ω yields at the 10% level. Coherent photoproduction is suppressed for ϕ at LDMX and J/ψ at

NA64, where the choice of cutoff leads to a uncertainty of up to 50%.

For the parameters σV and αV , we adopt the values of Model I of Ref. [761], which were

motivated by quark model estimates and chosen to adequately describe coherent photoproduction

data. The results do not depend strongly on the nuclear density model, but we use a Woods–Saxon

distribution [767],

n(r) ∝ 1

1 + e(r−c)/a
(7.10)

where c = 1.12A1/3 fm and a = 0.545 fm. We fix the total single nucleon photoproduction cross

sections σ0 to data, as described in section 7.3.

Because coherent production is so sharply forward peaked, the coherent and incoherent channels
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may be measured separately by placing restrictions on t. As reviewed in Ref. [761], coherent ρ

and ω photoproduction have been thoroughly measured for a variety of nuclei and photon energies,

and are well-described by optical models to within an uncertainty of at most 25%. Coherent ϕ

photoproduction is less well-measured; the data can still be fit, but with a larger uncertainty in αϕ

and σϕ.

There is much less data available for incoherent photoproduction, particularly at high photon

energies, and the data that exists is more ambiguous. At the time of writing of Ref. [761], the data

for incoherent ρ photoproduction was sufficient to confirm the existence of a shadowing effect, but

not enough to investigate it in detail. We have chosen to implement the simplest version of it, but

theoretically reasonable modifications of Eq. (7.9) could change the cross section by as much as 50%,

while still fitting the data comparably well.

More recently, a number of experiments have measured incoherent photoproduction on nuclei,

motivated by anomalous results for ϕ mesons at SPring-8 [768] (for a recent review, see Ref. [769]). The

measurements indicate a steep falloff of finc with increasing A for low photon energies, corresponding

to an absorption cross section σϕ dramatically above the quark model expectation. Several theoretical

works have proposed explanations based on “in-medium” modifications of the ϕ meson width, while

Ref. [770] considers the alternative of ω to ϕ transitions. Currently, these puzzling results do not

seem to have a canonical explanation, and different experiments are not fully in agreement; thus,

we regard our estimate of ϕ production at LDMX Phase I to be uncertain within a factor of 2.

Fortunately, these in-medium effects should become less important at the higher energies of LDMX

Phase II and NA64, where incoherent photoproduction is in any case subdominant.
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Chapter 8

Continuous Spin Fields

This chapter is based on Interactions of Particles with “Continuous Spin” Fields, by P. Schuster, N.

Toro, K. Zhou, JHEP 04, 010 (2023)

Abstract

Powerful general arguments allow only a few families of long-range interactions, exemplified by gauge

field theories of electromagnetism and gravity. However, all of these arguments presuppose that

massless fields have zero spin scale (Casimir invariant) and hence exactly boost invariant helicity.

This misses the most general behavior compatible with Lorentz symmetry. We present a Lagrangian

formalism describing interactions of matter particles with bosonic “continuous spin” fields with

arbitrary spin scale ρ. Remarkably, physical observables are well approximated by familiar theories

at frequencies larger than ρ, with calculable deviations at low frequencies and long distances. For

example, we predict specific ρ-dependent modifications to the Lorentz force law and the Larmor

formula, which lay the foundation for experimental tests of the photon’s spin scale. We also reproduce

known soft radiation emission amplitudes for nonzero ρ. The particles’ effective matter currents are

not fully localized to their worldlines when ρ ̸= 0, which motivates investigation of manifestly local

completions of our theory. Our results also motivate the development of continuous spin analogues

of gravity and non-Abelian gauge theories. Given the correspondence with familiar gauge theory in

the small ρ limit, we conjecture that continuous spin particles may in fact mediate known long-range

forces, with testable consequences.
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8.1 Motivation and Overview

Relativity and quantum mechanics imply that long-range forces are mediated by massless particles,

which were first classified by Wigner [771]. Powerful restrictions on their interactions have been

derived from the covariance of amplitudes for soft radiation emission [772, 773, 774], as well as

the consistency of coupling to perturbative general relativity [775] and gauge theories, e.g. see

Refs. [776, 777, 778]. These results underlie the common belief that familiar gauge theories and

general relativity encompass the full range of possibilities for long-distance physics in nature.

However, these arguments ignored the most general type of massless particle in Wigner’s classi-

fication, a “continuous spin” particle (CSP) with nonzero spin Casimir W 2 = −ρ2, where we call

ρ the spin scale. The bosonic CSP has an infinite tower of integer helicity states. Just as with

ordinary massive particles, the helicity states are mixed under Lorentz transformations by an amount

controlled by the spin scale. As ρ → 0 one smoothly recovers the familiar massless states with

Lorentz invariant helicity.

Recent results suggest that this limiting behavior applies well beyond kinematics. In Refs. [779,

780], the arguments of Ref. [772] were first extended to bosonic CSPs, yielding well-behaved soft

factors. Furthermore, Lorentz covariance and unitarity imply the soft factors are scalar-like, vector-

like, or tensor-like. In each case, for ρ ≪ ω the soft factors reduce to those for minimally coupled

massless scalars, photons, and gravitons respectively, with the other helicities decoupling. This

“helicity correspondence” raises the intriguing possibility that the massless particles in our universe

may in fact be CSPs, with deviations from familiar theories in the deep infrared.

More recently, Ref. [781] constructed the first gauge field theory for a bosonic CSP, which reduces

as ρ→ 0 to a sum of free actions for each integer helicity, e.g. a Maxwell action for h = ±1 and a

Fierz–Pauli action for h = ±2. (For reviews and discussion, see Refs. [782, 783, 784, 785].) This

continuous spin field action was quickly generalized to lower dimensions [786] and the fermionic [787]

and supersymmetric [788, 789] cases, illustrating the robustness of its approach of encoding spin as

orientation in an auxiliary “vector superspace.” Other formalisms, including constrained metric-

like, frame-like, and BRST [790, 791] formulations, have also been used to construct actions for

fermionic [792, 793] and supersymmetric [794, 795, 796, 797] continuous spin fields, as well as those in

higher-dimensional [798, 799, 800] and (A)dS [801, 802, 803, 804, 805, 806] spaces. Relations between

these formulations and the vector superspace formulation are discussed in Refs. [782, 799, 788].

The key outstanding physical question is to understand how continuous spin fields couple to matter.

Interactions of continuous spin fields with matter fields were studied in Refs. [807, 808, 809, 810],

but they were gauge invariant only to leading order, like the Berends–Burgers–van Dam currents

for higher spin fields [811]. Furthermore, the currents that could reduce to minimal couplings as

ρ→ 0 do not exist for matter fields of equal mass. All of the other currents are nonminimal: they

correspond to higher-dimension operators such as charge radii, with vanishing soft factors. While

they are a valuable first step, they are less interesting phenomenologically as they do not capture the
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Figure 8.1: Power radiated by an nonrelativistic oscillating charged particle, normalized to the
ordinary Larmor result, for a photon with spin scale ρ. We show power emitted into the ordinary
helicities h = ±1, the “nearest neighbor” helicities h = 0,±2, and the total in all integer helicities.

leading, inverse-square forces we observe.

In this chapter, we aim to resolve both of these problems, putting the study of matter interactions

on a firm footing. We depart from previous work by coupling the continuous spin field to a spinless

matter particle with worldline zµ(τ), via the action

S = −m
∫
dτ +

1

2

∫
d4x [d4η]

(
δ′(η2 + 1)(∂xΨ)2 +

1

2
δ(η2 + 1)(∆Ψ)2

)

+

∫
d4x [d4η] δ′(η2 + 1) Ψ(η, x)

∫
dτ j(η, x− z(τ), ż(τ)). (8.1)

The first line contains the free gauge field action of Ref. [781], which is integrated over a bosonic

superspace (xµ, ηµ), and depends on ρ via the operator ∆ = ∂x · ∂η + ρ. The final term couples the

field to a current sourced by the matter particle. The interaction is exactly gauge invariant when

j satisfies the local continuity condition ∆j = 0 up to total τ -derivatives. We classify all solutions

to this equation as scalar-like, vector-like, or non-minimal, where the first two families reduce to

minimal scalar or vector couplings as ρ→ 0.

For each choice of j, we can use the action (8.1) to compute various observables. “Integrating

out” the field Ψ by solving its equations of motion yields an effective action for the matter particles,

which contains static and velocity-dependent potentials. Evaluating the action for a given Ψ yields

the force on a matter particle in a background field, while evaluating it for a given zµ(τ) yields the

field produced by a moving particle. Remarkably, we find that observables involving only null modes

of the field, such as radiation emission and forces in a radiation background, are universal. That is,

for all scalar-like or vector-like currents the results depend only on ρ, and not on the details of the

current.
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Universality allows us to predict specific deviations from familiar results in electromagnetism.

For example, if the photon is a CSP, the force per charge on a particle with any vector-like current

in an h = ±1 plane wave background with angular frequency ω is

F

e
= (E + v ×B) − ρ2

4ω2

(
(E · v⊥)v⊥ + E v2⊥/2

)
+ . . . (8.2)

where v⊥ = v − (v · k̂)k̂ is the particle’s velocity transverse to the direction of propagation k̂. The

force can be written exactly in terms of Bessel functions, and is well-behaved for arbitrary ρ/ω. As

another example, if such a particle performs nonrelativistic sinusoidal motion with characteristic

velocity v0 and frequency ω, the total power it emits into radiation modes is

P =
e2ω2v20

12π

(
1 − 9

80

ρ2v20
ω2

+ . . .

)
(8.3)

where the leading term matches the standard Larmor formula, and the first correction includes

radiation emitted into helicities h = 0,±2 and a reduction of radiation emitted into h = ±1. As

shown in Fig. 8.1, we can compute the power for arbitrary ρv0/ω, and it always remains finite, even

in the limit ρv0 ≫ ω where radiation is produced with many helicities.

The force between two particles is not universal, depending on the details of the current, but

still obeys helicity correspondence. For example, we will show that some simple vector-like currents

predict no deviations from Coulomb’s law, while others predict corrections at long distances. The

underlying reason that many equally “minimal” currents exist is that these currents are not fully

localized to the particle’s worldline. We expect this feature can be removed in a more fundamental

description involving additional “intermediate” fields. Exploring such descriptions is a key next step,

and might in turn identify certain preferred currents. However, with our present theory we can

already recover manifestly causal particle dynamics assuming appropriate boundary conditions for j.

Another key next step would be the formulation of continuous spin fields with non-Abelian

symmetry, which are necessary to consistently describe tensor-like currents, or to embed a CSP

photon within the Standard Model. Such developments would be exciting because of the possible

relevance of continuous spin to outstanding problems in fundamental physics. In particular, the

enhanced gauge symmetry of a continuous spin field could shed light on the cosmological constant and

hierarchy problems, while the presence of weakly coupled “partner” polarizations and modifications

to long-range force laws may have bearing on dark matter and cosmic acceleration. Currently these

applications are only speculative, but the results derived here already make it possible to probe the

spin scale of the photon experimentally.

Remarkably, observable consequences of nonzero ρ have never been considered before this work,

besides the pioneering attempt of Ref. [812] to identify neutrinos with fermionic CSPs. The underlying

reason is that continuous spin physics has been shrouded in confusion since its inception. It is often

assumed that the infinite number of polarization states would render physical observables divergent,
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but the helicity correspondence implies that almost all of these states decouple. Thus, real experiments

will measure finite values for, e.g. Casimir forces and the heat capacity of the vacuum. All helicities

are emitted in Hawking radiation, but the total power remains finite because of the falling greybody

factors for high helicity modes. Finally, as we have already stated above, forces remain finite despite

being mediated by an infinite number of helicity states, and radiation emission is finite even in the

ρ→ ∞ limit where all helicities are produced.

Confusion has also stemmed from field-theoretic “no-go” results. Several authors showed in the

1970s that it was impossible to construct Lorentz invariant, local theories of gauge invariant fields that

created and annihilated CSPs [813, 814, 815, 816, 817]. However, under such restrictive assumptions

it would also be impossible to construct electromagnetism, which requires a gauge potential, or

general relativity, which in addition has no local gauge invariant operators. There are also plentiful

no-go theorems concerning interactions of “higher spin” fields with |h| > 2 [818]. These theorems

indeed imply we cannot write currents which reduce to minimal couplings of higher spin fields in

the ρ→ 0 limit, but they do not pose any obstruction to the existence of scalar-like or vector-like

currents.

The chapter is organized as follows. In section 8.2, we review the kinematics of CSPs and the

action for the bosonic continuous spin field. In section 8.3, we couple this field to a current sourced

by a matter particle and identify families of scalar-like and vector-like currents. In section 8.4 we

investigate the localization of simple currents in spacetime, and show how appropriate choices of

current yield manifestly causal dynamics. In section 8.5, we compute static and velocity-dependent

forces between a pair of matter particles, as well as the force on a matter particle in a radiation

background, which is universal. In section 8.6, we find the universal radiation emitted from an

accelerating particle in arbitrary motion, and use the special case of an abruptly kicked particle to

recover the soft factors found in Refs. [779, 780]. Finally, in section 8.7 we discuss future directions

and speculative applications. Detailed derivations are collected in appendices, which are referenced

throughout the text.

Conventions

We work in natural units, ℏ = c = ϵ0 = 1. We denote the Minkowski metric by gµν , and use a

(+ − −−) metric signature. Fourier transforms obey f(k) =
∫
d4x eik·xf(x), so that a spacetime

derivative ∂µ = ∂µx becomes −ikµ. Vector superspace coordinates are naturally defined with raised

indices, so that ηµ = (η0,η), and similarly we write kµ = (ω,k) and xµ = (t, r). Vector superspace

derivatives are always written as ∂µη , with the η explicit.

When manipulating tensors, symmetrizations and antisymmetrizations of n indices are defined

without factors of 1/n!, complete contractions of symmetric tensors are denoted by a dot, and a

prime denotes a contraction with the metric, i.e. a trace. For example, for a totally symmetric rank

3 tensor Sµνρ, we have S(µνρ) = 6Sµνρ, S · S = SµνρSµνρ, and S′µ = gνρS
µνρ. Two primes denotes
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a double trace, i.e. a contraction with two copies of the metric.

For a null four-vector kµ, we will often introduce a basis of null complex frame vectors (kµ, qµ, ϵµ+, ϵ
µ
−),

where ϵ∗+ = ϵ−, and the only nonzero inner products are ϵ+ ·ϵ− = −2 and q ·k = 1. (This normalization

differs from Refs. [779, 780] but matches Ref. [781].) This implies

gµν = (kµqν + qµkν) − 1

2
(ϵ+,µϵ−,ν + ϵ−,µϵ+,ν). (8.4)

We define the Levi–Civita symbol to obey ϵ0123 = 1, and fix the handedness of the basis by demanding

ϵµνρσ = k[µqνϵρ+ϵ
σ]
−/2i. As a concrete example, if kµ = (ω, 0, 0, ω), we can choose

qµ = (1/2ω, 0, 0,−1/2ω), ϵµ± = (0, 1,±i, 0). (8.5)

8.2 The Free Theory

In this section, we set up the theory of a free bosonic continuous spin field. We begin in subsection 8.2.1

by reviewing the continuous spin states that such a field must create and annihilate. In subsection 8.2.2

we write down the action and immediately specialize to ρ = 0, where familiar gauge theories are

recovered as special cases. Finally, in subsection 8.2.3 we consider nonzero ρ and discuss the resulting

qualitative changes.

8.2.1 Continuous Spin States in Context

In a relativistic quantum theory, states transform under translations Pµ and rotations and boosts

Jµν , which generate the connected Poincare group. The state space of an elementary particle is an

irreducible unitary representation of this group. For any such particle, we can always diagonalize

translations to yield states obeying Pµ|k, σ⟩ = kµ|k, σ⟩, where kµ is the particle’s four-momentum

and σ denotes its internal “polarization” state. The nontrivial physical content of each representation

is given by the action of “little group” transformations [771], which keep the four-momentum constant

but may change the internal state. In general, the little group is generated by the elements of

the Pauli–Lubanski vector Wµ = 1
2ϵ
µνρσJνρPσ, which has three independent components because

k ·W |k, σ⟩ = 0. Representations are classified by the values of the Casimir invariants P 2 = m2 and

W 2 = −ρ2, where m is the mass and we call ρ the spin scale.

For massive particles, with P 2 > 0, we can boost the particle’s momentum to kµ = (m, 0, 0, 0).

In this case, the nonzero components of the Pauli–Lubanski vector are the rotation generators

W = mJ. The little group is therefore the rotation group SO(3), whose projective representations are

characterized by an integer or half-integer spin S ≥ 0, corresponding to spin scale ρ = m
√
S(S + 1).

These are the usual massive spin-s particles, often encountered in the quantum mechanics of atoms

and nuclei.
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This familiar setting allows us to give the spin scale an intuitive physical meaning. Label the

states of a moving particle as |k, h⟩ where the helicity h = −s, . . . , s is the projection of the spin in the

particle’s direction of motion, J·k̂. Then an infinitesimal Lorentz boost by v⊥ in a transverse direction

mixes these states into each other, U(v⊥) |k, h⟩ =
∑
h′ chh′ |k′, h′⟩ where the mixing coefficients for

h ̸= h′ scale as positive powers of ρ v⊥/k0. In other words, the spin scale characterizes the mixing of

helicity states under Lorentz transformations.

We can carry these lessons to the case of massless particles, P 2 = 0, where the little group

generators for a general momentum kµ are

R = q ·W, T± = ϵ± ·W (8.6)

and q and ϵ± are the frame vectors defined in the conventions. These operators obey the commutation

relations [R, T±] = ±T±, with T †
+ = T−, which is the algebra of ISO(2) = E(2), the isometry group

of a plane. (See Ref. [779] for further discussion.) Concretely, if kµ = (ω, 0, 0, ω) and we choose the

other frame vectors as in (8.5), then R = J · k̂ is a rotation about the axis of the three-momentum

and T± are combinations of transverse boosts and rotations. By diagonalizing the helicity operator

R, we can work with states obeying R |k, h⟩ = h |k, h⟩, just as in the massive case.

Since the helicity operator is not inherently Lorentz invariant, we expect T± to mix helicity states

by an amount controlled by the spin scale. Indeed, the commutation relations yield

T± |k, h⟩ = ρ |k, h± 1⟩. (8.7)

This equation implies that the ladder of helicity states does not end! That is, a single massless

particle generically has infinitely many polarizations, which is tied to the non-compactness of the little

group E(2). To avoid this situation, textbook treatments specialize to ρ = 0, sometimes implicitly,

recovering the familiar irreducible representations which have only a single internal state |k, h⟩ with

Lorentz invariant helicity.

By contrast, the “continuous spin” representations are characterized by a nonzero spin scale ρ,

which can take on a continuum of real values. Their historical name often leads to the misconception

that we are allowing the helicity to take on continuous values, but h must always be integer or

half-integer to yield a projective representation of the Poincare group. A bosonic continuous spin

representation contains states of all integer h, a fermionic continuous spin representation contains

all half-integer h, and supersymmetry unifies the two into one multiplet [788]. One can Fourier

transform the helicity basis to reach the “angle” basis |k, θ⟩ =
∑
h e

ihθ |k, h⟩, where the little group

transformations take a simpler form [779]. Although the angle basis provides a geometric picture

for the little group action, we will work primarily in the helicity basis, as it offers the most natural

description of physical reactions.

For completeness, we note that the continuous spin representations can also be constructed by
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starting with a massive particle representation, and taking the simultaneous limits m → 0 and

S → ∞ with mS fixed [819]. However, that description will not be useful here.

From States to Fields

In the nonrelativistic limit, it is straightforward to describe the interactions of atoms and nuclei with

arbitrarily high spin. However, while these particles evidently have no trouble interacting in our

Lorentz invariant universe, we have a more difficult time describing such processes using the standard

tool of relativistic quantum field theory.

The basic problem is that the building blocks of quantum field theory are local fields transforming in

representations of the Lorentz group, but these fields must create and annihilate particles transforming

in little group representations. Outside of the simplest cases, there will be a mismatch in the number

of degrees of freedom. For example, a massive spin 1 particle has 3 polarizations, but is usually

described by a vector field Aµ(x) with 4 components. To remove the extra degree of freedom, one

must use a Lagrangian whose equations of motion yield a single constraint, such as ∂ ·A = 0. More

generally, a bosonic spin s particle with 2s+ 1 degrees of freedom can be described by a symmetric

rank s tensor field with (s+ 3)(s+ 2)(s+ 1)/6 degrees of freedom, provided one chooses a special

Lagrangian which yields an intricate set of constraints. This approach was pioneered by Singh and

Hagen for arbitrary spin [820, 821], but to this day it remains challenging to use.

The situation is even more subtle for massless particles. The CPT theorem implies that the

helicities of massless particles always come in opposite-sign pairs, where h = ±1 for the photon

and h = ±2 for the graviton. To describe the two photon polarizations with a four-component

vector field one must use a Lagrangian with a built-in redundancy, or “gauge symmetry,” so that the

two unwanted degrees of freedom decouple or are non-dynamical. Describing the graviton with a

symmetric tensor field hµν(x) requires removing eight degrees of freedom, and hence a more complex

gauge symmetry. More generally, gauge field theories for free particles of any helicity were developed

by Fang and Fronsdal [822, 823], and involve high-rank symmetric tensors. As with the massive

case, manipulating these tensors at high ranks is cumbersome. In addition, the gauge symmetries

place increasingly severe constraints on the fields’ interactions at higher ranks, as we will discuss in

subsection 8.3.1.

8.2.2 Embedding Fields in Vector Superspace

Vector Superspace Actions

We now turn to the problem of constructing a free field which creates and annihilates a single

bosonic continuous spin particle, which has all integer helicities. Given the preceding discussion,

one can expect such a field theory must involve symmetric tensor fields of arbitrarily high rank,

and an accompanying set of gauge symmetries to account for extra degrees of freedom. However,



CHAPTER 8. CONTINUOUS SPIN FIELDS 205

manipulating all of these fields would be technically painful.

Relatively recently, Ref. [781] introduced the first action for a free bosonic continuous spin field,

which is the basis for the treatment of interactions in this chapter. (Predecessors to this result include

a covariant equation of motion [824] and an alternative action which propagated a continuum of

CSPs [825].) The key is to avoid the complications of high-rank tensors by introducing fields that

depend on an auxiliary four-vector coordinate ηµ in addition to the spacetime coordinate xµ. Lorentz

transformations act on this “vector superspace” by x → Λx and η → Λη, so that the Poincare

generators are

Pµ = i ∂µx , Jµν = i (x[µ∂ν]x + η[µ∂ν]η ). (8.8)

A field Ψ(η, x) analytic in η can be decomposed into component symmetric tensor fields of arbitrarily

high rank. For example, a direct Taylor expansion would give Ψ(η, x) = ψ(0)(x) + ηµψ
(1)
µ (x) +

ηµηνψ
(2)
µν (x) + . . ., though we will shortly see that a slightly different expansion is more useful.

The action for the field is [781]

S[Ψ] =
1

2

∫
d4x [d4η]

(
δ′(η2 + 1)(∂xΨ)2 +

1

2
δ(η2 + 1)(∆Ψ)2

)
(8.9)

where ∆ = ∂η · ∂x + ρ. To explain the notation, the delta function and its derivative imply the

action only depends on Ψ and its first η-derivative on the unit hyperboloid η2 + 1 = 0, and thus

remains unchanged under the gauge symmetry δΨ = (η2 + 1)2χ(η, x). The field Ψ is defined for

all η, but field values far off the unit hyperboloid are pure gauge, with no physical meaning. The

regulated integration measure [d4η] permits standard manipulations such as integration by parts.

The η integrals in this subsection can be evaluated using

∫
[d4η] δ(η2 + 1)F (η) =

(
1 − 1

8
∂2η +

1

192
∂4η − . . .

)
F (η)

∣∣∣∣
η=0

, (8.10)

∫
[d4η] δ′(η2 + 1)F (η) =

(
1 − 1

4
∂2η +

1

64
∂4η − . . .

)
F (η)

∣∣∣∣
η=0

. (8.11)

These generating functions are derived in appendix 8.8.1, and all other η-space integration identities

needed in this chapter are derived in appendix 8.8.2. The deeper geometric motivation for the action

is discussed in appendix 8.8.3 and Ref. [781].

In the rest of this subsection, we will specialize to ρ = 0 and show how (8.9) contains the

action, equation of motion, and gauge symmetry for familiar massless particles of arbitrary integer

helicity. For instance, the derivatives on the right-hand sides of (8.10) and (8.11) will produce tensor

contractions between the component fields. The purpose of this exercise is to gradually build facility

with η-space computations, and to demonstrate the power of the formalism, which can replace an

infinite set of tensor manipulations with a single integral.
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Decomposing the Action

We can write the action in terms of uncoupled component tensor fields by defining

Ψ(η, x) =
∑

n≥0

P(n)(η) · ϕ(n)(x) (8.12)

= ϕ(x) +
√

2 ηµAµ(x) + (2ηµην − gµν(η2 + 1))hµν(x) + . . . . (8.13)

where the ϕ(n) are symmetric rank n tensors, and the P(n) are the polynomials

Pµ1...µn

(n) = 2n/2
(
ηµ1 · · · ηµn − 1

4(n− 2)!
g(µ1µ2ηµ3 · · · ηµn)(η2 + 1)

)
. (8.14)

It is straightforward to see how the action reduces in simple cases. First, if only ϕ(0) = ϕ is nonzero,

then only the first term of (8.9) is nonzero, giving

S[Ψ] =
1

2

∫
d4x [d4η] δ′(η2 + 1)(∂xϕ)2 =

1

2

∫
d4x (∂xϕ)2 (8.15)

which is the action for a massless scalar field. If only ϕ
(1)
µ = Aµ is nonzero, the terms are

1

2

∫
[d4η] δ′(η2 + 1) (∂xΨ)2 = −1

2
∂ρAµ ∂

ρAµ (8.16)

1

2

∫
[d4η]

1

2
δ(η2 + 1)(∂η · ∂xΨ)2 =

1

2
(∂µA

µ)2 (8.17)

which sum to the canonically normalized Maxwell action,

S[Ψ] = −1

4

∫
d4xFµνF

µν . (8.18)

If both ϕ(0) and ϕ(1) are nonzero, there is no cross-coupling between them because their product is

linear in η, and only even powers of η contribute to the integrals.

Similarly, if only ϕ
(2)
µν = hµν is nonzero, one recovers the Fierz–Pauli action, which describes the

metric perturbation in linearized gravity. As explained in Ref. [781], one can recover a Fronsdal

action for each of the ϕ(n), and furthermore there are no cross-couplings between fields of different

ranks. This can be efficiently derived using orthogonality theorems for the polynomials P(n) shown

in appendix 8.9.1, though it need not be read to follow the main text.

Decomposing the Equation of Motion

By formally varying (8.9) with respect to Ψ, we obtain the equation of motion

δ′(η2 + 1) ∂2xΨ − 1

2
∆ (δ(η2 + 1) ∆Ψ) = 0. (8.19)
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In general, we can integrate this against P(n) to extract the equation of motion for ϕ(n).

For example, if we trivially multiply by P(0) = 1 and integrate over η, the second term in (8.19)

does not contribute because it is a total η derivative. The first term yields

0 =

∫
[d4η] δ′(η2 + 1) ∂2xΨ (8.20)

=

∫
[d4η] δ′(η2 + 1)

(
∂2xϕ+

√
2 ηµ∂2xAµ + (2ηµην − gµν(η2 + 1)) ∂2xhµν + . . .

)
(8.21)

= ∂2xϕ (8.22)

as expected. Above, the contribution of Aµ vanished since it is linear in η, and the contribution of

hµν cancels after evaluating the integral. More generally, the decoupling of all other ϕ(n) immediately

follows from the orthogonality theorems in appendix 8.9.1.

To give one more example, integrating the equation of motion against Pµ(1) =
√

2 ηµ gives

0 =
√

2

∫
[d4η] δ′(η2 + 1) ηµ ∂2xΨ − 1

2
ηµ ∆ (δ(η2 + 1) ∆Ψ) (8.23)

=
√

2

∫
[d4η] δ′(η2 + 1) ηµ ∂2xΨ +

1

2
∂µx (δ(η2 + 1) ∆Ψ) (8.24)

= −∂2xAµ + ∂µx∂ ·A (8.25)

again as expected, where ϕ and hµν decouple by parity considerations, and again the ϕ(n) in general

decouple by orthogonality. Of course, with more work we recover the linearized Einstein equations at

rank 2, and the Fronsdal equations for general rank n.

Gauge Symmetry

The general gauge symmetry of the action (8.9) is

δϵΨ = Dϵ(η, x) = (η · ∂x − 1
2 (η2 + 1)∆)ϵ(η, x). (8.26)

where ϵ(η, x) is an arbitrary function analytic in η. The operator D satisfies two identities which will

be used frequently below,

∆(Dϵ) = ∂2xϵ−
1

2
(η2 + 1)∆2ϵ, (8.27)

δ′(η2 + 1)Dϵ =
1

2
∆(δ(η2 + 1) ϵ). (8.28)

These identities, together with integration by parts, can be used to show the infinitesimal gauge

variations of the two terms in the action cancel, as required.

Once again, the single expression (8.26) simultaneously packages the gauge symmetries of all of
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the component fields, as can be seen by expanding

ϵ(η, x) =
∑

n≥0

P(n)(η) · ϵ(n)(x). (8.29)

For example, the contribution of ϵ(0) is

δϵ(0)Ψ = ηµ∂µϵ
(0) (8.30)

which is, up to an overall constant, simply the familiar gauge transformation δAµ = ∂µϵ of electro-

magnetism. Similarly, the contribution of ϵ(1) is

δϵ(1)Ψ =
1√
2

(
2ηµην − gµν(η2 + 1)

)
(∂µϵ

(1)
ν ) (8.31)

which is essentially the gauge transformation δhµν = ∂(µξν) of linearized gravity. The pattern

continues, with ϵ(n−1) generating the gauge symmetry for ϕ(n).

Gauge Fixing and Plane Wave Solutions

In electromagnetism, the Lorenz gauge ∂µA
µ = 0 simplifies the free equation of motion to ∂2Aµ = 0.

Similarly, in linearized gravity the Lorenz/harmonic gauge ∂µh̄
µν = 0 simplifies the equation of

motion to ∂2hµν = 0, where h̄µν = hµν − 1
2h

′gµν is the trace-reversed metric perturbation. Both of

these gauges are special cases of the “harmonic” gauge

δ(η2 + 1) ∆Ψ = 0 (8.32)

which simplifies the equation of motion (8.19) to δ′(η2 + 1) ∂2xΨ = 0. Concretely, this implies that in

harmonic gauge ∂2xΨ must be proportional to (η2 + 1)2.

Such an ambiguity does not appear in electromagnetism and linearized gravity, but does in higher

spin theories, where it arises from the freedom in double traces. We can remove it by using some of

the residual gauge symmetry to go to “strong harmonic” gauge, where

∂2xΨ = 0. (8.33)

While these gauge conditions will be crucial throughout the chapter, we defer further discussion to

the next subsection, where we show that these gauges can be achieved for arbitrary ρ.

The equations above are solved by the null plane waves Ψ = e−ik·x ψh,k(η), where kµ is a null
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four-momentum, h is an integer, and

ψh,k(η)

∣∣∣∣
ρ=0

=





(iη · ϵ+)h h ≥ 0

(−iη · ϵ−)−h h ≤ 0
(8.34)

where ϵµ± are null frame vectors associated with kµ, defined in the conventions. As shown in

Ref. [781], the little group generators act as Rψh,k = hψh,k, which implies h is indeed the helicity,

and T± ψh,k = 0 up to pure gauge terms, which implies the helicity is Lorentz invariant. More

concretely, if we further specify to ϵ0± = 0, the modes given above are exactly those of radiation

gauge in electromagnetism for h = ±1, and of transverse traceless gauge in linearized gravity for

h = ±2. As we will show in the next subsection, (8.34) gives a complete basis of physical solutions.

This implies that the action (8.9) for ρ = 0 indeed contains, for each null momentum, exactly one

mode of each integer helicity.

8.2.3 Continuous Spin Fields

Generalizing the previous results to arbitrary spin scale is straightforward, as ρ only appears through

the operator ∆ = ∂η · ∂x + ρ. Remarkably, all of our η-space results, including the equation of

motion (8.19), gauge symmetry (8.26), identities (8.27) and (8.28), and (strong) harmonic gauge

condition (8.32) and (8.33) are unchanged. The null plane wave solutions are now

ψh,k(η) = e−iρη·q ×





(iη · ϵ+)h h ≥ 0

(−iη · ϵ−)−h h ≤ 0
(8.35)

where qµ is another null frame vector. The integer h still represents the helicity, but now we have

T± ψh,k = ρψ(h±1),k up to pure gauge terms, so that the parameter ρ indeed corresponds to the spin

scale. This was shown explicitly in Ref. [781], though that work used a different phase convention for

T±, and the phase factor e−iρη·q was sometimes reversed or dropped.

Again, the solutions (8.35) are a complete basis of physical solutions, in the sense that the general

mode expansion for a free bosonic continuous spin field is

Ψ(η, x) =

∫
d3k

(2π)3 2|k|
∑

h

(
ah(k)ψh,k(η)e−ik·x + c.c.

) ∣∣∣∣
k0=|k|

+Dϵ (8.36)

which is everywhere analytic in η. Here, Dϵ is a pure gauge term, and ah(k) is the amplitude of the

mode of helicity h and momentum k. These coefficients contain all of the gauge invariant information

in the field. By the orthonormality relation (8.268) for helicity modes, they can be extracted by

projection,

ah(k) = 2|k|
∫

[d4η] δ′(η2 + 1)ψ∗
h,k(η)Ψ(η, k)

∣∣∣∣
k0=|k|

. (8.37)
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To see that the pure gauge term does not contribute to the right-hand side, apply (8.28) and note

that the solutions (8.35) satisfy the harmonic gauge condition.

These are the key results we will need going forward; in the remainder of this subsection we prove

the assertions made above, and discuss further features of the action.

Tensor Mixing

An important qualitative difference for nonzero ρ is the ubiquitous mixing of tensor components. For

example, the action now contains mixing terms and apparent mass terms,

S[Ψ] = S[Ψ]

∣∣∣∣
ρ=0

+
ρ√
2

(ϕ (∂µAµ) +Aµ(∂µh
′ − ∂νhµν) + . . .)

+
ρ2

4

(
ϕ2 − 1

2
AµA

µ − ϕh′ +
1

6
(h′)2 − 1

3
hµνh

µν + . . .

)
(8.38)

which makes it hard to see that the physical solutions still represent massless particles. The mixing

terms vanish in harmonic gauge, but then the harmonic gauge condition itself mixes tensor ranks, as

do the solutions (8.35), which each contain tensors of arbitrarily high rank. Thus, while the tensor

expansion is a useful conceptual tool at ρ = 0, it is less intuitive at any nonzero ρ, and may be

misleading if not used with care.

Achieving (Strong) Harmonic Gauge

To think about gauge fixing, it is useful to separate the null and non-null modes of the field. For the

null modes, one has ∂2xΨ = 0 by definition, and the equation of motion implies the harmonic gauge

condition is automatically satisfied for all fields which are bounded at infinity. The (strong) harmonic

gauge conditions are only nontrivial statements about non-null modes, on which ∂2x is invertible.

To see that harmonic gauge can be reached for non-null modes, note that (8.27) implies

δϵ(δ(η
2 + 1) ∆Ψ) = δ(η2 + 1) ∂2xϵ. (8.39)

Since ϵ is arbitrary and ∂2x is invertible on these modes, this freedom can be used to set δ(η2 + 1) ∆Ψ

to zero. The residual gauge freedom is in the form of ϵ with ∂2xϵ = 0, which only affects null modes,

and ϵ proportional to η2 + 1. We can use the latter freedom to reach strong harmonic gauge, since

for ϵ = (η2 + 1)β(η, x) we have

δϵ(∂
2
xΨ) = −1

2
(η2 + 1)2∂2x ∆β. (8.40)

Since ∆β is arbitrary and ∂2x is invertible, we can indeed set ∂2xΨ to zero for non-null modes, which

completely eliminates them.
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Incidentally, gauge transformations of the form ϵ = (η2 + 1)β correspond precisely to the gauge

symmetries δχΨ = (η2 + 1)2χ first noted below (8.9) for χ = −∆β/2. The only subtlety of this

correspondence is that χ gauge transformations which fall appropriately at infinity may correspond

to β which do not fall at infinity. For this reason, Ref. [781] and the higher spin literature often

introduce ϵ and χ gauge transformations as two separate families, despite their redundancy.

Completeness of Helicity Modes

Working in momentum space, the field Ψ(η, k) in strong harmonic gauge is only nonzero for null

kµ. Fixing one such kµ for consideration, there is a residual gauge transformation ϵ(η, k), and the

operator (8.26) that generates gauge transformations is

D = −ik · η − 1

2
(η2 + 1)(−ik · ∂η + ρ)). (8.41)

It is convenient to pull out phases, defining ϵ = −2ie−iρη·q ϵ̃ and Ψ = e−iρη·q Ψ̃, which simplifies the

gauge transformation and the harmonic gauge condition to

δϵΨ̃ = ((η2 + 1)(k · ∂η) − 2η · k) ϵ̃, (8.42)

k · ∂η Ψ̃ = (η2 + 1)α (8.43)

for some arbitrary α(η, k). Now, (8.42) implies

δϵ(k · ∂η Ψ̃) = (η2 + 1)(k · ∂η)2ϵ̃. (8.44)

To understand this, it is useful to think of ϵ̃ and α as Taylor series in η · k, η · q, and η · ϵ±. In these

variables we have k · ∂η = ∂η·q, so there is enough freedom in ϵ̃ to cancel off any α. The residual

gauge freedom is in ϵ̃ = f + (η · q)g for f and g independent of η · q, for which

δϵΨ̃ = −2(η · k)f + (1 − η · ϵ+ η · ϵ−)g. (8.45)

In other words, we can use all of the remaining gauge freedom to remove any terms in Ψ̃ with powers

of η · k, or powers of both η · ϵ+ and η · ϵ−. After removing such terms we are left with Ψ̃ equal to a

sum of monomials in η · ϵ+ or η · ϵ−. This shows that the helicity modes (8.35) are a complete basis

of physical solutions.

A New Spacetime Symmetry

As a final remark, the vector superspace used to construct continuous spin fields is a bosonic analogue

of the fermionic superspace used in supersymmetric theories. As first noted in Ref. [783], the

action (8.9) is invariant under the η-dependent spacetime translation δxµ = ωµνην for antisymmetric
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ωµν , corresponding to the tensorial conserved charge

Nµν = i(ηµ∂νx − ην∂µx ). (8.46)

This symmetry mixes modes of different helicity, even for ρ = 0, and it continues to hold when the

continuous spin field couples to particles. It would then appear to be a novel extension of spacetime

symmetry, which could evade the Coleman–Mandula theorem by virtue of the infinite number of

polarization states. While we have not yet found any use for this symmetry, it may be a guide to

constructing more complete continuous spin theories.

8.3 Coupling Matter Particles to Fields

We can couple spinless matter particles to fields by introducing currents built from the particle’s

worldline. This is the most useful way to describe low-energy classical experiments, and for familiar

theories it can be readily quantized, yielding a worldline formalism equivalent to perturbative quantum

field theory. In subsection 8.3.1 we identify minimal couplings to ordinary fields, and show that

almost all non-minimal couplings produce only contact interactions, which do not affect a particle’s

coupling to radiation. We generalize to continuous spin fields in subsection 8.3.2, where we enumerate

an enormous family of potential currents. Again, we find that the vast majority of these currents

do not couple to radiation, allowing us to define families of scalar-like and vector-like currents that

couple universally to radiation, and reduce to the familiar minimal scalar and vector couplings as

ρ→ 0.

8.3.1 Review: Coupling to Ordinary Fields

Minimal Couplings to Scalar and Vector Fields

A free matter particle of mass m and worldline zµ(τ) has action

S0 = −m
∫ √

dzµ

dτ

dzµ
dτ

dτ. (8.47)

In this section we take τ to be the proper time, but all results below can be straightforwardly

rewritten for general worldline parametrization by replacing dτ with
√
ż2 dτ and żµ = dzµ/dτ with

żµ/
√
ż2. Now, we can couple the particle to a massless real scalar field ϕ(x) by

Sint =

∫
d4xϕ(x)J(x) (8.48)

which yields an equation of motion ∂2xϕ = J for the field. The current J(x) can be built from zµ(τ)

and its derivatives; if we were considering particles with spin, it could also depend on the spin tensor
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Sµν(τ). The minimal coupling corresponds to the simplest possible current,

J(x) = g

∫
dτ δ(4)(x− z(τ)) (8.49)

which is localized to the worldline, and corresponds to a Yukawa interaction in a field-theoretic

description of the matter.

Next, consider the coupling of a particle of charge e to a massless vector field Aµ(x),

Sint = −
∫
d4xAµ(x)Jµ(x). (8.50)

Here the simplest possible current Jµ, obeying worldline locality, translation invariance, and current

conservation ∂µJ
µ = 0 (which is required for Sint to be gauge invariant) is

Jµ(x) = e

∫
dτ żµ(τ) δ(4)(x− z(τ)), (8.51)

which corresponds to a minimal coupling of scalar matter to a vector field. The field’s equation of

motion is ∂2xA
µ = Jµ in Lorenz gauge. The current is conserved because its divergence is a total τ

derivative,

∂µJ
µ = e

∫
dτ (żµ∂µ) δ(4)(x− z(τ)) = −e

∫
dτ

d

dτ
δ(4)(x− z(τ)) = 0 (8.52)

where the integral vanishes because worldlines have no boundaries. This physically corresponds to

assuming particles and antiparticles are always produced or destroyed in pairs.

Non-minimal Couplings and Contact Terms

We are most interested in currents for continuous spin fields which reduce to the currents defined above

as ρ → 0. However, our formalism also includes currents which reduce to non-minimal couplings,

so to build intuition we first review them for scalar and vector fields. We continue to assume the

currents are Lorentz covariant and translationally invariant, so that the only dependence on position

is through the combination xµ − zµ(τ). We further assume the current can be written as a τ integral

of a function of zµ(τ) and żµ(τ), with no explicit dependence on higher τ derivatives or on τ -nonlocal

products.

For a scalar field, the most general current obeying these assumptions can be constructed

from (8.49) by acting on the delta function with powers of ∂2x or ż · ∂x. This general current is most

compactly expressed in momentum space,

J(k) =

∫
dτ eik·z(τ)f(k2, k · ż(τ)), (8.53)

where the minimal coupling (8.49) corresponds to f(k2, k · ż) = g.
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All terms with at least one power of k2 do not produce any fields away from the particles

themselves, and thus correspond to contact interactions. To build intuition, we will derive this basic

result for f = g k2 in several ways. In this case, the Lagrangian for the field is

L =
1

2
(∂µϕ)2 − J0(x) ∂2ϕ(x) (8.54)

where J0 is the minimal current (8.49). In terms of the shifted field ϕ̃ = ϕ+ J0, it becomes

L =
1

2
(∂µϕ̃)2 − 1

2
(∂µJ0)2. (8.55)

Since J0 is localized to a particle’s worldline, the interaction term is only nonzero when two particles

coincide, so it mediates a contact interaction. The shifted field is free, which implies the field ϕ is

not affected except for exactly on the particle itself. In particular, this coupling does not affect the

radiation produced by an accelerating particle. Conversely, it does not affect the particle’s motion

in the presence of a free background field, including any radiation field. In general, all of these

conclusions hold whenever the function f contains a factor of the differential operator ∂2 appearing

in the field’s free equation of motion.

We can also give some of these terms a more direct physical interpretation. For a particle at rest,

żµ = (1,0), the τ integration sets k0 = 0, giving J(k) = f(−|k|2, 0). Thus, for static particles terms

with powers of k · ż have no effect, while those proportional to powers of k2 describe the particle’s

static, spherically symmetric spatial profile.

The k2 term itself corresponds in field theory to an operator analogous to a charge radius.

However, we note that, despite the name, the presence of such an operator does not actually imply

a particle has a nonzero radius, any more than a dipole moment implies a particle has a specific

length. The corresponding current is still localized, in the sense that it only depends on fields in

a neighborhood of the worldline. Particles of finite size can be described by (8.53), but only by

summing over an infinite series of terms. We highlight this point because the currents introduced in

subsection 8.3.2 will, by contrast, be intrinsically delocalized.

Terms with only powers of k · ż are the only ones that can yield non-contact interactions. To

understand them more physically, note that

∫
dτ (k · ż)n eik·z = −i

∫
dτ (k · ż)n−1 d

dτ
(eik·z) = i

∫
dτ eik·z

d

dτ
(k · ż)n−1. (8.56)

This implies that a term with a single power of k · ż has no effect, and a term with two powers of

k · ż implicitly depends on the acceleration z̈. In general, a power of k · ż can be exchanged for a

τ derivative by the above manipulation, so term with more powers of k · ż depends on higher time

derivatives of ż. These terms describe the particle’s dynamic response to nontrivial motion. In other

words, they characterize the particle’s non-rigidity, e.g. distinguishing a rigid charged sphere from a
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spherical balloon full of charged jelly. To further build intuition, note that the n = 2 case corresponds

to a coupling in position space

Sint ⊃
∫
d4x dτ (∂µ∂νϕ(x)) żµżν δ(4)(x− z(τ)), (8.57)

which has the enhanced shift symmetry δϕ = c+ bµx
µ of a galileon field [826].

The terms highlighted in (8.56) are the only ones that can affect the radiation produced by an

accelerating particle, though their effect is suppressed at low accelerations. This conclusion might

seem surprising because in general, it is certainly possible for a particle’s static structure to impact

the radiation it produces, e.g. through dipole and higher moments. However, those terms are not

permitted for a spinless particle by rotational symmetry.

In the vector case, gauge invariance imposes the constraint kµJ
µ(k) = 0. After suitable subtraction

of total τ derivatives, the most general current can be written as

Jµ(k) =

∫
dτ eik·z

(
e żµ + f(k2, k · ż)(żµk2 − kµk · ż)

)
, (8.58)

where we have isolated the minimal coupling (8.51) in the first term. Again, terms in f proportional

to powers of k · ż describe the source’s non-rigidity, and terms with k2 describe the source’s static

spatial profile, though now the constant term represents the charge radius.

In contrast to the scalar case, all of the non-minimal vector couplings correspond to contact

interactions, because they are proportional to (k2ηµν − kµkν)żν , and the field’s free equation of

motion is (k2ηµν−kµkν)Aν = 0. None of the non-minimal couplings produce any fields away from the

particle itself, and they therefore cannot affect the particle’s response to free fields, or the radiation

it produces. This is essentially a statement of Gauss’s law: the vector radiation from a spherically

symmetric particle is determined solely by its charge.

Tensor and Higher Spin Fields

Matter particles can also couple to higher rank fields, but such fields introduce additional complications.

First, at rank 2, the coupling of a particle to the canonically normalized metric perturbation hµν(x)

in linearized gravity is

Sint =
κ

2

∫
d4xhµν(x)Tµν(x) (8.59)

where κ =
√

32πG. The stress-energy tensor of the particle is

Tµν(x) = m

∫
dτ żµ(τ)żν(τ) δ(4)(x− z(τ)) (8.60)

and its divergence is

∂µT
µν = m

∫
dτ z̈ν(τ) δ(4)(x− z(τ)). (8.61)
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This presents two well-known, closely related problems: consistency of the equations of motion, and

gauge invariance of the action off-shell.

First, the equation of motion for hµν in linearized gravity implies ∂µT
µν = 0, which is only

true for non-accelerating particles. Thus, if we regard zµ(τ) as a given background then we cannot

consider nontrivial trajectories, while if we regard zµ(τ) as dynamical then the equations of motion

are inconsistent [507]. The resolution is simply the equivalence principle: in (8.59) we must use

the total stress-energy tensor, including that of the fields which cause the particle to accelerate.

Full consistency requires an infinite series in κ of terms involving hµν , which leads to the nonlinear

structure of general relativity [827]. However, it is still possible to compute results to leading order

in the coupling κ in the linearized theory.

Second, if we regard zµ(τ) as dynamical, gauge invariance of Sint under δhµν = ∂(µϵν) seems to

require ∂µT
µν = 0 identically, which is not true for general off-shell zµ(τ). The resolution is to recall

that the gauge transformation arises from an infinitesimal diffeomorphism symmetry, which also

acts on the particle’s position by δzµ = κϵµ. Including this contribution implies that S0 also varies

under a gauge transformation, rendering the full action gauge invariant to leading order in κ [827].

Achieving full gauge invariance requires generalizing δhµν to an infinite series in κ, which recovers

the nonlinear gauge structure of general relativity [828].

These subtleties make it more difficult to generalize (8.60) to continuous spin fields, even at leading

order in κ. The consistency problem implies we must include additional terms in the stress-energy

tensor, which complicates calculations. The gauge invariance problem is more serious, as it is not clear

how the more general continuous spin gauge symmetry (8.26) is supposed to act on zµ. Furthermore,

it is unclear to what degree one can trust results calculated with an action that is only partially

gauge invariant.

For these reasons, we defer the study of “tensor-like” continuous spin currents that reduce to (8.60)

as ρ→ 0 to future work. In this paper, we exclude tensor-like currents by demanding that both zµ

and the action be completely gauge invariant.

As an aside, Ref. [829] considered a minimal coupling to higher spin fields,

Jµ1···µn(x) = mgn

∫
dτ żµ1(τ) · · · żµn(τ) δ(4)(x− z(τ)). (8.62)

As for rank 2, the current is conserved when z̈µ = 0, and gauge invariance can be restored to

leading order in gn by gauge transforming the worldline, by δzµ ∝ gs ϵ
(n−1)
µν1...νn−2 ż

ν1 · · · żνn−2 . (For a

perspective on these transformations, see Refs. [830, 831].) However, we will not consider this further

as for n > 2 there is no known theory consistent or gauge-invariant to all orders.
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8.3.2 Coupling to Continuous Spin Fields

The free continuous spin field can be coupled to a current by

Sint =

∫
d4x [d4η] δ′(η2 + 1) J(η, x)Ψ(η, x). (8.63)

This is a canonical choice, as taking an integral over δ(η2 + 1) would just yield a special case of (8.63)

by the identity (8.243), while integrating over δ′′(η2 + 1) or any other distribution would couple

generic currents to field values off the first neighborhood of the hyperboloid, which are pure gauge.

To gain intuition for (8.63), note that when ρ = 0, defining

J(η, x) =
∑

n≥0

P̄(n)(η) · J (n)(x) (8.64)

= J(x) +
√

2 ηµJµ(x) + (2ηµην + gµν)
κTµν(x)

2
+ . . . . (8.65)

simultaneously yields the minimal scalar coupling (8.48), vector coupling (8.50), and tensor cou-

pling (8.59). More generally, defining the “dual” polynomials by

P̄µ1...µn

(n) = 2n/2
(
ηµ1 · · · ηµn +

1

4(n− 1)!
g(µ1µ2ηµ3 · · · ηµn)

)
(8.66)

leads to a sum of canonically coupled currents at each rank,

Sint =

∫
d4x

∑

n≥0

(−1)nϕ(n) · J (n) (8.67)

as shown in appendix 8.9.1. The current J appears on the right-hand side of the equation of

motion (8.19), so the (strong) harmonic gauge conditions (8.32) and (8.33) become

δ(η2 + 1) ∆Ψ = 0, ∂2xΨ = J. (8.68)

The Continuity Condition

Demanding gauge invariance of Sint yields a key constraint on the current,

δ(η2 + 1) ∆J = 0 (8.69)

which we term the continuity condition. Here we assume it holds off-shell, though note that on-shell,

it ensures the two conditions in (8.68) are consistent. As shown in appendix 8.9.1, we can reexpress
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the continuity condition in terms of tensor components as

〈
∂ · J(n) +

ρ

n
√

2
(J(n−1) +

1

2
J ′
(n+1))

〉
= 0 (8.70)

for all n ≥ 1, where the brackets denote a trace subtraction.

To build intuition, we note that the trace subtraction is trivial at lower ranks, so that for ρ = 0

we recover the ordinary conservation conditions ∂ · J(1) = 0 and ∂ · J(2) = 0, and for higher ranks we

recover a “weak” conservation condition ⟨∂ · J(n)⟩ = 0 familiar in higher spin theory. However, for

nonzero ρ the continuity condition mixes tensor ranks, which implies that any current must contain

an infinite tower of nonzero J(n).

Concretely, consider the n = 1 and n = 2 cases of the continuity condition,

∂ · J(1) = − ρ√
2

(
J(0) +

1

2
J ′
(2)

)
, ∂ · J(2) = − ρ

2
√

2

(
J(1) +

1

2
J ′
(3)

)
. (8.71)

If we wanted to construct a “scalar-like” current whose ρ→ 0 limit had only J(0) of the form (8.49),

then the first equation implies J(1) must have a nonconserved, order ρ contribution, which then implies

J(2) must have a nonconserved, order ρ2 contribution, and so on to arbitrary J(n). Alternatively, to

construct a “vector-like” current whose ρ→ 0 limit has only the conserved J(1) of the form (8.51),

the second equation requires J(2) of order ρ, and so on.

Constructing such a tower of tensors, with appropriate trace subtractions, requires complex

combinatorics. Furthermore, the results are physically opaque due to the omnipresent mixing between

ranks. For instance, it might seem impossible for J(1) to be nonconserved, given that it couples to

Aµ in the ρ→ 0 limit, but this is permitted because of the complex mixing (8.38) of Aµ with other

tensor components. For these reasons, we find it much more straightforward to construct currents

directly in η-space, without using a tensor expansion.

Constructing Currents

We will construct currents from the worldline using the same assumptions we used to find the general

scalar current (8.53) and vector current (8.58). Specifically, we assume the current in position space

has the form

J(η, x) =

∫
dτ j(η, x− z(τ), ż(τ)) (8.72)

which corresponds in momentum space to

J(η, k) =

∫
dτ eik·zf(η, k, ż) (8.73)

where f is the Fourier transform of j. The minimal scalar current (8.49) corresponds to f(η, k, ż) = g,

and the minimal vector current (8.51) corresponds to f(η, k, ż) =
√

2 e η · ż.
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We assume zµ(τ) is gauge invariant; as discussed above, this excludes currents which reduce to

minimal tensor or higher spin couplings as ρ→ 0. Then gauge invariance of the full action requires

the continuity condition (8.69) to hold for arbitrary zµ(τ), which implies

(k · ∂η + iρ)f(η, k, ż) = (η2 + 1)α(η, k, ż) (8.74)

where α is an arbitrary function analytic in η. Strictly speaking, we are also free to add terms to f

proportional to k · ż, with no other ż dependence, as these are total τ derivative which not contribute

to the current; the above equation assumes such terms have been dropped.

We assume f is analytic in η, so that it can only contain positive powers of η, and for nonzero

ρ the continuity condition implies that f must have arbitrarily high powers of η. These must be

accompanied by arbitrarily high negative powers of k, which implies the currents cannot be localized

to the worldline. Furthermore, f contains an enormous amount of freedom, even if one fixes the

ρ→ 0 limit. We will shortly discuss general currents, which are parametrized in appendix 8.9.2, but

let us first build intuition through simple examples.

Simple Scalar-Like and Vector-Like Currents

We begin by considering “scalar-like” currents with α = 0, which all reduce to (8.49) in the limit

ρ→ 0. Note that for any vector V µ(k, ż), the continuity condition is satisfied by

f(η, k, ż) = g e−iρη·V/k·V (8.75)

This family contains two illustrative special cases: the “temporal” current

JT (η, k) = g

∫
dτ eik·z e−iρη·ż/k·ż (8.76)

which corresponds to V µ = żµ, and the “spatial” current

JS(η, k) = g

∫
dτ eik·z exp

(
−iρ η · k − η · ż ż · k

k2 − (k · ż)2

)
(8.77)

which corresponds to V µ = kµ − (k · ż)żµ, the linear combination orthogonal to żµ. We can also

define vectors which are inhomogeneous in kµ, such as

V µ± = kµ ± βρżµ (8.78)

for a dimensionless parameter β. For real β, we can construct the “inhomogeneous” current

JI(η, k) =
g

2

∫
dτ eik·z

(
e−iρη·V+/k·V+ + e−iρη·V−/k·V−

)
. (8.79)
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Above, two terms are required to ensure the position-space current is real, J(−k) = J(k)∗. Note

that a pure imaginary β would also satisfy the continuity condition, though in that case each term

alone would give a real position-space current.

Though many others exist, the temporal current JT is the simplest for situations involving

radiation, the spatial current JS has the simplest static limit, and the inhomogeneous current JI is a

relatively simple extension of the two. Note that all three have essential singularities at k ·V = 0. Such

isolated essential singularities are a generic feature of solutions to (8.74). However, while finite-order

poles in k are pathological, we will see these singularities are benign, leading to well-behaved physical

results and only a weak nonlocality.

These scalar-like currents can be straightforwardly generalized to “vector-like” currents, which

reduce to (8.51) as ρ→ 0. For example, the vector-like temporal current is

JVT (η, k) =
√

2 e

∫
dτ eik·z (η · ż)

∞∑

m=0

1

(m+ 1)!

(−iρ η · ż
k · ż

)m
(8.80)

=

√
2 e

ρ

∫
dτ eik·z (ik · ż) (e−iρη·ż/k·ż − 1). (8.81)

We can drop the −1 term because it is a total τ derivative, leaving an integrand which directly

satisfies (8.74). This unfortunately makes the current appear to diverge in the ρ→ 0 limit, but it is

convenient since the result is related to JT by the simple substitution g → (
√

2 e/ρ)(ik · ż). Similarly,

we can write a vector-like inhomogeneous current

JVI (η, k) =
e√

2βρ2

∫
dτ eik·z

(
(ik · V+) e−iρη·V+/k·V+ − (ik · V−) e−iρη·V−/k·V−

)
(8.82)

where analogous total τ derivative terms have been dropped. Finally, writing the vector-like spatial

current requires constructing a prefactor which is annihilated by k · ∂η but also reduces to η · ż in the

ρ→ 0 limit, again up to total τ derivatives. The result is

JVS (η, k) =
√

2 e

∫
dτ eik·z

(
(η · ż)k2 − (η · k)(k · ż)

k2 − (k · ż)2
− ik · ż

ρ

)

× exp

(
−iρ η · k − η · ż ż · k

k2 − (k · ż)2

)
. (8.83)

Despite appearances, these currents are all vector-like.
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General Currents

Now that we have seen some examples, let us parametrize the general solution for f . The result for

α = 0 is given by (8.337) in appendix 8.9.2, which is equivalent to

f = e−iρη·ż/k·ż
(
g0(u, k · ż, k2) +

(
η2 + 1 − 2η · k η · ż

k · ż +
(η · ż)2 k2

(k · ż)2

)
g1(u, k · ż, k2)

)
(8.84)

where u = η · (k − ż k2/(k · ż)). For ρ = 0, this expression efficiently packages the minimal scalar

and vector currents, and all non-minimal currents. The general scalar current (8.53) corresponds to

g0 independent of u, while the general vector current (8.58) corresponds to g0 with a prefactor of

(k · ż)u. The function g1 is less familiar, but if we take g1 ∝ (k · ż)2, which is the simplest case which

avoids negative powers of k, the result includes a nonminimal tensor current. Similarly, taking the

simplest α ∝ (k · ż)3 and applying (8.338), the result includes a nonminimal current for a rank 3

higher spin field.

The situation is less clear for nonzero ρ, where negative powers of k appear. For instance, the

temporal current (8.76) has g0 = g, while the spatial current (8.77) has g0 = g eiρu/((k·ż)
2−k2). Given

how complicated g0 can be for even the simplest examples, it is not obvious how to usefully define

a “scalar-like” current, nor how to extract predictions given the enormous freedom in the general

solution.

However, a remarkable simplification occurs when we consider coupling to null modes of the field,

with k2 = 0. In this case, the difference of the spatial and temporal currents is

JS − JT = g

∫
dτ eik·ze−iρη·ż/k·ż

(
exp

(
iρ

η · k
(k · ż)2

)
− 1

)
(8.85)

where the factor in parentheses contains only terms proportional to (η · k)n for n > 0. Such terms do

not contribute to the action in the presence of radiation modes (8.35), because the η integral in this

case is proportional to

∫
[d4η] δ′(η2 + 1) eiρη·(q−ż/k·ż)(η · ϵ±)|h| (η · k)n = 0 (8.86)

which vanishes because k is orthogonal to itself, ϵ±, and q − ż/k · ż. Thus, the spatial and temporal

currents couple to radiation in exactly the same way.

This phenomenon turns out to be very general. As shown in appendix 8.9.2, any f , including

those corresponding to arbitrary α, can be written in the form

f(η, k, ż) = e−iρη·ż/k·ż ĝ(k · ż) + (k2 +D∆)X(η, k, ż) (8.87)

where ĝ(k · ż) = g0(0, k · ż, 0), D is the operator (8.41) generating gauge transformations, and X

is regular as k2 → 0. The action (8.63) only depends on the current through the combination
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δ′(η2 + 1)J , and under this delta function the second term simplifies as

δ′(η2 + 1)(k2 +D∆)X =

(
δ′(η2 + 1) k2 +

1

2
∆ δ(η2 + 1) ∆

)
X (8.88)

where we used (8.28). The object acting on X is just, up to a sign, the differential operator in the

free equation of motion (8.19). Thus, by the same logic as in subsection 8.3.1, these terms do not

affect the radiation a particle emits, or its response to a free field background. These key physical

observables are determined solely by the single-variable function ĝ.

We can therefore give sharp definitions of classes of currents based on ĝ:

• Scalar-like currents have constant ĝ(k · ż) = g.

• Vector-like currents have linear ĝ(k · ż) = (
√

2 e/ρ)(ik · ż).

• Non-minimal scalar-like currents have ĝ ∝ (k · ż)n for n ≥ 2. They generalize the couplings

highlighted by (8.56), which characterize the matter particle’s non-rigidity.

• Currents with negative powers of k · ż are permitted in our analysis but less phenomenologically

interesting, because their support is nonlocal even when ρ = 0.

This classification is the main result of this subsection, and for the rest of this chapter we will

focus on scalar-like and vector-like currents. A continuous spin field coupled by a scalar-like current

is of less phenomenological interest because it reduces as ρ→ 0 to a massless scalar field, which has

not been observed. However, this case is mathematically simpler and will serve as useful preparation

for the case of vector-like currents, which can describe infrared modifications of electromagnetism.

We have defined scalar-like and vector-like currents so that they couple to radiation universally.

Note, however, that the long-range force between particles is not universal. For scalar and vector

fields, we found that currents proportional to the equation of motion operator produce contact

interactions, which only take effect when particles coincide in space. By contrast, a continuous spin

current is generally not localized to a particle’s worldline, so the currents of particles can overlap

even when the particles themselves are well-separated.

To conclude, we note that while the decompositions above use a “temporal” prefactor e−iρη·ż/k·ż,

this was an arbitrary choice made for later convenience, and does not single out the temporal current

as more fundamental. In addition, it is natural to conjecture that in a more complete description,

where all sources of stress-energy could to the continuous spin field with equal strength, one might

have tensor-like currents with ĝ ∝ (k · ż)2/ρ2, where the terms that diverge as ρ → 0 reduce to

total derivatives on-shell. We defer further exploration of this conjecture to future work. Finally, in

appendix 8.9.3 we compare our currents to those previously found by working in terms of matter

fields.
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8.4 Currents and Interactions in Spacetime

The nonlocality of the currents found in section 8.3 motivates investigating the locality and causality

properties of our theory. In subsection 8.4.1, we compute the profiles of some simple currents in

spacetime, and show that they can be confined to the forward or backward light cone if their essential

singularities appear only at real frequencies. In subsection 8.4.2, we give specific requirements on

currents and their boundary conditions for the matter particles to have manifestly causal dynamics.

This section can be skipped without loss of continuity.

8.4.1 Simple Currents in Spacetime

Currents of Worldline Elements

We first compute the inverse Fourier transforms j(η, x, ż) for our simple currents, which gives the

spacetime profile of the current from a differential element of the worldline. For simplicity we can

work in the frame of such a worldline element, where żµ = (1,0). The results below are illustrated at

left in Fig. 8.2, and derived in appendix 8.9.4.

First, for the scalar-like spatial current, we have

jS(η, r) = g

∫
dω d3k

(2π)4
e−ik·xe−iρη·k̂/|k| (8.89)

= g δ(t)

(
δ(3)(r) − |ρη|(1 − cos θ)

8πr2
J2

(√
2|ρη|r(1 − cos θ)

))
(8.90)

where θ is the angle between η and r. Above, the ω integral was trivial, while the k integral requires

handling a benign essential singularity at k = 0. One curious feature of this result is that it is not

everywhere analytic in η. Analytic f ’s can correspond to nonanalytic j’s, but there is still no problem

with defining η-space integration, as explained in appendix 8.8.3.

The result (8.90) shows that the spatial current of a worldline element is localized in time, but

has a part spread over a distance r ∼ 1/ρ in space. The delocalized part smoothly goes to zero at

large r, and in the ρ→ 0 limit it becomes larger in spatial extent, but also decouples. By contrast,

for the scalar-like temporal current the current is localized in space,

jT (η0, r, t) = g

∫
dω d3k

(2π)4
e−ik·xe−iρη

0/ω = g δ(3)(r)

∫
dω

2π
e−iωte−iρη

0/ω. (8.91)

The frequency integral now passes through an essential singularity at ω = 0, and thus requires

a contour prescription to define. Passing above or below it corresponds to imposing retarded or

advanced boundary conditions in position space, respectively. For the former, we find

jT (η0, r, t) = g δ(3)(r)

(
δ(t) − θ(t)

√
ρη0

t
J1

(
2
√
ρη0t

))
. (8.92)
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x

t

zμ(τ)

x′ 

t′ 

Figure 8.2: Left: Localization properties of some simple scalar-like currents. In the rest frame of a
worldline element, with coordinates (x′, t′), the spatial current (blue) is localized on the spacelike
slice t′ = 0, the retarded temporal current (red) is localized on the timelike ray x′ = 0, t′ > 0, and
the retarded inhomogeneous current (purple) is contained on or within the forward light cone. Right:
Essential singularities in the complex ω plane for the spatial current, temporal current, and the
integral in (8.93) for the inhomogeneous current, for a velocity with k · v > 0. We also show an
integration contour corresponding to retarded boundary conditions for the inhomogeneous current.

Concretely, this implies the current of a worldline element at position r with velocity v is supported

on the forward ray r + vT for T > 0. It varies on the timescale t ∼ 1/ρ, and is confined to within

the forward light cone.

Finally, for the scalar-like inhomogeneous current we have

jI(η, r, t) = gRe

∫
dω d3k

(2π)4
e−ik·x exp

(
−iρη

0(ω + ρβ) − η · k
ω2 + ρβω − |k|2

)
. (8.93)

For real β, the integral has two essential singularities at real ω, so a contour prescription is again

required to define the current in spacetime. Integrating above both singularities corresponds to

retarded boundary conditions, and gives a result confined to t ≥ 0. While we have not computed

the result, we expect it to have a spacetime spread ∼ 1/ρ on dimensional grounds, and Lorentz

invariance implies it must be confined on or within the forward light cone. Advanced boundary

conditions correspond to integrating below both singularities.

The properties above are qualitatively unchanged for the vector-like currents. For example, for

the vector-like spatial current, jVS is identical to (8.90) but with g replaced with
√

2 eη0. For the

vector-like temporal current (8.81), we have

jVT (η0, r, t) =
√

2 eη0 δ(3)(r)
(
δ(t) − θ(t)

ρ

t
J2

(
2
√
ρη0t

))
(8.94)

which has the same localization properties as (8.92).

One cannot ascribe too much significance to the expressions above because η-space expressions are

unphysical. We must always integrate over η to produce physical observables, and as we will see in

later sections, the results are often the same for currents which appear radically different in η-space.
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However, we can infer in general that boundary conditions are needed to define any current with

essential singularities at real ω, and retarded or advanced boundary conditions can be imposed for

any current whose essential singularities are all at real ω. These features suggest that such currents

arise more fundamentally through integrating out locally coupled, auxiliary degrees of freedom.

Currents and Fields of Static Particles

We can also build intuition by evaluating the total current for a static particle at rest at the origin,

and the accompanying continuous spin field. For ordinary fields, these currents are time-independent

and localized at the origin, but the continuity condition forbids such solutions for nonzero ρ, leading

to currents that are either delocalized or time-dependent.

For the scalar-like spatial current, trivially integrating (8.90) gives

JS(η, r) = g

(
δ(3)(r) − |ρη|(1 − cos θ)

8πr2
J2

(√
2|ρη|r(1 − cos θ)

))
(8.95)

which is delocalized. The corresponding field, in strong harmonic gauge, is

ΨS(η, r) =
g

4πr
J0

(√
2|ρη|r(1 − cos θ)

)
. (8.96)

For the scalar-like temporal current, formally integrating (8.92) yields zero for positive η0, but a

divergent result for negative η0. To make sense of the current, we need to introduce an appropriate

infrared regulator. One simple prescription is to turn off the coupling g at early times, replacing it

with g θ(τ + T ) for a large positive T . This gives a current

JT (η0, t, r) = g δ(3)(r) J0

(
2
√
ρη0(t+ T )

)
θ(t+ T ) (8.97)

and the corresponding field, in strong harmonic gauge, is an outgoing spherical wave

ΨT (η0, t, r) =
g

4πr
J0

(
2
√
ρη0(t+ T − r)

)
θ(t+ T − r). (8.98)

We recover the familiar scalar solution in the limit ρ→ 0 and T → ∞, provided that ρT ≪ 1. We

could also regulate the solution by allowing the charge to oscillate with a low frequency, or by giving

the particle nontrivial motion; expressions for the current for arbitrary particle motion are given in

appendix 8.9.4 but are unenlightening.

For the scalar-like inhomogeneous current, there are a variety of contour prescriptions for the

frequency integration, but they all give the same current for a static particle. This is reflected by the

fact that we can perform the τ integration first, which produces a delta function that eliminates the
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frequency integration, yielding

JI(η, r) = g

∫
d3k

(2π)3
eik·re−iρη·k̂/|k| cos(η0βρ2/|k|2) (8.99)

which reduces to the spatial current for β → 0. Such a manipulation would not have been possible

for the temporal current, because for a static particle its essential singularity is at ω = 0 itself.

Finally, for the vector-like currents the results are qualitatively similar, though there is also an overall

prefactor of η0.

8.4.2 Equations of Motion and Causality

We have just seen that the current j of an element of a particle’s worldline is not local, which seems

to violate naive causality. Specifically, generalizing the action (8.1) to multiple matter particles with

worldlines zµi (τi) yields the equations of motion

∂2xΨ(η, x) =
∑

i

∫
dτi j(η, x− zi(τi), żi(τi)), (8.100)

miz̈
µ
i (τi) = −

∫
d4x [d4η] δ′(η2 + 1) Ψ(η, x)

(
∂µx +

d

dτi

∂

∂żµi

)
j(η, x− zi(τi), żi(τi)). (8.101)

This yields two types of potentially acausal effects. First, if j extends outside the forward lightcone

of zi, then (8.100) implies the field is sourced acasually: there are reference frames where the field

at x depend on the motion of particles at times later than x0. Likewise, if j extends outside the

backward lightcone of zi, then (8.101) implies the particle responds acausally: there are frames where

its acceleration depends on field values at times later than z0i . These effects are both avoided if j is

local, but this is impossible for nonzero ρ.

Manifestly Causal Equations of Motion

There is, however, a straightforward modification of the equations of motion that renders our theory

manifestly causal. We have seen that currents whose essential singularities are at real ω, such as the

temporal and inhomogeneous currents, admit retarded or advanced boundary conditions, where j is

confined within the forward or backward light cone respectively. The theory is manifestly causal if

the current has retarded boundary conditions jR when sourcing the field, and advanced boundary

conditions jA when responding to it, i.e. if

∂2xΨ(η, x) =
∑

i

∫
dτ jR(η, x− zi(τi), żi(τi)), (8.102)

miz̈
µ
i (τi) = −

∫
d4x [d4η] δ′(η2 + 1) Ψ(η, x)

(
∂µx +

d

dτi

∂

∂żµi

)
jA(η, x− zi(τi), żi(τi)). (8.103)
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Note, however, that these equations of motion still have the unfamiliar property that their exact

solution appears to require knowledge of fields and particle trajectories in the infinite past, not just

on a Cauchy surface in spacetime.

Such equations of motion do not directly emerge from our action (8.1), which allows only a

single choice of current. But it is reasonable to speculate that this action is merely an effective one,

which arises from integrating out “intermediate” auxiliary or dynamical fields that interact locally

with both the particle and the continuous spin field. In this case, solving the intermediate fields’

equations of motion would require a choice of boundary conditions. Inserting such solutions into

the full equations of motion would induce precisely the kind of asymmetry in (8.102) and (8.103).

Motivated by the form of our currents, we have constructed toy models with similar structure, but

we have yet to realize a full Lagrangian model that renders our currents entirely local.

Non-Manifest Causality

We should also take care in dismissing the original equations of motion (8.100) and (8.101) as

irreparably acausal. In particular, the gauge field Ψ(η, x) has a huge amount of gauge freedom, and

indeed no local gauge-invariant observables can be built from the field. Thus, the apparently acausal

sourcing of Ψ(η, x) could be a gauge artifact. To avoid this ambiguity, we should define causality in

terms of the interactions of matter particles: the theory is causal if, when a particle is instantaneously

kicked at some point, the kick cannot affect the trajectories of other particles until they enter the

future light cone of that point.

One can perform a concrete computation to determine if the theory is causal in this sense, for

each choice of current j. We have not yet rigorously studied this question, but we note the answer

is not obvious a priori, as apparently acausal effects can vanish after the x and η integrations for

certain j. A similar cancellation arises in the quantization of the continuous spin field, where the

gauge fixed field operators end up obeying causal commutation relations.

Another possibility is that full consistency requires additional effects absent from (8.1), such as

“contact” interactions between extended currents that do not involve a continuous spin field, but

which exactly cancel acausal effects. Indeed, this is precisely what occurs in electromagnetism in

Coulomb gauge, which contains an instantaneous interparticle potential but yet is causal as a whole.

Further investigation of all of these possibilities represent important directions for future work.

For now, one can simply define our theory by the manifestly causal equations of motion. In practical

terms, the physical results derived below are not affected either way, as they either consider non-

accelerating particles – where retarded and advanced boundary conditions give equal results – or the

coupling of particles to radiation, where the results are completely independent of the details of the

current.
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8.5 Forces on Matter Particles

We can readily calculate the dynamics of matter particles from the action (8.1). In subsection 8.5.1,

we consider two particles interacting via the continuous spin field, and compute both the static

interaction potential and the leading velocity-dependent corrections for some example currents. In

subsection 8.5.2 we compute forces from radiation background fields. These are universal for all

scalar-like and vector-like currents, depending only on the spin scale ρ, and we give results for

backgrounds with |h| ≤ 2.

8.5.1 Static and Velocity-Dependent Interaction Potentials

Consider particles with trajectories zµi (τ), coupled to a continuous spin field by currents Ji. Each

current produces a field Ψi which interacts with each other particle j, contributing

Sij =

∫
d4x [d4η] δ′(η2 + 1) Ψi(η, x)Jj(η, x) (8.104)

= −
∫

d4k

(2π)4
[d4η] δ′(η2 + 1)

Ji(η, k)Jj(η,−k)

(ω + iϵ)2 − |k|2 (8.105)

= −
∫

d4k

(2π)4
[d4η] δ′(η2 + 1) dτi dτj

e−ik·(zi(τi)−zj(τj))f(η, k, żi)f
∗(η, k, żj)

(ω + iϵ)2 − |k|2 (8.106)

to the action, where we have assumed retarded boundary conditions. Evaluating this generic

expression in terms of the particle trajectories allows us to compute both static and velocity-

dependent potentials. For simplicity we consider two dynamical particles, where the total interaction

action is Sint = (S12 + S21)/2 to avoid double counting. Two useful integrals are

∫
d3k

(2π)3
eik·r

|k|2+n =
1

(2n)!

(−r2)n

4πr
, (8.107)

∫
d3k

(2π)3
(a · k̂)(b · k̂) eik·r

|k|2 =
a · b− (a · r̂)(b · r̂)

8πr
. (8.108)

The n = 0 case of (8.107) is standard, and can be used to derive (8.108) using symmetry. For general

integer n > 0, (8.107) can be derived inductively by taking the Laplacian of both sides. Technically,

in that case there are also distributional corrections at r = 0, but this does not affect the computation

of long-range forces.
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Static Potentials

We warm up by considering static particles, zµi (τ) = (ti, ri), interacting by an ordinary scalar field,

f = g. Then the interaction simplifies to

Sij = −g2
∫

d4k

(2π)4
[d4η] δ′(η2 + 1) dti dtj

e−iω(ti−tj)eik·(ri−rj)

(ω + iϵ)2 − |k|2 . (8.109)

Performing one time integration and stripping off the other to yield a Lagrangian gives

Lint = g2
∫

d3k

(2π)3
eik·(r1−r2)

|k|2 =
g2

4πr
(8.110)

for a pair of particles with separation r = r1 − r2. This is a familiar 1/r2 attractive force.

Given our previous results (8.96) and (8.98) for the continuous spin fields of static particles, one

might suspect that for nonzero ρ the static potential must be radically different, either deviating

from 1/r or exhibiting time dependence. However, in the static limit, the ρ-dependent phases in the

temporal and spatial scalar-like currents simply cancel out, leading to the exact same result. This is

a first hint that continuous spin physics can be simpler than the intermediate η-space expressions

suggest.

In general, while the definition of a scalar-like current ensures the potential contains a piece of

the form (8.110), there can be deviations at short or long distances. In appendix 8.9.2, we wrote

the general solution to the continuity condition for static particles. Using just the ḡ0 term in the

homogeneous solution (8.349), one can introduce terms in the integrand of (8.110) scaling as |k|n,

which yield contributions to the potential proportional to 1/rn+1. For positive n, this reflects how

ordinary nonminimal couplings can modify forces at short distances. The novelty of continuous spin

physics is that the continuity condition motivates solutions with an infinite series of negative n, which

modify forces at long distances.

To give one simple example, we consider the inhomogeneous current (8.79), which satisfies the

continuity condition for both real and imaginary β. For this current there are cross terms whose

phases do not cancel, leading to

Lint =
g2

4

∫
d3k

(2π)3
eik·r

|k|2
∫

[d4η] δ′(η2 + 1)
(

2 + e2iη
0βρ2/|k|2 + e−2iη0βρ2/|k|2

)
(8.111)

=
g2

2

∫
d3k

(2π)3
eik·r

|k|2
(
1 + J0(2iβρ2/|k|2)

)
(8.112)

=
g2

4π2

1

r

∫ ∞

0

dx
sinx

x

(
1 + J0

(
2iβρ2r2

x2

))
(8.113)

=
g2

8πr

(
1 +

∫ ∞

−∞
dx

eix

πi x
J0

(
2iβρ2r2

x2

))
(8.114)
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where we applied (8.255), then integrated over k̂ and defined x = |k|r.
While it would be tempting to evaluate the integral by Taylor expanding the Bessel function

and applying (8.107) to each term, this would not be legitimate because the integral passes directly

through an essential singularity at x = 0. However, for imaginary β the Bessel function is rapidly

oscillating but bounded near x = 0, so the integral can be evaluated analytically. A continuation

with the desired symmetry properties can be written in terms of Meijer G-functions,

Lint =
g2

8πr

(
1 +

1√
2π

G0,3
6,0

(
216

β4(ρr)8
, 2
∣∣ 14 3

4 1 1
2 1 1
))

. (8.115)

At real β, the function (8.115) can be Taylor expanded as

Lint =
g2

4πr

(
1 − 4

√
2β ρr

Γ(1/4)2
+

β3/2 (ρr)3

12
√

2 Γ(7/4)2
+ . . .

)
(8.116)

The force is always attractive, and at large r, the G-function falls to zero, leaving an asymptotic

potential of half the standard strength.

All of these qualitative conclusions hold unchanged for vector-like currents. For an ordinary

vector field, one picks up a factor of (η0)2 which causes a sign flip, so that like charges repel. Again,

the temporal and spatial currents do not produce any deviations from Coulomb’s law, and the

inhomogeneous current yields long-distance corrections,

Lint = − e2

4πr

∫ ∞

−∞
dx

eix

πi x

x4

β2(ρr)4

(
J0

(
2iβρ2r2

x2

)
− 1

)
(8.117)

=
e2

4πr

(
1√
2π

G0,3
6,0

(
216

β4(ρr)8
, 2
∣∣ 14 3

4 1 1
2 2 2
))

. (8.118)

This result can again be Taylor expanded for real β, giving

Lint = − e2

4πr

(
1 −

√
β ρr√

2 Γ(9/4)2
+ . . .

)
(8.119)

while at large r it oscillates and alternates in sign.

Velocity-Dependent Potentials

We computed static interaction potentials by evaluating the action for static particles, but there

are also important velocity-dependent effects. We can include them by evaluating the action for

moving but nonaccelerating particles, yielding a velocity-dependent potential. These potentials in

turn neglect acceleration-dependent effects, such as radiation reaction, but yield a good description

of the dynamics when the acceleration is small.

To aid the reader, we first review the velocity-dependent potential for an ordinary scalar field.
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For nonaccelerating particles, the worldline is xµi (τ) = (ti, r
0
i + viti) where ti = γiτ , so

Sij = −g2
∫

d4k

(2π)4
dti dtj
γiγj

e−iω(ti−tj)eik·(r
0
i−r0j )eik·(viti−vjtj)

(ω + iϵ)2 − |k|2 (8.120)

= g2
∫

d3k

(2π)3
dtj
γiγj

eik·rij(tj)

|k|2 − (k · vi)2
. (8.121)

where doing the ti integral set ω = k · vi, and the separation is rij(t) = r0i + vit − (r0j + vjt).

Stripping off the tj integration yields the Lagrangian for particle j in the field of particle i, so that

the interaction Lagrangian of two dynamical particles with separation r(t) is

Lint =
g2

2γ1γ2

∫
d3k

(2π)3
eik·r(t)

|k|2

(
1

1 − (k̂ · v1)2
+

1

1 − (k̂ · v2)2

)
(8.122)

=
g2

4πr

(
1 − v21

4
− v22

4
− (v1 · r̂)2

4
− (v2 · r̂)2

4
+O(v4)

)
(8.123)

where we used (8.108). A similar calculation for a vector field yields the potential

Lint = − e2

4πr

(
1 − v1 · v2 +

v21
4

+
v22
4

− (v1 · r̂)2

4
− (v2 · r̂)2

4
+O(v4)

)
(8.124)

which includes magnetic interactions and retardation effects. While it may look unfamiliar, it is

equivalent to the textbook Darwin Lagrangian [506]

Lint = − e2

4πr

(
1 − v1 · v2 + (v1 · r̂)(v2 · r̂)

2
+O(v4)

)
(8.125)

since, up to accelerations, it differs by the total time derivative of (e2/16π)(v1 · r̂− v2 · r̂).

For nonzero ρ our formalism readily yields expressions for velocity-dependent potentials in

momentum space, but evaluating the Fourier transform is complicated by the essential singularity

terms. We will therefore consider only the scalar spatial current, where the integrals are simplest.

The answer will be a series in the independent dimensionless variables v2 and ρvr, so to avoid clutter

we will neglect terms suppressed by a power of v2.

Defining vij = vj − vi, and letting Vi be the vector defined below (8.77), we have

Lij ≈ g2
∫

d3k

(2π)3
eik·rij(t)

|k|2
∫

[d4η] δ′(η2 + 1) e−iρη·Vi/k·Vieiρη·Vj/k·Vj

∣∣∣∣
ω=k·vi

(8.126)

≈ g2
∫

[d4η] δ′(η2 + 1)

∫
d3k

(2π)3
eik·rij(t)

|k|2 e−iρη
0k·vij/|k|2 . (8.127)

where we dropped terms of order v2 inside the exponent. Next, the k integral can be evaluated using

the same method as used to evaluate (8.353). Defining x = ρvijrij(1 − cos θ), where θ is the angle
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between rij and vij , we have

Lij ≈
g2

4πrij

∫
[d4η] δ′(η2 + 1) J0

(√
2η0x

)
=

g2

4πrij
I0(

√
x)J0(

√
x) (8.128)

where we performed the η integral by directly using the generating function (8.254). Thus, at leading

nontrivial order, the velocity-dependent potential for a pair of matter particles is

Lint =
g2

4πr

(
1 − ρ2r2

32
(|vi − vj | − (vi − vj) · r̂)

2
+O(v2, (ρvr)4)

)
. (8.129)

For particles moving along a line, the new term has no effect, while for transverse motion it becomes

important at long distances, ρvr ∼ 1, just like the corrections to static forces.

8.5.2 Forces From Background Radiation Fields

The Interaction Lagrangian

Next, we consider the dynamics of a particle in a free background field Ψ, by evaluating the interaction

action (8.63) in terms of the mode expansion coefficients defined in (8.36),

Sint = Re

∫
d3k

(2π)3 |k| [d4η] δ′(η2 + 1)
∑

h

ah(k)ψh,k(η)J(η, k)∗
∣∣∣∣
k0=|k|

(8.130)

where taking the real part adds on the negative frequency part of the field. As explained below (8.87),

this action is independent of X(η, k, ż), and thus depends only on ĝ(k · ż).

For concreteness, we note this can be shown more directly. The k2X term in (8.87) vanishes since

k is null, and the remaining term is of the form Dξ. However, the identity (8.28) implies

∫
[d4η] δ′(η2 + 1) (Dξ) Ψ =

1

2

∫
[d4η] ∆(δ(η2 + 1) ξ) Ψ (8.131)

and integrating by parts yields an integrand proportional to δ(η2 + 1) (∆Ψ), which vanishes in

harmonic gauge. It thus vanishes in any gauge, since the action is gauge invariant.

In any case, we can keep just the ĝ term in the current, yielding

Sint = Re
∑

h

∫
dτ

d3k

(2π)3 |k| [d4η] δ′(η2 + 1) ĝ∗ ah(k)e−ik·z ψh,k(η) eiρη·ż/k·ż
∣∣∣∣
k0=|k|

(8.132)

= Re
∑

h

∫
dτ

d3k

(2π)3 |k| ĝ
∗ ah(k)e−ik·z

(
ϵ+ · V
|ϵ+ · V |

)h
Jh(
√

−V 2)

∣∣∣∣
k0=|k|

(8.133)

where we performed the η integral using (8.273) with V = ρ((ż/k · ż) − q). We can make this more

physically transparent by specializing to ϵ0± = 0 and simplifying using the properties of the null frame
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vectors. The result is the Lagrangian

Lint = Re
∑

h

√
1 − v2

∫
d3k

(2π)3 |k| ĝ
∗ah(k)e−i(|k|t−k·r)

(−ϵ+ · v⊥
v⊥

)h
Jh

(
ρv⊥

|k| − k · v

)
(8.134)

whose integral over coordinate time t is the interaction action. Above, r(t) and v(t) are the position

and velocity of the particle, and v⊥ is the velocity in the plane transverse to k̂. The action is smooth

in v, despite its dependence on the magnitude of v⊥, because of the phase in front of the Bessel

function.

The expression (8.134) is our general result, but for simplicity we will specialize to monochromatic

plane waves traveling in the k̂ = ẑ direction, by taking

ah(k) = ω0 āh (2π)3δ(3)(k− ωẑ). (8.135)

The resulting Lagrangians are

LSint = g
√

1 − v2 Re
∑

h

āhe
−iω0(t−z)

(−vx − ivy
v⊥

)h
Jh

(
ρv⊥

ω0(1 − vz)

)
(8.136)

for any scalar-like current, and

LVint =

√
2 e

ρ
Re
∑

h

āhe
−iω0(t−z)(−iω0(1 − vz))

(−vx − ivy
v⊥

)h
Jh

(
ρv⊥

ω0(1 − vz)

)
(8.137)

for any vector-like current, where above z now stands for r · ẑ and v⊥ =
√
v2x + v2y.

We will work with three specific backgrounds below. First, we will consider a helicity zero

background with ā0 = ϕ0, which reduces to a scalar field ϕ = ϕ0 cos(ω0(t− z)) as ρ → 0. Next, a

background with nonzero ā1 reduces as ρ→ 0 to a circularly polarized electromagnetic wave. For

simplicity, we will consider the combination of h = ±1 backgrounds ā−1 = −ā1 = A0/
√

2, which

reduces as ρ→ 0 to the linearly polarized wave

A = −A0 sin(ω0(t− z)) x̂, (8.138)

E = ω0A0 cos(ω0(t− z))x̂, (8.139)

B = ω0A0 cos(ω0(t− z))ŷ. (8.140)

By varying the ratio ā1/ā−1, we could also produce backgrounds with an arbitrary elliptical polariza-

tion. Finally, we consider a helicity ±2 background with ā2 = ā−2 = h, which reduces as ρ→ 0 to a

“plus” polarized gravitational wave, hxx = −hyy = h cos(ω0(t− z)).
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Extracting the Force

We can straightforwardly compute forces with the Lagrangians above, but there are multiple natural

definitions of force. To build intuition, let us first consider particles minimally coupled to scalar,

vector, or tensor fields with ρ = 0. The equations of motion are

(m− gϕ)z̈µ = −g(gµν − żµżν)∂νϕ, (8.141)

mz̈µ = eżνF
µν , (8.142)

z̈µ = κ żν żρ(∂νh
µ
ρ + ∂ρh

µ
ν − ∂µhνρ)/2 (8.143)

where a dot denotes a derivative with respect to proper time τ , and all fields are evaluated at zµ(τ).

These are straightforwardly derived from the interaction actions (8.48), (8.50), and (8.59), which

correspond to Lagrangians

Lint(r(t),v(t)) =





g ϕ
√

1 − v2 scalar

eA · v vector, radiation gauge

(κm/2)hijvivj/
√

1 − v2 tensor, transverse traceless gauge

. (8.144)

All three fields produce qualitatively different effects. While the vector field yields the familiar Lorentz

force, a scalar field can affect the particle’s inertia, which can even cause singular accelerations when

ϕ = m/g, at which point our entire description of matter as particles breaks down. This effect comes

from the v2 term in the scalar Lagrangian. By contrast, there is no v2 term for a tensor field in

transverse traceless gauge, but in this case the coordinate acceleration of a free particle initially at

rest is zero, indicating that the coordinate system itself stretches with the gravitational wave. This is

an unnatural way to describe laboratory experiments with rigid detectors, for which we should instead

use the proper detector frame, where the tensor field produces an ordinary Newtonian force [828].

For continuous spin backgrounds, we choose to define the force by F = dp/dt where p =

mv/
√

1 − v2 is the unperturbed three-momentum, as this is the most natural quantity for a vector

background. The Euler–Lagrange equation yields

F =
∂Lint

∂r
− d

dt

∂Lint

∂v
=
∂Lint

∂r
−
(
∂

∂t
+ v · ∂

∂r
+ a · ∂

∂v

)
∂Lint

∂v
. (8.145)

This is only an implicit equation, since a in the final term is itself determined by the force. In

addition, this final term contains the inertia-modifying effects of a scalar field, which can produce

singular accelerations. We avoid both of these issues by assuming the particle experiences only a

single weak background field. In this case, both a and Lint start at first order in the field, so the last

term is second order and can be dropped. (Of course, we are also implicitly ignoring backreaction

effects, such as radiation reaction forces.)
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Working in Euclidean notation, the resulting forces for scalar, vector, and tensor fields are

F ≈ g(∇ϕ+ vϕ̇− (v2/2)∇ϕ+ v(v · ∇)ϕ+O(v3)), (8.146)

F = e(E + v ×B), (8.147)

Fi = κm(−ḣijvj + vjvk(∂ihjk − ∂jhik − ∂khij)/2 +O(v3)) (8.148)

respectively, where a dot now represents a time derivative. As discussed above, this force is not the

most natural quantity for a scalar or tensor background, but we can still use it as a starting point to

compute corrections at nonzero ρ. We denote the order ρn contribution to the force on a particle

with a scalar-like or vector-like current by FS,n and FV,n, respectively.

Scalar-Like Currents

We now warm up by considering a particle with a scalar-like current. First, in the helicity 0

background defined above, the Lagrangian is

LSint = gϕ0 cos(ω0(t− z))
√

1 − v2J0

(
ρv⊥

ω0(1 − vz)

)
. (8.149)

The leading term of the Bessel produces the standard force (8.146), which in this case is

FS,0h=0 = gω0ϕ0 sin(ω0(t− z))(ẑ− v +O(v2)). (8.150)

More generally, ẑ would be the direction of propagation k̂ of the plane wave, by rotational symmetry.

Next, the quadratic term in the Bessel gives the leading correction,

FS,2h=0 = − ρ2

2ω2
0

gω0ϕ0 sin(ω0(t− z))(v⊥ +O(v2)). (8.151)

For the same particle in the helicity ±1 background, the leading term in the Lagrangian is

LSint =
gρ√
2ω0

A0 cos(ω0(t− z))

√
1 − v2

1 − vz
vx +O(ρ2) (8.152)

which corresponds to a force

FS,1|h|=1 =
gρ√

2
A0 sin(ω0(t− z))(x̂ + 2vxẑ +O(v2)) (8.153)

= − gρ√
2

(
A + 2(v ·A)k̂

)
. (8.154)

The two terms here are like an electric and magnetic force respectively, but their relative normal-

ization differs from the usual Lorentz force, and the “magnetic” force instead points along the
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direction of propagation of the wave. Furthermore, both forces are π/2 out of phase with the usual

definitions (8.139) and (8.140) of the electric and magnetic fields.

Thus, ρ-dependent corrections to forces generally have novel direction and velocity dependence.

For a higher helicity background h > 1, the Lagrangian would start at order āh(ρv/ω)h, with

nontrivial tensor structure in v, and yields a leading force of order (ρāh)(ρv/ω)h−1.

Vector-Like Currents

We now turn to the more phenomenologically interesting case of particles with vector-like currents.

We first consider the helicity 0 background, where

LVint = −
√

2 e ω0

ρ
ϕ0 sin(ω0(t− z))(1 − vz)J0

(
ρv⊥

ω0(1 − vz)

)
. (8.155)

In this case there should be no force when ρ = 0, but the Lagrangian instead appears to diverge as

ρ→ 0, due to the constant term in the Bessel. The resolution is familiar from subsection 8.3.2: the

apparently divergent term is a total time derivative, and thus has no physical effect. Discarding this

term, the leading correction is from the quadratic term,

FV,1h=0 = − eρ√
2
ϕ0 cos(ω0(t− z))(v⊥ +O(v2)). (8.156)

This has the same velocity dependence as (8.151), which is not a coincidence. In the nonrelativistic

limit, the leading correction to the force is always purely transverse, due to the dependence of the

Bessel functions on v⊥, and for a h = 0 background that force must be directly proportional to v⊥

by rotational symmetry.

Next, for the helicity ±1 background, we have

LVint = eA · v +
eρ2

8ω2
0

A0 sin(ω0(t− z))(vxv
2
⊥ +O(v4)) +O(ρ4) (8.157)

where the first term recovers the Lorentz force law (8.147), and the second term yields

FV,2|h|=1 = − eρ2

4ω0
A0 cos(ω0(t− z))

(
3v2x + v2y

2
x̂ + vxvy ŷ +O(v3)

)
(8.158)

= − eρ2

4ω2
0

(
(E · v⊥)v⊥ + E v2⊥/2 +O(v3)

)
(8.159)

as quoted in (8.2), where terms involving B appear at order v3. While this correction is suppressed by

(ρv/ω0)2 relative to the familiar electric force, it has a distinctive direction and velocity dependence

which may be detectable. For instance, it includes a term parallel to v⊥. Note that (8.159) only

applies to radiation backgrounds; it does not apply to situations with static electromagnetic fields,
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where the force correction is not universal.

Finally, for the helicity ±2 background, we have

LVint =
eρ

2
√

2ω
h sin(ω0(t− z)) (v2y − v2x +O(v3)) (8.160)

which corresponds to a force

FV,1|h|=2 =
eρ√

2
h cos(ω0(t− z))(vxx̂− vyŷ +O(v2)). (8.161)

This has the same velocity dependence as the leading force (8.148) from a gravitational wave, but

shifted π/2 out of phase. More generally, in a higher helicity background h > 2, the Lagrangian

starts at order vāh(ρv/ω)h−1 and yields a leading force of order (ρvāh)(ρv/ω)h−2.

Discussion

In the above discussion we have restricted to plane wave backgrounds. Generalizing to arbitrary

radiation backgrounds, such as wavepackets, is computationally straightforward and may offer a useful

perspective on the localization properties of the interactions. We have also neglected inertia-modifying

effects, which, e.g. would arise for a particle with a vector-like current in an h = 0 background.

Searching for such effects would provide information about the amplitude of low-frequency background

radiation in all of the helicity modes.

It is also interesting to consider if there is a natural continuous spin counterpart to a uniform

static electric or magnetic field. Some care must be taken in defining this for several reasons. First,

the enormous gauge redundancy (8.26) and the absence of local gauge-invariant observables obscures

what a “uniform field” should mean. Second, the linearly varying potentials of uniform fields in

electromagnetism, such as Aµ(x, t) = (Ez,0), have no clear continuous spin counterpart that satisfies

the free equation of motion (8.19). Third, as we have seen in subsection 8.3.1, the currents of source

particles are generically spatially delocalized and thus overlap the probe particle, so requiring that

“uniform” fields satisfy a free equation of motion is not even justified. (The temporal current is not

spatially delocalized, but it is not time-independent and does not give rise to a static field.)

As a result, free background fields are not a useful concept for describing static forces. One

should instead compute these non-universal interparticle forces directly, as we have already done

in subsection 8.5.1. There, we saw that the static force law for spatial and temporal currents was

exactly 1/r, so for these currents all electrostatic forces are unchanged. We have also seen that the

inhomogeneous current has a modified static force law, and that continuous spin fields generically

have modified velocity-dependent force laws.
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8.6 Radiation Emission From Matter Particles

In this section we investigate the continuous spin radiation emitted by an accelerating particle. First,

we review radiation in ordinary scalar and vector fields in subsection 8.6.1. We cover this standard

material carefully, in a way that directly generalizes to the nonlocal currents of continuous spin fields

in subsection 8.6.2. In subsection 8.6.3 we apply these results to particles in nonrelativistic motion,

yielding concrete deviations from the Larmor formula, and show the radiated power is well-behaved

for arbitrary accelerations. Along the way, we make contact with previous work by recovering the soft

factors for CSP emission, by considering the radiation emitted by an instantaneously kicked particle.

8.6.1 Review: Scalar and Vector Radiation

The Radiation Field and Soft Factors

We first consider the radiation produced in a massless scalar field ϕ by a time-dependent source J .

Given retarded boundary conditions, the equation of motion ∂2ϕ = J is solved by

ϕ(x) =

∫
d4y Gr(x− y)J(y) (8.162)

where Gr is the retarded Green’s function. If the source J corresponds to matter particles that

eventually stop accelerating, then at late times the field contains outgoing radiation and the static

fields of these particles. We can isolate the radiation in a covariant way by defining

ϕ(x) = ϕrad(x) + ϕa(x) (8.163)

where ϕa(x) is the solution with advanced boundary conditions, corresponding to Green’s function

Ga. The difference ϕrad(x) contains only radiation, because ∂2xϕrad = ∂2x(ϕ− ϕa) = 0, so it has the

null plane wave expansion

ϕrad(x) =

∫
d3k

(2π)3 2|k| (a(k)e−ik·x + c.c.)

∣∣∣∣
k0=|k|

. (8.164)

On the other hand, in momentum space the retarded propagator corresponds to integrating along a

k0 contour that passes above the poles at k0 = ±|k|, while the advanced propagator passes below

them. Their difference corresponds to integrating along a contour C that simply encircles both poles

clockwise, so

ϕrad(x) = −
∫

d3k

(2π)3

∫

C

dk0

2π

J(k)e−ik·x

k2
(8.165)

=

∫
d3k

(2π)3 2|k|
(
iJ(k)e−ik·x + c.c.

) ∣∣∣∣
k0=|k|

(8.166)
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from which we read off a(k) = iJ(|k|,k).

For example, if the source is a single particle that receives an instantaneous kick at the origin,

then the particle’s worldline is

zµ(τ) =





(γτ, γvτ) τ < 0

(γ′τ, γ′v′τ) τ > 0
. (8.167)

Integrating the worldline current (8.49) yields

J(ω,k) =
ig

γ(ω − k · v)
− ig

γ′(ω − k · v′)
(8.168)

which corresponds to a radiation amplitude

a(k) = (2mg)

(
1

2k · p′ −
1

2k · p

)

k0=|k|
(8.169)

where m is the mass of the particle, and p and p′ are its initial and final four-momenta.

We can derive essentially the same result in quantum field-theoretic language by taking a matter

field Φ of mass m with Yukawa coupling yϕ2Φ, where matching to the particle theory sets y = 2mg.

Then in any process with a Φ particle of initial momentum p and final momentum p′, the amplitude

to emit a soft ϕ particle of momentum k obeys

M(p→ p′ + k)

M0(p→ p′)
= (2mg)

(
1

2k · p′ −
1

2k · p

)
(8.170)

where the “soft factors” on the right-hand side can be determined solely using unitarity, locality,

and Lorentz invariance [773]. Of course, this matches (8.169) in form. To make the connection more

explicit one can consider amplitudes with an arbitrary number of outgoing ϕ particles, yielding a

coherent final state for the ϕ field with ⟨a(k)⟩ given by (8.169). We thus recover the exact same

result for the radiation field in the classical limit of many emissions.

It is straightforward to generalize these results to a massless vector field Aµ. Defining the radiation

field Aµrad analogously, in Lorenz gauge we have

Aµrad(x) =

∫
d3k

(2π)3 2|k|
(
iJµ(k)e−ik·x + c.c.

) ∣∣∣∣
k0=|k|

(8.171)

and the corresponding plane wave expansion is

Aµrad(x) =

∫
d3k

(2π)3 2|k|

(∑

λ=±
ϵ̂µλaλ(k)e−ik·x + c.c. + gauge

)∣∣∣∣
k0=|k|

. (8.172)
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F′ 

F

ϕ − ϕa = ϕrad

0

0
F − F′ F − F′ 

F′ 

F

Figure 8.3: The field ϕ of a kicked particle has outgoing radiation on the forward light cone, the
final static field F ′ inside, and the initial static field F outside. Subtracting off the advanced field
ϕa gives a pure radiation field, which has incoming radiation on the backward light cone, outgoing
radiation on the forward light cone, and the difference F − F ′ outside both light cones.

Here we define ϵ̂λ = ϵλ/
√

2 to reach the usual normalization for helicity ±1 modes. Now,

Jµ = (k · J)qµ + (q · J)kµ − (ϵ̂− · J)ϵ̂µ+ − (ϵ̂+ · J)ϵ̂µ− (8.173)

where the first term is zero by current conservation, and the second term corresponds to the residual

gauge freedom in Lorenz gauge. The last two terms yield

a±(k) = (iϵ̂±)∗ · J(k)

∣∣∣∣
k0=|k|

. (8.174)

Returning to the example of a single kicked particle, coupled to the vector field by (8.51), a derivation

analogous to the previous one gives

Jµ(ω,k) =
ie (γ, γv)

γ(ω − k · v)
− ie (γ′, γ′v′)
γ′(ω − k · v′)

(8.175)

which corresponds to a radiation amplitude

a±(k) = e

(
ϵ̂∗± · p
k · p − ϵ̂∗± · p′

k · p′
)

k0=|k|
. (8.176)

Of course, this matches the ratio M(p→ p′ + k)/M0(p→ p′) from field-theoretic soft factors.

Radiated Power

Defining xµ = (t, rr̂), we can simplify (8.164) in the far field limit r → ∞ using

eik·r =
2πei|k|r

i|k|r δ(2)(k̂, r̂) − 2πe−i|k|r

i|k|r δ(2)(k̂,−r̂) (8.177)
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which holds since both sides are integrated against smooth functions of k̂ and r̂. This yields

lim
r→∞

ϕrad(x) =
1

4πr

∫ ∞

0

d|k|
2π

(
−ia(|k|r̂) e−i|k|(t−r) + ia(−|k|r̂) e−i|k|(t+r) + c.c.

)
(8.178)

=
1

4πr

∫
dω

2π

(
J(ω, ωr̂) e−iω(t−r) − J(ω,−ωr̂) e−iω(t+r)

)
. (8.179)

Much of the information in this expression is irrelevant to computing the radiated power. To see

this, consider a particle kicked at time t = 0, and let F (F ′) be the static field that would exist if the

particle had its initial (final) velocity for all time. The spacetime profile of ϕrad is shown in Fig. 8.3,

and contains outgoing radiation (from the first term of (8.179)), incoming radiation (from the second

term), and a combination of static fields (from both terms).

Static fields never contribute to radiated power in the far field, since their derivatives are suppressed

by 1/r. The incoming radiation is unphysical and vanishes for t > 0, and more generally vanishes at

late times for any situation where the particles eventually stop accelerating. Thus, at late times we

can compute the radiated power from the physical, outgoing radiation in ϕ by working with only

the first term of (8.179). This prescription even works for periodic motion as long as we consider its

amplitude to eventually damp as t→ ∞, which we will leave implicit below.

To compute the angular distribution of radiated power, we note that in the far field limit, the

derivatives in the Poynting vector T 0i = ∂0ϕ∂iϕ effectively only act upon the exponential e−iω(t−r),

as other contributions are suppressed by 1/r. Then at late times,

dP (t)

dr̂
= lim
r→∞

r2 (∂0ϕ(x)) (∂rϕ(x)) (8.180)

=

∣∣∣∣
∫
dω

2π

e−iω(t−r)

4π
ωJ(ω, ωr̂)

∣∣∣∣
2

. (8.181)

Similarly, for a vector field in Lorenz gauge, the radiation field in the far field limit is

lim
r→∞

Aµrad(x) =
1

4πr

∫
dω

2π

(
−
∑

λ=±
ϵ̂µλ (ϵ̂∗λ · J(ω, ωr̂)) e−iω(t−r) + incoming + gauge

)
. (8.182)

We may again discard the incoming term at late times, and since the Poynting vector T 0r = −F 0µF rµ

is gauge invariant, we may also discard the pure gauge term proportional to kµ. Now, in the far field

limit, a derivative i∂µ yields a factor of kµ = (ω, ωr̂), so

dP (t)

dr̂
= lim
r→∞

r2 (k0Aµ − kµA0)(krAµ − kµA
r) (8.183)

= lim
r→∞

ω2r2AµAµ (8.184)

=
∑

λ=±

∣∣∣∣
∫
dω

2π

e−iω(t−r)

4π
ω ϵ̂∗λ · J(ω, ωr̂)

∣∣∣∣
2

(8.185)
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where we arrived at (8.184) using k2 = 0 and k · ϵ̂± = 0. We may also perform the sum over

polarizations using k · J = 0 to get a compact expression for the total power,

dP (t)

dr̂
= −

∣∣∣∣
∫
dω

2π

e−iω(t−r)

4π
ωJµ(ω, ωr̂)

∣∣∣∣
2

. (8.186)

As a concrete example, we can again consider a kicked particle. Since the radiation is emitted

instantaneously, it is natural to integrate (8.181) over time. We then strip off the remaining frequency

integration, pairing positive and negative ω, to find the energy spectrum

dE

dω dr̂
=

ω2

16π3
|J(ω, ωr̂)|2 =

g2

16π3

(
1

γ(1 − r̂ · v)
− 1

γ′(1 − r̂ · v′)

)2

(8.187)

for ω ≥ 0. Similarly, integrating the vector result (8.186) yields

dE

dω dr̂
= − ω2

16π3
|Jµ(ω, ωr̂)|2 = − e2

16π3

(
(1,v)

1 − r̂ · v − (1,v′)
1 − r̂ · v′

)2

(8.188)

which is a well-known result (e.g. see Eq. (15.2) of Ref. [506]).

Particles in Periodic Motion

Next, we consider the radiation emitted by a particle undergoing periodic motion with period

T = 2π/ω0. In the scalar case, the current and field amplitude have the form

J(ω,k) = 2π
∑

n

jn(k) δ(ω − nω0), a(k) = 2π
∑

n

an(k̂) δ(|k| − nω0) (8.189)

where the Fourier components can be extracted by

an(r̂) = ijn(nω0r̂) = i

∫ T

0

dt

T
einω0tJ(t, nω0r̂). (8.190)

The time-averaged power distribution is

dP̄

dr̂
=

∫ T

0

dt

T

dP (t)

dr̂
=

1

8π2

∑

n>0

n2ω2
0 |an(r̂)|2 (8.191)

where we paired terms with positive and negative n, and dropped the static n = 0 term, which does

not contribute to the radiated power. In general, we have

an(r̂) = ig

∫ T

0

dt

T
einω0(t−r̂·z(t))√1 − |v(t)|2 (8.192)
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where the final factor comes from changing variables from τ to t. This shows that the leading

contribution to an is of order vn0 , where v0 is the typical speed, so that in the nonrelativistic limit

radiation is predominantly emitted at the fundamental frequency.

For nonrelativistic sinuosidal motion z(t) = ℓ cos(ω0t) x̂ with v0 = ω0ℓ≪ 1, we have

a1(r̂) = ig

∫ T

0

dt

T
eiω0te−iv0(r̂·x̂) cos(ω0t)

√
1 − v20 sin2(ω0t) =

gv0
2

(r̂ · x̂) +O(v20). (8.193)

This radiation is emitted primarily longitudinally, and the total averaged power is

P̄ =
g2ω2

0v
2
0

32π2

∫
dr̂ (r̂ · x̂)2 =

g2a20
24π

(8.194)

where a0 = ω0v0. This is simply the scalar Larmor formula.

For the vector case, we can define the components jµn(k) and a±,n(k̂) analogously to (8.189), and

they are now related by

a±,n(r̂) = (iϵ̂±)∗ · jn(nω0r̂). (8.195)

To quickly recover familiar results, we time average the power summed over helicities (8.186),

dP̄

dr̂
= − 1

8π2

∑

n>0

n2ω2
0 |jµn(nω0r̂)|2. (8.196)

The leading contribution to radiation at the nth harmonic is still of order vn0 , since

jµn(nω0r̂) = e

∫ T

0

dt

T
einω0(t−r̂·z(t)) (1,v(t)). (8.197)

Again specializing to nonrelativistic sinusoidal motion, we have

jµ1 (nω0r̂) = e

∫ T

0

dt

T
eiω0t−iv0(r̂·x̂) cos(ω0t) (1,−v0 sin(ω0t) x̂) = − iev0

2
(r̂ · x̂, x̂) +O(v20). (8.198)

Now the radiation is emitted primarily along the transverse direction, and the total is

P̄ =
e2ω2

0v
2
0

32π2

∫
dr̂ |r̂× x̂|2 =

e2 a20
12π

. (8.199)

which is the usual Larmor formula, since ⟨a2⟩ = a20/2. We can also recover the polarization content

of the radiation by applying (8.195), which shows that the radiation is linearly polarized, along the

projection of x̂ in the plane transverse to r̂. Of course, these are all familiar results, but we are now

prepared to see how they are modified at nonzero ρ.
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8.6.2 Defining Continuous Spin Radiation

The Radiation Field and Soft Factors

Our analysis of continuous spin radiation will closely mirror the previous subsection. We work in

strong harmonic gauge, where the equation of motion (8.68) is solved by

Ψ(η, x) = −
∫

d3k

(2π)3

∫

Cr

dk0

2π

J(η, k)e−ik·x

k2
(8.200)

where the contour Cr passes above the poles at k0 = ±|k|. We define Ψa with a contour Ca that

passes below these poles but is otherwise identical, so that both contours enclose the same essential

singularities. Then the difference,

Ψrad(η, x) = Ψ(η, x) − Ψa(η, x) =

∫
d3k

(2π)3 2|k|
(
iJ(η, k)e−ik·x + c.c.

) ∣∣∣∣
k0=|k|

(8.201)

is a pure radiation field, with support on only null momenta. We have argued in subsection 8.3.2

that the Ψrad produced by a current depends only on the function ĝ, and is universal for scalar-like

or vector-like currents. This can also be seen directly by plugging the general decomposition (8.87)

of the current into the equation above. The k2X term vanishes since k is null, and the final term is

of the form Dξ, which corresponds to a pure gauge field.

The mode expansion of Ψrad is given by (8.36), and the gauge invariant coefficients can be found

by projecting against a helicity wavefunction by (8.37),

ah(k) =

∫
[d4η] δ′(η2 + 1) iψ∗

h,k(η)J(η, k)

∣∣∣∣
k0=|k|

. (8.202)

We can now readily derive soft factors by considering a kicked particle with worldline (8.167).

First, for any scalar-like current we have

J(η, k) =
ig e−iρη·p/k·p

γ(ω − k · v)
− ig e−iρη·p

′/k·p′

γ′(ω − k · v′)
. (8.203)

This corresponds to a radiation amplitude

aSh(k) = (2mg)

(
sSh(k, p′)
2k · p′ − sSh(k, p)

2k · p

)

k0=|k|
(8.204)
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where the scalar-like soft factor is

sSh(k, p) =

∫
[d4η] δ′(η2 + 1)ψ∗

h,k(η)e−iρη·p/k·p (8.205)

=

(
ϵ− · p
|ϵ− · p|

)h
Jh (ρ|ϵ− · p/k · p|) . (8.206)

Here we evaluated the integral using (8.273) with V = ρ(q − p/k · p). Up to differences in phase and

normalization conventions, this matches the scalar-like CSP soft factors from Ref. [780]. Explicitly,

defining z = ϵ− · p/k · p for brevity, the leading terms are

sSh(k, p) =





1
8 ρ

2z2 h = 2

1
2ρz h = 1

1 − 1
4ρ

2z∗z h = 0

− 1
2ρz

∗ h = −1

1
8ρ

2(z∗)2 h = −2

+O(ρ3) (8.207)

In general, the leading contribution to sSh is of order ρ|h|, so in the ρ→ 0 limit all the soft factors

vanish except for sS0 = 1, recovering the result (8.170) for ordinary scalars.

For vector-like currents, the results are identical up to the substitution g → (
√

2 e/ρ)(ik · ż). Then

the radiation amplitude is

aVh (k) = e

(
sVh (k, p)

k · p − sVh (k, p′)
k · p′

)

k0=|k|
(8.208)

where the vector-like soft factors are

sVh (k, p) =

√
2 k · p
iρ

sh(k, p). (8.209)

This agrees with the vector-like CSP soft factors of Ref. [780], up to differences in conventions. As

already noted there, the soft factor for h = 0 diverges as 1/ρ, but this contribution cancels between

the two terms of (8.208), and more generally it will cancel from the soft emission amplitude for any

process by charge conservation. Thus discarding this term, the leading contributions are

sVh (k, p) = −ik · p×





1
4
√
2
ρz2 h = 2

1√
2
z − 1

8
√
2
ρ2z2z∗ h = 1

− 1
2
√
2
ρzz∗ h = 0

− 1√
2
z∗ + 1

8
√
2
ρ2(z∗)2z h = −1

1
4
√
2
ρ(z∗)2 h = −2

+O(ρ3) (8.210)
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In general, the leading physical contribution to sVh is of order ρ||h|−1|, so in the ρ→ 0 limit all the

soft factors vanish except for sV±1 = ∓iϵ̂∗± · p, recovering the result (8.176) for ordinary vectors (up to

the phases used to define the helicity basis (8.35)).

We have therefore recovered all the physical results of Ref. [780], up to the tensor-like CSP soft

factors, which we defer to future work. The agreement is heartening but unsurprising, since soft

factors are highly constrained by symmetries. We now turn to deriving new results.

Extracting the Radiated Power

We can compute the radiated power using the canonical stress-energy tensor [781]

Tµν = −gµνL +

∫
[d4η]

∂L
∂(∂µΨ)

∂νΨ (8.211)

= −gµνL +

∫
[d4η] δ′(η2 + 1) ∂µΨ∂νΨ − 1

2
∂µη (δ(η2 + 1)∆Ψ) ∂νΨ. (8.212)

Compared to the examples in section 8.6.1, there is a new subtlety: the stress-energy tensor is not

gauge invariant, even after Belinfante improvement terms are added to yield a symmetric tensor Θµν .

This is not surprising since the same phenomenon already occurs in linearized gravity; it reflects

the fact that both general relativity and continuous spin theories do not have local gauge invariant

observables. The resolution here is exactly the same as in linearized gravity [828]: for radiation and

gauge transformations with typical wavelength λ, the average ⟨Θµν⟩ of the stress-energy tensor over

a spacetime region of typical size L≫ λ is approximately gauge invariant, up to terms suppressed by

powers of λ/L. Thus, one can meaningfully describe energy-momentum flow on scales longer than

the wavelength.

To see how this works, note that averaging and discarding terms suppressed by λ/L allows us

to perform integration by parts, and more generally to discard total derivative terms such as the

Belinfante improvement terms, which yields ⟨Θµν⟩ ≈ ⟨Tµν⟩. Furthermore, the variation of ⟨L⟩
approximately vanishes for the same reason that the action (8.9) is gauge invariant. The variations

of the remaining terms cancel after using the equation of motion (8.19) and integration by parts, as

shown by a tedious but straightforward calculation in appendix 8.9.5.

There is another subtlety which is unique to continuous spin fields. In section 8.6.1, we neglected

the initial and final static fields F and F ′ when computing the radiated power because their derivatives

fall off as 1/r2. But continuous spin fields have currents which are not localized to the worldline, as

discussed in subsection 8.4.1, leading to different behavior at large r. For example, the derivatives of

the static field of the spatial current (8.96) do not simply scale as 1/r2, but they do fall off faster

than 1/r, and thus do not contribute to radiated power in the far field. We do not know how to

prove this in general, partly because our analysis is framed in terms of fields with a high degree

of gauge redundancy. For example, the temporal current depends explicitly on a particle’s past

history, so that even the “static” field (8.98) depends explicitly on time and an early time cutoff.
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These features obscure the asymptotic behavior of the field and its derivatives. In lieu of a proof, we

make the physically well-motivated conjecture that Ψrad(η, x), which encodes “on-shell” null modes,

provides the sole contribution to the far-field power, for all physically sensible currents satisfying the

continuity condition.

We can now derive results. Our discussion of gauge invariance implies that we may work in any

gauge, as long as we only compute spacetime averaged quantities. We use harmonic gauge, where

only the second term of (8.212) contributes to the Poynting vector,

T 0r =

∫
d4η δ′(η2 + 1) ∂0Ψ∂rΨ. (8.213)

In analogy with (8.179), the part of Ψrad containing outgoing radiation in the far field limit is

lim
r→∞

Ψrad(η, x) ⊃ 1

4πr

∫
dω

2π

∑

h

ψh,k(η)

∫
[d4η′] δ′(η′2 + 1)ψ∗

h,k(η′)J(η′, k) (8.214)

where we defined k = (ω, ωr̂) for brevity. As discussed above, we use this piece alone to compute the

far field radiated power flux, omitting contributions from “static” fields. Following the same steps

that led to (8.181) and applying the orthogonality relation (8.264) yields the radiated power in each

helicity mode,

dPh(t)

dr̂
=

∣∣∣∣
∫
dω

2π

ω eiω(r−t)

4π

∫
d4η δ′(η2 + 1)ψ∗

h,k(η)J(η, k)

∣∣∣∣
2

. (8.215)

We can sum over h using the completeness relation (8.282), giving the total

dP (t)

dr̂
=

∫
d4η δ′(η2 + 1)

∣∣∣∣
∫
dω

2π

eiω(r−t)

4π
ωJ(η, k)

∣∣∣∣
2

. (8.216)

The total radiated power distribution (8.216) is Lorentz invariant, but its distribution in helicity (8.215)

is not. This reflects the fact that the helicity of a continuous spin particle is not Lorentz invariant, as

mentioned in section 8.2.

To render (8.215) and (8.216) gauge invariant and physically meaningful, it suffices to average in

time. This fact follows from the same argument as in the gravitational wave literature [828]: in the

limit r → ∞, evaluating the power emitted through any nonzero solid angle automatically involves a

large spatial average over the transverse directions. Furthermore, since the power is written in terms

of fields that are purely outgoing spherical waves, an average in t is equivalent to an average in r, so

no further averaging is needed.
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8.6.3 Computing Continuous Spin Radiation

As a first example, we can integrate over all times to find the radiated energy spectrum for a kicked

particle. In terms of the radiation amplitudes defined above, we have

dE

dω dr̂
=
∑

h

ω2

16π3
×




|ah(ωr̂)|2 scalar-like

|aVh (ωr̂)|2/2 vector-like
(8.217)

where the factor of 1/2 is due to the normalization of the frame vectors ϵµ±. As expected, these

results reduce to (8.187) and (8.188) as ρ→ 0.

Our main interest in this section is on particles in periodic motion, for which we can compute

a gauge invariant radiated power by averaging over a period. As in section 8.6.1, the currents and

amplitudes satisfy

J(η, ω,k) = 2π
∑

n

jn(η,k)δ(ω − nω0), ah(k) = 2π
∑

n

ah,n(k̂)δ(|k| − nω0) (8.218)

and the Fourier components can be extracted by

ah,n(r̂) = i

∫
[d4η] δ′(η2 + 1)ψ∗

h,kn(η)jn(η, kn) (8.219)

where we define kn = nω0(1, r̂). The time-averaged power distribution is

dP̄h,n
dr̂

=
n2ω2

0

8π2
|ah,n(r̂)|2. (8.220)

With this single expression we can compute the universal radiated power, differential in direction r̂,

helicity h, and harmonic n > 0, for both scalar-like and vector-like currents.

First, for any scalar-like current,

ah,n(r̂) = ig

∫ T

0

dt

T
einω0(t−r̂·z(t))√1 − |v(t)|2

∫
[d4η] δ′(η2 + 1)ψ∗

h,kn(η)e−iρη·ż(t)/kn·ż(t) (8.221)

= ig

∫ T

0

dt

T
einω0(t−r̂·z(t))√1 − |v(t)|2

(
ϵ− · ż
|ϵ− · ż|

)h
Jh (ρ|ϵ− · ż/kn · ż|) (8.222)

where we performed the integral using the same logic as in (8.206). This can be written more

transparently by writing ż = (1,v) = (1, vr r̂ + v⊥), and choosing frame vectors with ϵµ± = (0, ϵ±), so

that ϵ± · r̂ = 0 and |ϵ± · v| = v⊥. This yields

ah,n(r̂) = ig

∫ T

0

dt

T
einω0(t−r̂·z)

√
1 − v2 (−ϵ− · v̂⊥)

h
Jh

(
ρv⊥

nω0(1 − vr)

)
. (8.223)

Notice that while the original expression (8.221) had direct dependence on ρ/ω0, our final result only
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depends on the combination ρv0/ω0, which is physically reasonable since this parameter controls

the mixing of helicity states under boosts, as discussed in section 8.2.1. Thus, the amplitude can be

viewed as a series in the dimensionless variables v0 and ρℓ, where ℓ = v0/ω0 is the typical length

scale of the particle’s path.

We have seen that for nonrelativistic sinusoidal motion, the amplitude (8.193) for ordinary h = 0,

n = 1 scalar radiation begins at order v0. By contrast, the leading continuous spin corrections begin

at zeroth order in v0, and are

ah,n(r̂) = ig

∫ T

0

dt

T
einω0t (−ϵ− · v̂⊥)

h
Jh

(
ρv⊥
nω0

)
+O(v0) (8.224)

= ig

∫ 2π

0

dϕ

2π
einϕ

(
−eiα sign(sinϕ)

)h
Jh

(
ρℓ sin θ

n
|sinϕ|

)
+O(v0) (8.225)

where we changed variables to ϕ = ω0t, θ is the angle of r̂ to the direction of motion x̂, and the

constant phase eiα depends on the phase convention for the polarization vector ϵ−. Discarding the

irrelevant phases by taking the magnitude yields

|ah,n(r̂)| = g

∣∣∣∣
∫ 2π

0

dϕ

2π
einϕJh

(
ρℓ sin θ

n
sinϕ

)∣∣∣∣+O(v0). (8.226)

Thus, for nonrelativistic sinuosidal motion the leading contribution to radiation at helicity h > 0

has order (ρℓ)h and appears at harmonics n = h, h− 2, . . ., while higher order terms in ρℓ can also

contribute to higher harmonics.

The resulting radiated power distribution, illustrated at left in Fig. 8.4, is

dP̄h,n
dr̂

=
g2ω2

0

32π2
×





v20 cos2 θ (1 − (ρℓ sin θ)2/8) h = 0, n = 1

(ρℓ sin θ)2/4 |h| = 1, n = 1

(ρℓ sin θ)4/1024 |h| = 2, n = 2

+ . . . (8.227)

where we show the leading ρ-dependent corrections for a few h and n. Note that the familiar scalar

radiation is primarily emitted longitudinally, while the h ̸= 0 radiation is primarily emitted in the

transverse directions, due to the dependence of the amplitude on v⊥. As expected, the familiar scalar

radiation dominates for small ρ≪ ω0.

It is also interesting to consider how the radiated power behaves in the deep infrared limit ρℓ→ ∞.

As shown at left in Fig. 8.5, the radiated power in each helicity and harmonic initially increases

monotonically with ρ, then oscillates and decreases. This is a consequence of the rapid oscillation of

the Bessel function in (8.226); roughly evaluating the integral with the method of stationary phase,

we find that at large ρℓ the radiated power is distributed democratically among helicities h ≲ n, and

dominated by harmonics n ≲
√
ρℓ.

To confirm this behavior numerically, it is easiest to sum the power (8.220) over all helicities
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Figure 8.4: Angular distribution of helicity h radiation (not to scale) from a particle in nonrelativistic
sinusoidal motion with amplitude ℓ and ρℓ≪ 1, for a scalar-like (left) or vector-like (right) current.
The dashed curve shows the total power emission in all helicities in the deep infrared limit ρℓ→ ∞.

using the completeness relation (8.282), which yields

dP̄

dr̂
=
g2ω2

0

8π2

∑

n>0

n2
∫

[d4η] δ′(η2 + 1)

∣∣∣∣∣

∫ T

0

dt

T
einω0(t−r̂·z(t))√1 − |v(t)|2e−iρη·ż(t)/kn·ż(t)

∣∣∣∣∣

2

(8.228)

=
g2ω2

0

8π2

∑

n>0

n2
∫

[d4η] δ′(η2 + 1)

∣∣∣∣∣

∫ T

0

dt

T
einω0te−iρ(η

0vr(t)−η·v(t))/nω0

∣∣∣∣∣

2

(8.229)

=
g2ω2

0

8π2

∑

n>0

n2
∫ T

0

dt

T

∫ T

0

dt′

T
einω0(t−t′) J0

(
ρ|v⊥(t) − v⊥(t′)|

nω0

)
(8.230)

where we took the nonrelativistic limit, cancelled a phase, and evaluated the η integral using (8.255).

In the special case of sinusoidal motion, one can evaluate the integrals in terms of hypergeometric

functions, yielding

lim
ρℓ→∞

dP̄

dr̂
=
g2ω2

0

8π4
ρℓ sin θ. (8.231)

This scaling, shown at right in Fig. 8.5, has an important physical consequence. Working in terms

of the independent measurable quantities v0 and a0, where a0 = ω0v0 is the typical acceleration,

the infrared limit ρℓ ≫ 1 is precisely the low acceleration regime a0 ≪ ρv20 . Combining (8.194)

and (8.231) yields

P̄ =




g2a20/24π a0 ≫ ρv20

g2ρa0/8π
2 a0 ≪ ρv20

(8.232)

so that the radiated power smoothly goes to zero as the acceleration vanishes, even though radiation
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Figure 8.5: Radiation from a particle with a scalar-like current in nonrelativistic sinusoidal motion of
amplitude ℓ. The left panel shows the power emitted in each given harmonic and helicity, evaluated
with (8.226). It does not show the ordinary, ρ-independent scalar radiation at h = 0, n = 1, as this is
suppressed by v20 . The right panel shows the power summed over helicities, evaluated using (8.230).
As discussed in the text, it implies the total power is well-behaved in the limit of low accelerations.

is emitted into an unbounded number of helicities. This is a general phenomenon: as shown in

appendix 8.9.5, one can extract the scaling of (8.231) from applying a stationary phase approximation

to (8.230) for any smooth trajectory. This is another striking example of how continuous spin theories

are well-behaved compared to naive expectations.

As in section 8.6.2, we can easily convert our results to vector-like currents by replacing g with

(
√

2 e/ρ)(ik · dz/dτ), giving similar results. The analogue of (8.223) is

ah,n(r̂) = −
√

2 env0
ρℓ

∫ T

0

dt

T
einω0(t−r̂·z) (1 − vr) (−ϵ− · v̂⊥)

h
Jh

(
ρv⊥

nω0(1 − vr)

)
. (8.233)

The ρ → 0 limit appears to diverge for h = 0, due to the constant term in the Bessel function.

However, that contribution vanishes since the integrand is a total derivative.

The integral may again be expanded in ρℓ and v0. Taking the nonrelativistic limit for sinusoidal

motion by removing terms subleading in v0, as in (8.226), yields

|ah,n(r̂)| =
√

2 env0

∣∣∣∣
1

ρℓ

∫ 2π

0

dϕ

2π
einϕJh

(
ρℓ sin θ

n
sinϕ

)
+O(v0)

∣∣∣∣ . (8.234)

Unlike the scalar-like case, this expression also contains the usual ρ-independent amplitude, since it

appears at the same order in v0 as the leading corrections. The leading contribution to the radiation
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Figure 8.6: Radiation from a particle with a vector-like current in nonrelativistic sinusoidal motion
of amplitude ℓ, normalized to the power at ρ = 0. We evaluate (8.234) to find the power emitted in
each harmonic and helicity (left), and (8.236) to find the power summed over helicities (right).

amplitude at helicity h is of order v0(ρℓ)||h|−1|, and the radiated power is

dP̄h,n
dr̂

=
e2ω2

0v
2
0

64π2
×





1
16 (ρℓ)2 sin4 θ h = 0, n = 2

sin2 θ − 3
16 (ρℓ)2 sin4 θ |h| = 1, n = 1

1
64 (ρℓ)2 sin4 θ |h| = 2, n = 2

+ . . . . (8.235)

All the radiation is primarily emitted in the transverse directions, as shown at right in Fig. 8.4.

Integrating this equation over angles yields our earlier stated result (8.3).

Numeric results extending to large ρℓ, where high harmonics and many helicities contribute, are

shown in Fig. 8.6 and earlier in Fig. 8.1. Again, to find the total power emitted it is easiest to sum

over helicities. The analogue of (8.230) is

dP̄

dr̂
=
e2ω2

0v
2
0

4π2

∑

n>0

n4

(ρℓ)2

∫ T

0

dt

T

∫ T

0

dt′

T
einω0(t−t′) J0

(
ρ|v⊥(t) − v⊥(t′)|

nω0

)
(8.236)

which can again be evaluated in terms of hypergeometric functions, yielding the simple result

lim
ρℓ→∞

dP̄

dr̂
=
e2ω2

0v
2
0

64π2
sin2 θ. (8.237)

This is precisely half the radiated power distribution for an ordinary vector field, though the radiation

is now distributed over many helicities. Again, for a general smooth motion one can derive the same

result, up to a different numeric constant, by applying a stationary phase approximation to (8.236).

This again illustrates how continuous spin physics is surprisingly well-behaved, yielding sensible

results for arbitrary accelerations.
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8.7 Discussion and Future Directions

Is Continuous Spin a Fundamental Feature of Nature?

All observables in the continuous spin theories computed in this chapter reduce to those of familiar

theories when ω ≫ ρ. This motivates a bold conjecture: all massless degrees of freedom in nature

could have continuous spin. One could begin exploring this possibility along two independent

directions. First, the Abelian gauge theory of this paper must be generalized to theories with nonzero

ρ that reduce as ρ→ 0 to non-Abelian gauge theories and general relativity. Second, one must embed

the Higgs mechanism within a continuous spin theory, which could initially be pursued in the context

of Abelian Higgs models.

Intriguingly, a “continuous spin Standard Model” may provide insight on the gauge hierarchy

problem. In familiar theories, a massless scalar field that mediates a 1/r potential is unstable against

radiative corrections from interactions with other massive degrees of freedom. Continuous spin

fields with scalar correspondence behave just like such fields as ρ→ 0, but have a gauge symmetry

which forbids a mass term, and thus could render a light scalar technically natural. This simple

observation strongly motivates developing interacting continuous spin theories to the point where one

can compute radiative corrections. The result is not clear a priori; for instance, the gauge symmetry

might be anomalous at the quantum level, or supersymmetry might be required. Or perhaps an

entirely new mechanism, related to analytic structure in η-space, will play a role. Even if ρ is zero in

our universe, such investigations may inspire new resolutions to the hierarchy problem.

Investigating the possibility that the graviton is a CSP requires developing a non-Abelian

continuous spin theory with tensor correspondence, i.e. one which reduces to general relativity as

ρ→ 0. This challenging task is motivated by the cosmological constant problem. In general relativity,

a cosmological constant term is allowed by general covariance, and quantum effects are generically

expected to produce large corrections to such a term. However, continuous spin fields have a larger

gauge symmetry which forbids this term when ρ = 0, which could render a small cosmological

constant technically natural. A first step toward developing this idea would be to construct currents

which reduce to the contribution of vacuum energy to Tµν in the limit ρ→ 0. An even more radical

possibility is that the cosmological constant is completely forbidden, and the accelerated expansion

of the universe instead results from ρ-dependent corrections to the static force law.

Future Theoretical Developments

We highlighted some long-term goals of a continuous spin research programme above; we now list

some theoretical developments which can serve as intermediate steps, and may also open new avenues

for experimental measurements and detection.

First, in this paper we have focused on spinless matter particles, since these give rise to the

leading contributions to long-distance forces and radiation. It would be interesting to see how our
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universal decomposition of currents is modified for matter particles with spin. Understanding the

role of spin would also enable precision tests using nuclear or electronic spin precession.

Second, we have only computed classical observables in this chapter, but nonzero ρ could also

produce distinctive signatures at microscopic scales, such as forbidden atomic transitions through

emission of partner polarizations, or modifications to atomic energy levels. As already discussed in

Ref. [781], the free continuous spin field is straightforward to quantize, and the mode amplitudes

a∗h(k) and ah(k) simply become raising and lowering operators for field modes with momentum k and

helicity h. There are well-known techniques for computing quantum amplitudes for matter particles

and gauge fields (e.g. see Refs. [832, 833, 834]) which in fact predate [835] the traditional approach

using matter fields. These formalisms could be a starting point for computing matter-CSP transition

amplitudes from our action (8.1). It is not obvious if such quantized theories will be fully consistent,

but the completeness relation (8.282) strongly suggests that correct unitarity cuts will be obtained

at least for tree-level CSP-mediated matter scattering.

Third, as already discussed in subsection 8.4.2, it would be interesting to explore causality more

thoroughly, as well as local completions of the action involving intermediate fields. This may shed

light on the physical interpretation of our delocalized effective currents and might be necessary to

properly define and compute radiative corrections.

Fourth, it would be interesting to tie our work to the broader field theory literature. For instance,

one could generalize our interacting formalism to supersymmetric continuous spin fields, or investigate

its relation to interactions in higher spin theory, which also often require towers of arbitrarily high

helicity modes. In addition, while massless CSPs do not appear in the perturbative treatment of the

familiar bosonic string [836], it would be interesting to see if they can emerge from other types of

string theory.

Fifth, we have focused on the coupling of continuous spin fields to matter particles, and it would

also be interesting to consider their coupling to matter fields. As discussed in appendix 8.9.3, existing

currents built from matter fields do not obey gauge invariance, do not contain the most relevant

minimal couplings, and appear to have vanishing coupling to radiation. We suspect that suitable

currents can be built from matter fields, but they must be either nonlocal or involve additional

intermediate fields. Understanding this structure is likely a prerequisite to developing non-Abelian

continuous spin theories, which require matter-like couplings for the continuous spin field itself.

Finally, since CSPs are known to exist in (A)dS spaces, it would be interesting to study continuous

spin fields in curved spacetimes, such as black holes. For a black hole with radius rs ≪ 1/ρ, a photon

CSP should be equivalent to one particle of each integer helicity, yielding an unambiguous deviation

from the ordinary Hawking radiation rate. More spectacularly, since ρ provides a length scale, a

continuous spin field might be exponentially amplified around a black hole through the superradiant

instability. Alternatively, our formalism could simply be inconsistent in curved spacetime. It might

even be that the only fully consistent gravitational theories of interacting CSPs require the graviton
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to be a CSP as well.

Towards Experimental Tests of the Photon and Graviton Spin Scale

In the near-term, the formalism explored in this chapter can already be used to devise probes of the

photon or graviton spin scale. These phenomenological tests should be largely independent of the

ultimate origin of the spin scale.

If the photon has a nonzero spin scale ργ , then the familiar charged particles in nature must couple

to it through vector-like currents, leading to distinctive deviations from ordinary electromagnetism.

One promising avenue is to try to detect the “nearest neighbor” partner polarizations with h = 0

or |h| = 2, which can be both produced and detected by antennas and electromagnetic resonators.

For example, if an electromagnetic cavity is excited, then it will emit in the partner polarizations,

which pass out through its walls and can be detected by a second cavity. The partner polarizations

could also be produced deep within the Sun. Anomalous cooling caused by such emission should

set a bound on ρ. Even below this bound the partner modes can freely propagate to a “helioscope”

detector on Earth, where they would appear as X-rays which penetrate conventional shielding. While

we have not yet performed detailed calculations, we can certainly say that ργ ≲ 10−6 eV due to the

nonobservation of strong deviations from ordinary electromagnetism in microwave/radiofrequency

technology and we roughly estimate stellar cooling constraints imply ργ ≲ 10−9 eV.

Our results strongly suggest that continuous spin fields have well-behaved thermodynamics, and

furthermore make it possible to probe ργ-dependent corrections to ordinary thermodynamics. For

example, nonzero ργ changes the effective number of light degrees of freedom in the early universe,

which might be constrained through precision cosmological measurements, or detected through the

cosmic background radiation in the partner polarizations.

In these respects, searches for the photon’s partner polarizations bear a strong resemblance to

ongoing searches for weakly coupled, ultralight fields, such as axions, dilatons, and dark photons.

One crucial difference is that deviations from radiation-induced forces are purely velocity-dependent.

Another difference is that all ρ-dependent effects are enhanced in the infrared, with forces from nearest

neighbor polarizations suppressed by ργ/ω, which might enhance signals for telescopes sensitive to

lower frequency radiation. Very low momentum scales could be probed via long distance modifications

of force laws, such as from astrophysical or cosmological magnetic fields, though here the deviations

are not universal.

We suspect it is possible to probe the spin scale ρg of the graviton within the context of linearized

general relativity, by suitably adapting the tensor-like current discussed at the end of subsection 8.3.2.

Using the formalism developed in this chapter, it would then be relatively straightforward to

compute ρg-dependent corrections to gravitational radiation, recover the tensor-like soft factors

derived in Ref. [780], and investigate deviations from ordinary gravitational dynamics on galactic

and cosmological scales.
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We have discussed a broad set of future directions, but it is also likely that the most exciting new

ideas are still waiting to be found. This subject is still in its infancy, and we hope this work will

serve as a solid foundation for many developments to come.

8.8 Appendix: Vector Superspace Integration

In this section, we define vector superspace integrals of the form

∫
[d4η] δ(η2 + 1)F (η),

∫
[d4η] δ′(η2 + 1)F (η) (8.238)

for arbitrary analytic functions F (η), and present two equivalent procedures for evaluating them.

These approaches were introduced in Ref. [781], but we include a streamlined summary to make this

paper self-contained and provide complementary derivations. We also derive several powerful new

identities (8.269), (8.273), and (8.282) used throughout the paper.

Integrals over an ordinary measure d4η diverge, as the hyperboloid η2 + 1 = 0 has infinite volume.

Heuristically, the regulated measure [d4η] is defined by factoring the volume out,

d4η = [d4η]

∫
d4η δ(η2 + 1). (8.239)

While this is merely a formal definition, requiring that the integration results obey sensible constraints,

such as Lorentz covariance, fully determines all integrals of the form (8.238). This approach is pursued

in App. 8.8.1 and used to write the integrals in terms of generating functions, and derive new identities

in App. 8.8.2. Alternatively, the regulated measure can be concretely defined by analytic continuation

to Euclidean signature, as shown in App. 8.8.3.

These two formulations are completely equivalent, but complementary. The generating function

approach can always be straightforwardly applied, but often produces tedious combinatorics. By

contrast, the analytic continuation approach requires more geometric insight to use, but can yield

elegant shortcuts. We will show how both approaches can be used to derive the “master identity”

(8.269) from which our other new identities follow. Finally, although both approaches use analyticity

of the integrand F (η), they only require analyticity on an appropriate region, as we show in an

example at the end of App. 8.8.3.

8.8.1 Generating Functions

We begin by deriving generating functions for the integrals (8.238) from six basic properties they

must satisfy. First, the heuristic definition (8.239) implies the normalization

∫
[d4η] δ(η2 + 1) = 1. (8.240)
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We further require integrals over δ(η2 + 1) to respect the delta function and integration by parts

identities,

∫
[d4η] δ(η2 + 1)(η2 + 1)F (η) = 0, (8.241)

∫
[d4η] ∂µη

(
δ(η2 + 1)F (η)

)
= 0. (8.242)

To relate these to integrals over δ′(η2 + 1), we impose the distributional identity

δ′(η2 + 1)(η2 + 1) = −δ(η2 + 1) (8.243)

underneath an η integral. Finally, we assume that integration is linear and the results are Lorentz

covariant, in a way we will describe more concretely shortly.

The above properties determine the integrals (8.238) for any analytic function F . To show this,

note that by linearity, it suffices to define the integral for each term in the Taylor expansion of F ,

which in turn follow from integrals of the form

∫
[d4η] δ(η2 + 1) ηµ1ηµ2 · · · ηµm . (8.244)

By Lorentz symmetry, the result must be a fully symmetric rank-m tensor built from gµν . Thus, it

must be zero for odd m, while for even m = 2n, we must have

∫
[d4η] δ(η2 + 1) ηµ1ηµ2 · · · ηµ2n = cn (gµ1µ2 · · · gµ2n−1µ2n + perms.) (8.245)

where the right-hand side has (2n)! terms. Contracting this with gµ1µ2
, the left-hand side is

gµ1µ2

∫
[d4η] δ(η2 + 1) ηµ1ηµ2 · · · ηµ2n = −cn−1(gµ3µ4 · · · gµ2n−1µ2n + perms.) (8.246)

where we used (8.241). The right-hand side has the same tensor structure; to find the numeric

coefficient, note there are 2n(2n− 2)! terms containing gµ1µ2 or gµ2µ1 , which each produce a factor

of D = 4 in the contraction, and the other (2n)(2n − 2)(2n − 2)! terms yield a product of metric

tensors with unit coefficient. Comparing the two sides yields the recursion relation

−cn−1 = (2n)(4 + (2n− 2)) cn. (8.247)

Since c0 = 1, the general solution is

cn =
(−1/4)n

n! (n+ 1)!
=




−1/8 n = 1

1/192 n = 2
. (8.248)
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Both types of η integral can be written economically in terms of generating functions,

∫
[d4η] δ(η2 + 1)F (η) = G

(√
∂2η

)
F (η)

∣∣∣∣
η=0

(8.249)

∫
[d4η] δ′(η2 + 1)F (η) = G′

(√
∂2η

)
F (η)

∣∣∣∣
η=0

(8.250)

where we have just shown that

G(x) =

∞∑

n=0

cnx
2n =

2J1(x)

x
. (8.251)

To address the other integral, note that the above properties imply

∫
[d4η] δ′(η2 + 1)F (η) =

∫
[d4η] δ(η2 + 1)

(
1

2
∂η · η − 1

)
F (η), (8.252)

which is readily verified by integrating the right-hand side by parts and applying (8.243). This result

holds for general D, and for D = 4, the term in parentheses produces a factor of n+ 1 when acting

on η2n. Thus, the Taylor series of G′ has coefficients

dn =
(−1/4)n

(n!)2
=




−1/4 n = 1

1/64 n = 2
(8.253)

which sums to

G′(x) =

∞∑

n=0

dnx
2n = J0(x). (8.254)

The appearance of Bessel functions is not surprising from a geometric standpoint, and we can

see more directly why they must appear with an alternate derivation. Note that showing (8.254) is

equivalent to showing

I(V ) =

∫
[d4η] δ′(η2 + 1) eiη·V = J0(

√
−V 2) (8.255)

for any four-vector V , since each factor of ∂2η yields a factor of −V 2. Now, by (8.243) we have

∂2V I(V ) =

∫
[d4η] δ′(η2 + 1) (−η2)eiη·V (8.256)

=

∫
[d4η] δ′(η2 + 1) eiη·V +

∫
[d4η] δ(η2 + 1) eiη·V . (8.257)
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On the other hand, we can use integration by parts (8.242) to show that

∂µV I(V ) =

∫
[d4η] δ′(η2 + 1) (iηµ)eiη·V (8.258)

=
i

2

∫
[d4η] (∂µη δ(η

2 + 1)) eiη·V (8.259)

=
i

2

∫
[d4η] δ(η2 + 1) (−∂µη )eiη·V (8.260)

=
1

2

∫
[d4η] δ(η2 + 1)V µeiη·V . (8.261)

Combining these results yields the differential equation

V 2 ∂2V I(V ) = 2V · ∂V I(V ) + V 2I(V ). (8.262)

Since I(V ) is a scalar function of V µ, it must be solely a function of x =
√
−V 2. In D spacetime

dimensions, (8.262) implies x2I ′′(x) + (D − 3)xI ′(x) + x2I(x) = 0, which for D = 4 is the Bessel

differential equation of order zero. The normalization I(0) = 1 fixes I(x) = J0(x).

8.8.2 Useful Identities

With the generating functions in hand, we can prove the concrete identities used in the main text.

Most of these identities involve the null frame vectors defined in the conventions. They can be

efficiently handled in the generating function approach because (8.4) implies

∂2η = 2(q · ∂η)(k · ∂η) − (ϵ+ · ∂η)(ϵ− · ∂η). (8.263)

In other words, applying ∂2η produces contractions between the η · q and η · k components of the

integrand, as well as between the η · ϵ+ and η · ϵ− components.

As a simple example of this, consider the overlaps of the helicity modes,

⟨ψh,k|ψh′,k⟩ ≡
∫

[d4η] δ′(η2 + 1)ψ∗
h,k(η)ψh′,k(η) (8.264)

=

∫
[d4η] δ′(η2 + 1) (∓iη · ϵ∓)|h|(±iη · ϵ±)|h

′| (8.265)

where the top and bottom signs apply for positive and negative h and h′. When h ̸= h′, the result

must be zero because there are an unequal number of copies of ϵ+ and ϵ−. (Similarly, the result

would automatically be zero if the conjugation in (8.264) was not present, since the factors of e−iρη·q
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would not cancel.) If h = h′, then for positive h the norm is

⟨ψh,k|ψh,k⟩ = dh (∂2η)h (η · ϵ−)h(η · ϵ+)h
∣∣∣∣
h=0

(8.266)

= dh (−1)h (ϵ+ · ∂η)h(η · ϵ−)h (ϵ− · ∂η)h(η · ϵ+)h
∣∣∣∣
h=0

(8.267)

= dh (−1)h ((ϵ+ · ϵ−)h h!)2 = 1. (8.268)

with an identical result for negative h. This shows the helicity basis is orthonormal.

Using this result, we can derive a powerful “master” identity, which reduces certain vector

superspace integrals to integrals over the unit circle in the plane spanned by ϵ+ and ϵ−,

∫
[d4η] δ′(η2 + 1)F (η) =

∫
dθ

2π
F (η)

∣∣∣∣
η=Re(eiθϵ−)

when δ(η2 + 1) k · ∂η F = 0 (8.269)

for some null k. The condition above is equivalent to letting

k · ∂η F = (η2 + 1)β(η) (8.270)

for an arbitrary analytic function β.

To prove (8.269) in the special case β = 0, consider Taylor expanding F in the variables η · k,

η · q, and η · ϵ±. Terms involving η · q would contribute to the Taylor expansion of k · ∂η F , and

so must vanish by assumption. But then (8.263) implies that η · k terms do not contribute to the

left-hand side, since they have to be contracted with η · q terms. Only terms of the form (η · ϵ+ η · ϵ−)h

contribute, with unit coefficients as we have just shown, and this is reproduced by the integral on

the right-hand side.

It is possible, but tedious, to verify (8.269) for nonzero β by Taylor expanding both F and β

and evaluating the left-hand side using the generating function. Alternatively, consider decomposing

F = F0 + Fβ , where the “homogeneous” solution F0 satisfies k · ∂η F0 = 0. The previous paragraph

shows that F0 obeys the master identity, so it suffices to construct a “particular” solution Fβ which

does not contribute to either side of (8.269). To do this, let

Fβ(η) =

∫ η·q

0

dx (η2 + 1 + 2(η · k)(x− η · q))β(η + (x− η · q)k). (8.271)

By construction, k · ∂η annihilates the integrand, so that k · ∂η Fβ = (η2 + 1)β(η) from differentiating

the integral’s upper bound. Now we show that Fβ does not contribute to either side of (8.269). On

the right-hand side, η · q = 0 on the unit circle, so the range of the x integral vanishes. The left-hand
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side vanishes because its integrand can be rewritten as a total derivative,

∫
[d4η] k · ∂η

(
δ(η2 + 1)

∫ η·q

0

dx (x− η · q)β(η + (x− η · q)k)

)
= 0, (8.272)

as can be checked by carrying out the derivative and using (8.243).

As a first application of the master identity, we prove a result which is often useful when evaluating

projections against helicity modes,

∫
[d4η] δ′(η2 + 1)(iη · ϵ±)heiη·V = eih arg(ϵ±·V ) Jh(

√
−V 2) when V · k = 0 (8.273)

for any nonnegative integer h. Note that the h = 0 case is simply our earlier result (8.255), and that

conjugating the result for the upper sign gives the result for the lower sign. Also note that when

applying this identity to helicity modes with negative h, it is often convenient to simplify the final

result using J−n(x) = (−1)nJn(x).

To prove the result, note that the condition V · k = 0 implies V can be decomposed as

V = (q · V ) k − v∗

2
ϵ+ − v

2
ϵ− (8.274)

where v = ϵ+ · V , which in turn implies |v|2 = −V 2. Now, applying the master identity to the

left-hand side of (8.273) gives

∫
[d4η] δ′(η2 + 1)(iη · ϵ+)heiη·V =

∫
dθ

2π
(iη · ϵ+)heiη·V

∣∣∣∣
η=Re(eiθϵ−)

(8.275)

=

∫
dθ

2π
eih(θ−π/2)ei|v| cos(θ−arg v) (8.276)

= eih arg v

∫
dθ

2π
eih(θ−π/2)ei|v| cos θ (8.277)

= eih arg vJh(|v|) (8.278)

where we plugged in η = Re(eiθϵ−) = (eiθϵ− + e−iθϵ+)/2, shifted θ, and used the integral representa-

tion of the Bessel functions. This is the desired result (8.273) for the upper sign.

Of course, we can also show the result by using generating functions to directly evaluate the

left-hand side. The first term in (8.274) produces factors of η · k which have no factors of η · q to
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contract with, so it can be dropped. The left-hand side is then

∞∑

n=0

(−1/4)n+h

(n+ h)!2
(∂2η)n+h (iη · ϵ+)he−(i/2)(η·ϵ+)v∗e−(i/2)(η·ϵ−)v

∣∣∣∣
η=0

(8.279)

=

∞∑

n=0

(−1/4)n+h

(n+ h)!2

(
n+ h

h

)(
(−2)hvh h!

)
|v2|n (8.280)

=

(
v

|v|

)h ∞∑

n=0

(−1)n

n! (n+ h)!

( |v|
2

)2n+h

(8.281)

which in the first step, h of the copies of ∂2η acted on an iη · ϵ+ and the first exponential, and the

other n copies acted on both exponentials. This is the desired right-hand side.

As another example, we prove the completeness relation for the helicity modes,

∑

h

ψh,k(η)ψ∗
h,k(η′) δ′(η2 + 1) δ′(η′2 + 1) ≃ δ(4)(η − η′) δ′(η2 + 1), (8.282)

which holds when both sides are integrated over η and η′ against F (η, η′, k) satisfying

(ik · ∂η + ρ)F = (η2 + 1)β, (8.283)

(−ik · ∂′η + ρ)F = (η′2 + 1)β′. (8.284)

A key physical example is F (η, η′, k) = J(η,−k)J ′(η′, k) where the currents J and J ′ satisfy the

continuity condition (8.69). In that case, (8.282) implies that the continuous spin propagator between

two currents is equivalent to a sum over physical polarizations, as expected by unitarity.

To show the result, first note that the integrated left-hand side of (8.282) is

∫
[d4η][d4η′] δ′(η2 + 1)δ′(η′2 + 1)

∑

h

(eiρ(η
′−η)·qF (η, η′, k))(η · ϵ±)|h|(η′ · ϵ∓)|h| (8.285)

where the upper and lower signs apply for positive and negative h. The function in brackets satisfies

the condition (8.270) to apply the master identity in both η and η′, giving

∫
dθ

2π

dθ′

2π
F (η, η′, k)

∑

h

(η · ϵ±)|h|(η′ · ϵ∓)|h|
∣∣∣∣ η=Re(eiθϵ−)

η′=Re(eiθ
′
ϵ−)

=

∫
dθ

2π
F (η, η, k)

∣∣∣∣
η=Re(eiθϵ−)

(8.286)

as the summation yields a delta function,
∑
h e

ih(θ−θ′) = 2π δ(θ − θ′). On the right-hand side, we

have a single integral over F (η, η, k), and using the master identity gives the same result.
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8.8.3 Regulated Measure From Analytic Continuation

In this section, we concretely define the regulated measure [dDη] by analytic continuation. While

we have already shown that vector superspace integrals can be determined without specifying a

regulator, this new perspective readily generalizes to any spacetime dimension D and provides

geometric intuition for the identities proven above.

Specifically, we analytically continue to complex η0 and rotate the η0 integration contourclockwise,

going up the imaginary axis. The resulting integral is naturally expressed in terms of Wick rotated

coordinates η̄M = (η1, . . . , ηD−1,−iη0), where M = 1, . . . , D. Euclidean inner products are always

implied for barred quantities, e.g. the quantity η2 analytically continues to −η̄2. Integrals over the

Minkowskian unit hyperboloid η2 + 1 = 0 thus continue to integrals over a Euclidean unit sphere

η̄2 − 1 = 0. This will yield finite results since the unit sphere has finite area SD−1.

For any analytic function F (η), we therefore define

∫
[dDη] δ(η2 + 1)F (η) ≡ 2

SD−1

∫
dDη̄ δ(η̄2 − 1)F̄ (η̄), (8.287)

where the prefactor ensures the normalization condition (8.240) is satisfied. Similarly,

∫
[dDη] δ′(η2 + 1)F (η) = − 2

SD−1

∫
dDη̄ δ′(η̄2 − 1)F̄ (η̄), (8.288)

where the minus sign appears because δ′(−x) = −δ′(x), and ensures consistency with (8.243). This is

the same definition as used in Ref. [781], though the analogue of (8.288) in that work does not show the

factor of 2. Note that F̄ is also defined by analytic continuation, i.e. F̄ (η̄) = F (iη̄D, η̄1, . . . , η̄D−1) =

F (η).

Recovering the Generating Functions

As a simple example, we will use analytic continuation to evaluate the integral

I(V ) =

∫
[dDη] δ′(η2 + 1)eiη·V . (8.289)

As explained around (8.255), this is equivalent to finding the generating function G′, which together

with the property (8.243) determines G and thus all vector superspace integrals. It therefore suffices

to evaluate the above integral for D = 4 to show the equivalence of analytic continuation to the

symmetry-based arguments in appendix 8.8.1.

We define V̄ = (V 1, . . . , V D−1,−iV 0) so the integrand can be written in terms of Euclidean inner
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products, η · V = −η̄ · V̄ . Applying (8.287) and the Euclidean analogue of (8.252) gives

I(V ) =
2

SD−1

∫
dDη̄ δ(1 − η̄2)

1

2
(∂η̄ · η̄ − 2)e−iη̄·V̄ (8.290)

=
1

SD−1

∫
dDη̄ δ(1 − η̄2) (D − 2 + η̄ · ∂η̄)e−iη̄·V̄ . (8.291)

Note that V̄ is complex in general, but it suffices to evaluate (8.291) at real V̄ and analytically

continue the result. Specializing to D = 4, the measure in spherical coordinates is

d4η̄ = |η̄|3d|η̄| sin2 θ dθ d2Ω2 (8.292)

where θ is the angle between η̄ and V and Ω2 indicates the remaining angular integral. Then

I(V ) =
1

S3

∫ ∞

0

d|η̄| δ(1 − |η̄|2) |η̄|3
∫ π

0

dθ sin2 θ (2 − i|η̄||V̄ | cos θ)e−i|η̄||V̄ | cos θ
∫
d2Ω2 (8.293)

=
1

π

∫ π

0

dθ sin2 θ (2 − i|V̄ | cos θ)e−i|V̄ | cos θ (8.294)

= J0(|V̄ |) (8.295)

where we used S2 = 4π and S3 = 2π2. This matches our earlier result (8.255), as |V̄ | =
√
−V 2.

The D-dimensional analogue of this result is given in Ref. [781], and can also be derived using

spherical coordinates. However, it turns to be simpler to use polyspherical coordinates, even though

they employ weaker symmetry properties of the integrand. To do this, group the η̄ coordinates into

a two-dimensional subspace ηL orthogonal to V̄ and a (D − 2)-dimensional subspace η̃. Using polar

coordinates for ηL, the measure is

dDη̄ = dD−2η̃
d|ηL|2 dθ

2
(8.296)

and since η̄ · V̄ = η̃ · Ṽ , the integral (8.291) becomes

I(V ) =
1

2SD−1

∫
dD−2η̃ d|ηL|2 dθ δ(1 − |η̃|2 − |ηL|2) (D − 2 + η̄ · ∂η̄)e−iη̃·Ṽ (8.297)

=
π

SD−1

∫

|η̃|≤1

dD−2η̃ (D − 2 + η̃ · ∂η̃)e−iη̃·Ṽ (8.298)

=
π

SD−1

∫

|η̃|≤1

dD−2η̃ ∂η̃ · (η̃ e−iη̃·Ṽ ) (8.299)

=
π

SD−1

∫

|η̃|=1

dD−3Ωη̃ e
−iṼ ·η̃ (8.300)

where we performed the integral over ηL and used the divergence theorem. The integral thus cleanly

reduces to one over a (D − 3)-dimensional unit sphere. For example, when D = 4 the remaining
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integral is over a unit circle, dΩη̃ = dθ, giving

I(V ) =
1

2π

∫ 2π

0

dθ e−i|V̄ | cos θ = J0(|V̄ |) (8.301)

in agreement with our previous result.

Generalizing the Master Identity

We now use analytic continuation to generalize the master identity (8.269) to D dimensions, and

shed light on its geometric meaning. We consider the integral

∫
[dDη] δ′(η2 + 1)F (η) = − 2

SD−1

∫
dDη̄ δ′(η̄2 − 1)F̄ (η̄) (8.302)

where k · ∂η F = (η2 + 1)β for some null k. We first take β = 0, in which case k̄ · ∂η̄ F̄ = 0.

The first step is to parallel our earlier derivation, but in Euclidean signature. We decompose η̄

into a (D − 2)-dimensional subspace η̃ which is orthogonal to k̄, and a two-dimensional subspace ηL

spanned by k̄ and q̄, which satisfy k̄2 = q̄2 = 0 and k̄ · q̄ = −1. (This is possible because k̄ and q̄ are

complex Euclidean vectors. And as in Lorentzian signature, there is freedom in the choice of q̄.) The

requirement k̄ · ∂η̄ F̄ = 0 then implies that F̄ cannot depend on η̄ · q̄. To handle the η̄ · k̄ dependence,

we write

F̄ (η̃, η̄ · k̄) = F̃ (η̃) + η̄ · k̄ G(η̃, η̄ · k̄) (8.303)

which is always possible since F̄ is analytic. The second term does not contribute to the integral (8.302).

To see this, note that k̄ · ∂η̄ G = 0, so we may write

∫
dDη̄ δ′(η̄2 − 1) η̄ · k̄ G =

1

2

∫
dDη̄ k̄ · ∂η̄

(
δ(η̄2 − 1)G

)
. (8.304)

The integrand is a total derivative, which vanishes at infinity due to the delta function.

Therefore, only F̃ (η̃) contributes to the right-hand side of (8.302). Now, note that in the derivation

of (8.300), the only property of the function e−iη̄·V̄ we used was that it did not depend on ηL. Since

this is also true of F̃ (η̃), we may use the exact same reasoning to show

∫
[dDη] δ′(η2 + 1)F (η) =

π

SD−1

∫

|η̃|=1

dD−3Ωη̃ F̃ (η̃). (8.305)

Using the recurrence relation SD−1 = 2πSD−3/(D − 2) and analytically continuing the right-hand

side back to Lorentzian signature (which is trivial when the η̃ subspace does not contain η0) yields

∫
[dDη] δ′(η2 + 1)F (η) =

D − 2

2SD−3

∫

Sη̃

dD−3Ωη̃ F (η), (8.306)
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where η2 = −1 and η · k = 0 on the sphere Sη̃. This is the generalized master identity. For D = 4,

Sη̃ is a unit circle in the plane spanned by ϵ± · η, which recovers (8.269).

The above proof only applies to β = 0, but our earlier method to generalize the proof to nonzero

β, based upon constructing an explicit particular solution, carries over unchanged. Also note that for

Lorentz scalar F , the right-hand side of (8.306) is not manifestly Lorentz invariant. However, any

Lorentz transformation that fixes k simply maps the sphere Sη̃ to another sphere which satisfies the

same condition η · k = 0, leaving the result unchanged.

Our derivation above sheds light on why a useful identity should exist specifically for a δ′(η2 +1)F

integral and a null k. If we had a timelike k, such as kµ = (1, 0, . . . , 0), then we would only have been

able to conclude that F̄ does not depend on η̄0, and performing the η̄0 integral leaves an integral

over a (D − 1)-dimensional ball. For null k, we have seen that we can drop dependence on both η̄ · k̄
and η̄ · q̄, leaving an integral over a (D − 2)-dimensional ball. Finally, δ′(η2 + 1)F turns out to be a

total derivative, which would not have been true for δ(η2 + 1)F , reducing the integral to one over a

unit (D − 3)-sphere.

This is an enormous simplification, especially when D = 4. It is connected to the observation

in Ref. [781] that, to encode spin in a scalar function of η and x, the function must be defined on

the first neighborhood of a hyperboloid in η-space. Indeed, the final integral over Sη̃ is an integral

over the continuous basis for CSP representations of the massless little group ISO(D − 2) in general

dimension, e.g. for D = 4 it is an integral over the angle basis |θ⟩ mentioned below (8.7). This is the

fundamental reason the action (8.1) may be written solely in terms of integrals over δ(η2 + 1) and

δ′(η2 + 1), without requiring δ′′(η2 + 1) or higher derivative terms.

A Non-Entire Example

While most expressions we encounter are analytic everywhere in η, we can also encounter expressions

with branch cuts, such as the static field (8.96) which depends directly on |η| =
√

η2. Integrals

of such functions are still well-defined by either the generating functional or analytic continuation

approach because they are analytic in an appropriate region. As a simple example, consider the

integral

I =

∫
[d4η] δ(η2 + 1) |η|. (8.307)

The integrand does not have a Taylor expansion about η = 0 because of the branch cut starting

at the surface
∑
i η

2
i = 0, which passes thorugh the origin. However, on the support of the delta

function the integrand is equivalent to
√

1 + (η0)2, which does have a Taylor expansion. We can

thus use the generating function (8.251) to conclude

I =

∫
[d4η] δ(η2 + 1)

√
1 + (η0)2 = −

∞∑

n=0

(2n)!(2n− 3)!!

23n (n!)2 (n+ 1)!
=

8

3π
. (8.308)
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Alternatively, |η| is analytic in η0, so that by the definition (8.287) we have

I =
2

S3

∫
d4η̄ δ(η̄2 − 1) |η̄| =

S2

S3

∫ π

0

sin3 θ =
8

3π
(8.309)

by analytic continuation. By similar reasoning we can make sense of any integral over δ(η2 + 1) of a

function of |η|, and by applying (8.252), any integral over δ′(η2 + 1) as well.

We do not have a precise definition of the space of functions F (η) for which the integrals (8.238)

are well-defined, but this toy example illustrates that the space includes non-entire functions. It may

be valuable to define this space more carefully, and in particular to understand whether allowing

fields Ψ(η, x) non-entire in η would admit physically inequivalent solutions to the free equation of

motion (8.19).

8.9 Appendix: Vector Superspace Computations

This appendix collects derivations of more technical results. In App. 8.9.1 we prove the statements

made in subsections 8.2.2 and 8.3.2, which relate the continuous spin theory to familiar theories

when ρ = 0. In App. 8.9.2 we parametrize the set of all worldline currents obeying the continuity

condition, and in App. 8.9.3 we compare the results to currents built from matter fields. In App. 8.9.4

we compute the spacetime profiles of some simple currents by evaluating integrals with essential

singularities, deriving results quoted in subsection 8.4.1. Finally, in App. 8.9.5 we establish some

results for radiation emission quoted in section 8.6.

8.9.1 Tensor Decompositions

Absence of Cross-Couplings of Tensor Fields

In subsection 8.2.2, we claimed that for ρ = 0, the action and equation of motion do not contain

cross-couplings between distinct tensor fields. To show this, we first recall that gauge symmetry

allows us to add terms proportional to (η2 + 1)2 to the field Ψ. This freedom is sufficient to eliminate

the double trace of every tensor component, i.e. ϕ(n)
′′

= 0 for n ≥ 4.

For fully symmetric, double-traceless tensors ϕ(n) and ψ(m) of rank n and m, we have

∫
[d4η] δ′(η2 + 1)P(n) · ϕ(n) P(m) · ψ(m) ∝ δnm (8.310)

∫
[d4η] δ(η2 + 1) ∆(P(n) · ϕ(n)) ∆(P(m) · ψ(m)) ∝ δnm. (8.311)

These show that there are no cross-couplings in the first and second term, respectively, of the action

and equation of motion.

Let us first motivate (8.310), taking n ≥ m without loss of generality. As shown in appendix 8.8.1,
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the η integrations above produce full contractions of the tensors in the integrand. If n−m is odd, the

total number of indices is odd, so no full contractions exist. If n−m ≥ 4, at least two pairs of indices

on ϕ(n) must be contracted, which produces a double trace which vanishes by assumption. Similar

logic applies to (8.311), so in both cases we need only check there is no contribution from n−m = 2.

Proof of the Orthogonality Theorems

To derive (8.310), note that since the tensors are double-traceless, the only possible contribution

when n = m+ 2 is of the form ϕ(m+2)′ ·ψ(m), so we must show its coefficient vanishes. The coefficient

is simplest to calculate by rewriting the main results of appendix 8.8.1 as

∫
[d4η] δ(η2 + 1) ηµ1ηµ2 · · · ηµ2n = c̃n (gµ1µ2 · · · gµ2n−1µ2n + other pairings) (8.312)

∫
[d4η] δ′(η2 + 1) ηµ1ηµ2 · · · ηµ2n = d̃n (gµ1µ2 · · · gµ2n−1µ2n + other pairings) (8.313)

where c̃n = (−1/2)n/(n+ 1)! and d̃n = (−1/2)n/n!, and we sum over the (2n− 1)!! distinct ways to

pair up indices.

Now, we write the integral in (8.310) as a sum of three integrals,

2(n+m)/2ϕν1...νnψµ1...µm ×
[ ∫

[d4η] δ′(η2 + 1) ην1 · · · ηνnηµ1
· · · ηµm

(8.314)

+
n(n− 1)

4
gν1ν2

∫
[d4η] δ(η2 + 1) ην3 · · · ηνnηµ1

· · · ηµm
(8.315)

+
m(m− 1)

4
gµ1µ2

∫
[d4η] δ(η2 + 1) ην1 · · · ηνnηµ3 · · · ηµm

]
(8.316)

where we simplified using (8.241) and (8.243) and removed a redundant symmetrization. The final

integral (8.316) cannot produce terms of the form ϕ(m+2)′ · ψ(m), since it already contains a trace of

ψ(m), so we need only consider the first two integrals.

In the first integral (8.314), we count pairings which contract two ν indices, and pair all remaining

ν indices with µ indices; this yields a combinatorial factor of
(
m+2
2

)
m!. The second integral (8.315)

already has a trace on ϕ(m+2), so we only count pairings where all remaining ν indices go with µ

indices; this yields a combinatorial factor of m!. The overall coefficient is

2m+1

[
d̃m+1

(
m+ 2

2

)
m! + c̃m

(m+ 2)(m+ 1)

4
m!

]
= 0 (8.317)

which establishes the result.

It will also shortly prove useful to derive the value of the integral when m = n,

∫
[d4η] δ′(η2 + 1)P(n) · ϕ(n) P(n) · ψ(n) = (−1)n

(
ϕ(n) · ψ(n) − n(n− 1)

4
ϕ(n)

′ · ψ(n)′
)

(8.318)
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The two terms on the right-hand side are the only ones that could have appeared, so we need only

compute their coefficients. Only (8.314) can produce ϕ(n) ·ψ(n) terms, with coefficient 2nd̃n n! = (−1)n

as desired. By contrast, all three integrals can produce ϕ(n)
′ ·ψ(n)′ terms. The relevant combinatorial

factor for (8.314) is
(
n
2

)2
(n− 2)!, and the combinatorial factor for each of the other two integrals is(

n
2

)
(n− 2)!, giving a total coefficient

2n

[
d̃n

(
n

2

)2

(n− 2)! + 2 c̃n−1
n(n− 1)

4

(
n

2

)
(n− 2)!

]
= (−1)n−1 n(n− 1)

4
(8.319)

as desired. One immediate consequence of (8.318) is that the action (8.9) has canonically normalized

kinetic terms for the tensor fields ϕ(n). The alternating sign (−1)n is due to the mostly negative

metric, as the physical components of ϕ(n) have n spatial indices.

The other orthogonality theorem (8.311) can also be derived with straightforward combinatorics,

but there is a faster route. The integral contains terms of the form

∆(P(n) · ϕ(n)) ∝ ∂νη

(
ηµ1 · · · ηµn − n(n− 1)

4
ηµ1 · · · ηµn−2gµn−1µn(η2 + 1)

)
∂νϕ

(n)
µ1...µn

(8.320)

where the η derivative can hit any of the n factors of η in the first term, but must hit the factor of

η2 + 1 in the second term due to the delta function. The result is

n ηµ1 · · · ηµn−1(∂ · ϕ(n))µ1...µn−1 −
n(n− 1)

2
ηµ1 · · · ηµn−2ην∂νϕ

(n)′
µ1···µn−2

(8.321)

which, by symmetry, is equal to

n ηµ1 · · · ηµn−1

(
(∂ · ϕ(n))µ1...µn−1 −

1

2

n−1∑

k=1

∂µk
ϕ(n)

′
µ1...µk−1µk+1...µn−1

)
. (8.322)

The quantity in parentheses is traceless. Thus, the integral (8.311) involves contractions of traceless

tensors, which can only be nonzero if m = n.

Dual Polynomials for the Current Expansion

Now we motivate the “dual” polynomials (8.66) used to define the tensor components J (n) of the

current. If we expand J(η, x) in the same polynomials as the continuous spin field,

J(η, x) =
∑

n≥0

P(n)(η) · j(n)(x) (8.323)
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and use the freedom to add terms proportional to (η2 + 1)2 to the current J to eliminate the double

trace of every j(n), then (8.318) immediately implies

Sint =
∑

n≥0

(−1)n
(
ϕ(n) · j(n) − n(n− 1)

4
ϕ(n)

′ · j(n)′
)

(8.324)

The unwanted trace terms for n ≥ 2 can be removed if we define tensors J (n) by

J (n)
µ1...µn

= j(n)µ1...µn
− 1

4 (n− 2)!
g(µ1µ2

j
(n)′

µ3...µn)
(8.325)

where J (2) is the trace reversal of j(2), and generally J (n)′ = (1 − n) j(n)
′

with double traces still

vanishing. This produces an interaction (8.67) in canonical form, and is equivalent to expanding the

current in the dual polynomials P̄(n) defined in (8.66). For completeness, we note that the P̄(n) obey

an orthogonality relation like (8.310), and the analogue of (8.318) is

∫
[d4η] δ′(η2 + 1) P̄(n) · J (n) P̄(n) ·K(n) = (−1)n

(
J (n) ·K(n) − n(n+ 1)

4
J (n)′ ·K(n)′

)
(8.326)

for double-traceless J (n) and K(n).

Conservation and Continuity Conditions

Finally, we derive the tensor form (8.70) of the continuity condition. Note that for a symmetric

tensor A of rank n, the trace subtraction is defined for n ≥ 2 by

⟨Aµ1...µn⟩ = Aµ1...µn − 1

4n (n− 2)!
g(µ1µ2A′µ3...µn) (8.327)

and has no effect for n < 2.

We warm up by considering the case ρ = 0, where the result reduces to ⟨∂ · J(n)⟩ = 0. To derive

this result, note that the continuity condition (8.69) expands to

0 = δ(η2 + 1)
∑

n≥1

2n/2n ηµ3 · · · ηµn−1

[
ηµ1ηµ2(∂ · J(n))µ1...µn−1 +

n− 2

4
(∂ · J ′

(n))
µ3...µn−1

]
(8.328)

= δ(η2 + 1)
∑

n≥1

2n/2n ηµ1
· · · ηµn−1

⟨∂ · J(n)⟩µ1...µn−1 . (8.329)

where the second term in the first line is only nonzero for n ≥ 3, and we reached the second line

by multiplying that term by −η2, which is equal to one on the support of the delta function. We

can show that each term in the sum individually vanishes by induction. Integrating (8.329) over

η immediately produces ⟨∂ · J(1)⟩ = 0, because all other terms would be proportional to vanishing

traces. Next, suppose we have shown ⟨∂ · J(n)⟩ = 0 for all n ≤ m. Then if one multiplies (8.329) by
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ην1 · · · ηνm before integrating over η, the only term that can contribute is n = m+ 1, and performing

the integration yields ⟨∂ · J(m+1)⟩ = 0.

For ρ ̸= 0, a similar calculation to the one above shows the continuity condition is

0 = δ(η2 + 1)
∑

n≥1

2n/2n ηµ1 · · · ηµn−1

〈
∂ · J(n) +

ρ

n
√

2
(J(n−1) +

1

2
J ′
(n+1))

〉µ1...µn−1

(8.330)

and an identical inductive argument shows that each term in the sum vanishes.

8.9.2 General Worldline Currents

In this section we parametrize the general f(η, k, ż) obeying the continuity condition (8.74), and

derive the general decomposition (8.87). We also give a simpler parametrization specialized to null k,

and another suited for static particles.

General Solution for Null Momenta

We warm up by writing the general solution to the continuity condition for only null k. First, note

that any solution can be decomposed as

f(η, k, ż) = e−iρη·ż/k·ż
(
f̃0(η, k, ż) + f̃α(η, k, ż)

)
(8.331)

where the “homogeneous” solution f̃0 and the “particular” solution f̃α obey

k · ∂η f̃0 = 0, (8.332)

k · ∂η f̃α = (η2 + 1)α(η, k, ż). (8.333)

We have factored the phase of the scalar temporal current (8.76) out of tilded variables, which is not

necessary, but yields the most convenient parametrization for radiation problems.

To find the general homogeneous solution for null k, note that its dependence on η can be written

solely in terms of the variables η · ż, η · k, and η2 + 1. We drop terms with more than one power

of η2 + 1, as they can never couple to the continuous spin field due to the delta function in (8.63).

Since k · ∂η annihilates η · k, the general solution is parametrized by two analytic functions of η · k
and the single kinematic variable k · ż,

f̃0 = g0(η · k, k · ż) +

(
η2 + 1 − 2 η · k η · ż

k · ż

)
g1(η · k, k · ż). (8.334)

For null k, we can construct a particular solution using the same trick as in appendix 8.8.2,

f̃α =

∫ η·q

0

dx (η2 + 1 − 2 η · k (η · q − x))α(η − (η · q − x)k, k · ż). (8.335)
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While many other particular solutions are possible, this one has the special feature that it vanishes

when η · q = 0, i.e. all terms in its Taylor expansion have at least one power of η · q.

General Solution for Arbitrary Momenta

It is straightforward to extend the above derivation to general k. As before, we may drop terms

with more than one power of η2 + 1, and the remaining η dependence is through η · ż and η · k. The

general solution still depends on only three functions g0, g1, and α, but they can now depend on two

independent kinematic variables k2 and k · ż.

In general, k · ∂η does not annihilate η · k. However, if we define

u = η · k − η · ż
k · ż k

2, v =
η · ż
k · ż (8.336)

then k · ∂η u = 0. In these variables, we have k · ∂η = ∂v, so the homogeneous solution is

f̃0 = g0(u, k · ż, k2) +
(
η2 + 1 − 2uv − v2k2

)
g1(u, k · ż, k2). (8.337)

As for the particular solution, we can no longer use the null frame vector q, but the same role can be

played by ż/k · ż as it also has unit inner product with k,

f̃α =

∫ v

0

dx (η2 + 1 − 2u(v − x) − (v2 − x2)k2)α(η − (v − x)k, k · ż, k2). (8.338)

These expressions contain the full freedom in the solutions to the continuity condition.

To derive the decomposition (8.87) of the general solution, it suffices to show that

f(η, k, ż) = e−iρη·ż/k·ż ĝ(k · ż) + k2X(η, k, ż) +Dξ(η, k, ż) (8.339)

where X and ξ are both regular as k2 → 0. This is because the continuity condition automatically

implies a relation between X and ξ,

0 = δ(η2 + 1)∆f = δ(η2 + 1)(k2∆X − k2ξ) (8.340)

where we used the momentum space form of (8.27). Since we have dropped terms in X and ξ with

more than one power of η2 + 1, this implies ξ = ∆X and hence (8.87). Equivalently, we can always

add terms proportional to (η2 + 1)2 to set ξ = ∆X for any current.

It is convenient to work entirely in terms of tilded variables, which all have the temporal current’s

phase factored out. Defining

D̃ =
i

2
(η2 + 1)(k · ∂η) − iη · k (8.341)

we aim to show that f̃ = ĝ + k2X̃ + D̃ξ̃. First, using −2iD̃v = η2 + 1 − 2uv − 2v2k2, we can write
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the contributions of g1 and α as

f̃0 ⊃ D̃(−2ig1v) + k2(g1v
2), (8.342)

f̃α = D̃

∫ v

0

dx (−2i)(v − x)α(η − (v − x)k) + k2
∫ v

0

dx (v − x)2α(η − (v − x)k). (8.343)

From these results we can read off X̃ and ξ̃, and also readily confirm the expected result ξ̃ = ∆̃X̃ =

(−ik · ∂η)X̃, by using ∆̃v = −i and ∆̃(η − (v − x)k) = 0.

As for g0, we can decompose it by separating out terms with powers of u or k2,

g0(u, k · z, k2) = ĝ(k · ż) + ugu(u, k · ż) + k2gk(u, k · ż, k2) (8.344)

which we can write in the desired final form as

f̃0 ⊃ ĝ + (k2 + D̃∆̃)(gk − guv). (8.345)

General Solution for Static Particles

For computations involving static particles, where żµ = (1,0), a time integration often sets the

frequency to zero, so that kµ = (0,k) and k · ż = 0. In this case the expressions above are not useful

because they factor out a divergent phase, which is tied to the problems with defining a static limit

for the temporal current. We instead parametrize the general static solution by factoring out the

phase of the static spatial current,

f(η,k) = e−iρη·k̂/|k|
(
f̄0(η,k) + f̄α(η,k)

)
(8.346)

so that the homogeneous and particular solutions satisfy

k · ∇η f̄0 = 0, (8.347)

k · ∇η f̄α = (η2 + 1)α(η,k). (8.348)

To compactly write the general solution, note that the dependence on η can be written in terms of

the variables η0, η · k̂, and |η × k̂|2. In these variables, (8.347) states that the homogeneous solution

must be independent of η · k̂, and the decoupling of higher powers of η2 + 1 implies we do not need

to consider terms with more than one power of |η × k̂|2. Then the general homogeneous solution is

simply

f̄0 = ḡ0(η0, |k|) + |η × k̂|2 ḡ1(η0, |k|). (8.349)

For example, the scalar-like inhomogeneous current (8.79) has ḡ0 = g cos(η0βρ2/|k|2) and the vector-

like spatial current (8.83) has ḡ0 =
√

2 eη0, with both having zero ḡ1. Finally, a particular solution
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is

f̄α =

∫ η·k̂/|k|

0

dx (η2 + 1 − (η · k̂)(η · k̂− |k|x))α(η − (η · k̂− x|k|),k). (8.350)

8.9.3 Comparison to Currents From Matter Fields

In section 8.3 we coupled continuous spin fields to matter particles and identified the most relevant

interactions, which reduce to familiar scalar and vector minimal couplings as ρ→ 0. It is interesting

to compare to previous work which instead described the matter with fields [807, 809, 808, 810]. The

most comprehensive analysis for scalar matter fields is Ref. [810], which gives a current quadratic in

matter fields ϕ1 and ϕ2 of mass M , parametrized by nonnegative integers n0, n1, and n2, and two

real parameters λ1 and λ2 related by ρ = (λ1 + λ2)M2. For illustration, let us consider the case

n0 = 2, n1 = n2 = 0, which in our conventions is

J(η, x) = g(η · ∂x)2(ϕ̄1ϕ̄2) + g(η2 + 1)

(
2M2 ϕ̄1ϕ̄2 −

(
2 +

λ1 + λ2
2

η · ∂x
)
∂µϕ̄1 ∂µϕ̄2

)
. (8.351)

Above, we have defined ϕ̄i = ϕi(x + λiη), which should be interpreted as a series in λi. It is

straightforward to show this current obeys the continuity condition for on-shell matter fields, but only

to first order in the coupling g, i.e. only when one uses the free equations of motion (∂2 +M2)ϕ̄i = 0.

This feature is shared by all currents previously found, and it is therefore unclear to what degree

they can be trusted when computing physical observables.

Furthermore, these currents have no relation to the phenomenologically interesting scalar-like

or vector-like currents we have identified. The leading terms in the currents have n = n0 + n1 + n2

derivatives, while a minimal scalar or vector current has 0 or 1 derivative, respectively. Thus, the

currents could only be scalar-like or vector-like for n < 2, but when n0 < 2 the current contains

undefined negative powers of η. As discussed in Refs. [808, 810], if one treats these negative powers

as equivalent to zero, then the continuity condition cannot be satisfied even at first order in g for

equal mass scalar fields.

One might hope the current (8.351) is somehow a tensor-like current, but this is not the case either.

In the limit ρ, λi → 0 it instead reduces to a combination of a nonminimal current J = ∂2(ϕ2)/2 for a

scalar field, and a trivially conserved current Tµν = (∂µ∂ν − gµν∂
2)ϕ2 for a tensor field. Furthermore,

the current in general can be rewritten in the form (8.339),

J(η, x) = −∂2x
(g

2
(η2 + 1) (ϕ̄1ϕ̄2)

)
+D(g η · ∂x(ϕ̄1ϕ̄2)) (8.352)

which indeed obeys (8.340). As discussed below (8.87), this implies the current does not affect

radiation emission or the response of the matter to a free field background; in our classification it

corresponds to the trivial case ĝ = 0.

It would be interesting to see if the currents in our work, which satisfy the continuity condition



CHAPTER 8. CONTINUOUS SPIN FIELDS 275

to all orders in g, can be recovered in terms of matter fields by relaxing the assumptions of

Ref. [807, 809, 808, 810]. In particular, one could either allow explicitly nonlocal Lagrangians or

resolve the nonlocality by introducing appropriate auxiliary fields.

8.9.4 Fields and Currents in Spacetime

The Scalar-Like Spatial Current

To evaluate the scalar-like spatial current in position space, it turns out to be easier to first evaluate

the field, which satisfies ΨS(η,k) = JS(η,k)/|k|2 in strong harmonic gauge. Defining k = |k|,
expanding dk = (k2 dk) dk̂ and performing the k̂ integral gives

ΨS(η, r) =
g

2π2

∫ ∞

0

dk
sin (|ρη/k − kr|)

|ρη/k − kr| (8.353)

=
g

2π2r

∫ ∞

0

dx
sin
(√

α ((x− 1/x)2 + β
)

√
(x− 1/x)2 + β

(8.354)

where we have switched to the dimensionless variable x = k
√
r/|ρη|, defined α = |ρη|r and

β = 2(1 − cos θ), and always use the positive branch of the square root. The remaining integral is

difficult to evaluate directly because of the essential singularity at x = 0, but we can avoid it by

exploiting the symmetry of the integrand. Mapping the integration range x ∈ [0, 1] to x ∈ [1,∞) by

sending x→ 1/x gives, for any function f ,

∫ ∞

0

dx f((x− 1/x)2) =

∫ ∞

1

dx

(
1 +

1

x2

)
f((x− 1/x)2) =

∫ ∞

0

du f(u2). (8.355)

Applying this trick, the static field reduces to

ΨS(η, r) =
g

2π2r

∫ ∞

0

du
sin
(√

α(u2 + β)
)

√
u2 + β

(8.356)

=
g

2π2r

∫ ∞

0

dz sin
(√

αβ cosh z
)

(8.357)

=
g

4πr
J0(
√
αβ) (8.358)

where we let u =
√
β cosh z and used an integral representation of the Bessel function. This is

precisely (8.96), applying −∇2 yields (8.95), and removing the time integration yields (8.89).

Temporal Currents

The frequency integral (8.91) for the scalar-like temporal current encloses an essential singularity

at ω = 0. While this situation may be unfamiliar, such integrals are well-known in the literature

(e.g. see section 4.6 of Ref. [837]) and can be handled straightforwardly because the integrand has a
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convergent Laurent series for all z ̸= 0. The basic identity we will need is

∫

C

dz

2π
(iz)pe−ibze−ia/z =

(a
b

)(p+1)/2

Jp+1(2
√
ab) (8.359)

where C is a counterclockwise contour encircling the origin, and p is a nonnegative integer. It is

derived by simply expanding the integrand in z and applying the residue theorem,

∫

C

dz

2π
(iz)pe−ibze−ia/z =

∫

C

dz

2π

∑

n,m≥0

(iz)p
(−ibz)n
n!

(−ia/z)m

m!
(8.360)

= −iap+1

∫

C

dz

2πz

∞∑

n=0

(−ab)n
n! (n+ p+ 1)!

(8.361)

= ap+1
∞∑

n=0

(−ab)n
n! (n+ p+ 1)!

. (8.362)

Note that we would find the same result if any of the p+ 1 initial terms in the Laurent expansion of

e−ia/z were removed, because such terms cannot yield simple poles.

Now, to evaluate (8.91) we rewrite the integrand as

∫
dω

2π
e−iωte−iρη

0/ω =

∫
dω

2π
e−iωt +

∫
dω

2π
e−iωt(e−iρη

0/ω − 1) (8.363)

where the first integral yields δ(t), and the second falls off at large ω, so that the contour integral can

be closed at infinity. We may therefore close the contour in the upper-half plane for t < 0, giving zero,

and in the lower-half plane for t > 0. In the latter case, we can shrink the contour to a clockwise

one enclosing the essential singularity and apply (8.359), which yields the result (8.92). Similarly, to

derive (8.94) for the vector-like temporal current, write

jVT (η0, r, t) =

√
2 e

ρ

(∫
dω

2π
ρη0e−iωt +

∫
dω

2π
iω e−iωt (e−iρη

0/ω − (1 − iρη0/ω))

)
(8.364)

where the first term produces the delta function and the second can be evaluated using (8.359).

Incidentally, for real a, integrals like (8.359) are well-defined even when the contour passes directly

through the essential singularity along the real axis, where the integrand is bounded. When a is

positive (negative), the contour can be deformed off the origin in the positive (negative) imaginary

direction, and the remaining integral can be evaluated using (8.359).

Currents for Arbitrary Motion

For completeness, we note that it is straightforward to write expressions for the currents of particles

in arbitrary motion, once one has evaluated the current of a worldline element at rest. For example,

if we expand kµ = kℓż
µ(τ) + kµp , where ż · kp = 0, and do the same for x and z, then the scalar-like
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temporal current is

JT (η, x) = g

∫
dτ

∫
d3kp
(2π)3

e−ikp·(xp−zp)
∫
dkℓ
2π

e−iρηℓ/(kℓ+iϵ)e−ikℓ(xℓ−zℓ). (8.365)

By the same reasoning used to derive (8.92) above, we have

JT (η, x) = g

∫
dτ δ(4)(x− z) − θ(xℓ − zℓ) δ

(3)(xp − zp)

√
ρη0

xℓ − zℓ
J1

(
2
√
ρη0(xℓ − zℓ)

)
. (8.366)

Performing the τ integral for a static particle with a cutoff τ = −T yields (8.97). Similarly, the

scalar-like spatial current is

JS(η, x) = g

∫
dτ

∫
d3kp
(2π)3

δ(xℓ − zℓ) e
−ikp·(xp−zp)e−iρkp·ηp/k

2
p (8.367)

where the kp integral can be evaluated analogously to (8.90). However, while expressions like these

make the spacetime support of the current manifest, they are seldom useful for calculating physical

quantities, where the momentum space expressions are more convenient.

8.9.5 Radiation Emission Results

Gauge Invariance of the Averaged Stress-Energy Tensor

As discussed in section 8.6.2, it suffices to consider the variations of the second and third terms of

Tµν in (8.212) under an infinitesimal gauge transformation δϵΨ = Dϵ. Since we are implicitly taking

a spacetime average, we can freely integrate spacetime derivatives by parts, and we can simplify

terms involving the operator D using the identities (8.27) and (8.28).

First, defining ϵν = ∂νϵ for brevity, the variation of the second term is

δTµν(a) = −2

∫
[d4η] δ′(η2 + 1) ΨD(∂µ∂νϵ) (8.368)

= −
∫

[d4η] Ψ ∆(δ(η2 + 1) ∂µϵν) (8.369)

= −
∫

[d4η] δ(η2 + 1) (∆Ψ) ∂µϵν (8.370)
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where we integrated by parts and used (8.28). The variation of the third term includes

δTµν(b) = −1

2

∫
[d4η] ∂µη (δ(η2 + 1) ∆Dϵ) ∂νΨ (8.371)

=
1

2

∫
[d4η] ∂µη (δ(η2 + 1) ∂2xϵ

ν) Ψ (8.372)

=

∫
[d4η] (∂2xΨ)

(
1

2
δ(η2 + 1) ∂µη ϵ

ν + δ′(η2 + 1) ηµϵν
)

(8.373)

where we integrated by parts and used (8.27). The other part of the third term’s variation is

δTµν(c) =
1

2

∫
[d4η] δ(η2 + 1) (∆Ψ)(∂µη ∂

νDϵ) (8.374)

=
1

2

∫
[d4η] δ(η2 + 1) (∆Ψ)

(
(η · ∂x)(∂µη ϵ

ν) + (∂µ − ηµ∆)ϵν
)

(8.375)

=

∫
[d4η] δ(η2 + 1) (∆Ψ)

(
1

2
(η · ∂x)(∂µη ϵ

ν) + ∂µϵν − 1

2
∆ηµϵν

)
(8.376)

where we simply performed the η derivative using the definition of D. The middle term of this

expression cancels with δTµν(a). The last term cancels with the last term of δTµν(b) upon using the

equation of motion (8.19). Finally, note that multiplying the equation of motion by η2 + 1 and

simplifying gives the identity

δ(η2 + 1) ∂2xΨ = δ(η2 + 1) (η · ∂x)∆Ψ (8.377)

which implies the remaining two terms cancel.

Stationary Phase Approximation for Total Power

Here we extract the scaling behavior of the integral

I =
∑

n>0

n2
∫ T

0

dt

T

∫ T

0

dt′

T
einω0(t−t′) J0

(
ρ|v⊥(t) − v⊥(t′)|

nω0

)
. (8.378)

Consider an arbitrary generic linear motion, meaning that v⊥(t) = v0f(ω0t) sin θ where v0 is the

typical speed, and f(ϕ) is an order one periodic function with order one derivatives. Defining

x = (ρv0/ω0) sin θ and changing variables to the phase sum and difference gives

I ∼
∑

n>0

n2
∫
dϕ′
∫
dϕ einϕJ0

(x
n

(f(ϕ+ ϕ′/2) − f(ϕ− ϕ′/2))
)

(8.379)

=

∫
dϕ′

∑

n>0

n2
∫
dϕ einϕJ0 (xgϕ′(ϕ)/n) (8.380)
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where gϕ′(ϕ) is another order one periodic function. Since x and n are large, the integrand is

rapidly oscillating and thus dominated by contributions from points of stationary phase. Using the

asymptotic expansion of the Bessel function gives, up to overall phases,

I ∼
∫
dϕ′

∑

n>0

n2
∫
dϕ

√
n

x
ei(nϕ+xgϕ′/n). (8.381)

The integrand has stationary phase when n+ xg′ϕ′/n = 0, which is generically possible only when

n ≲
√
x, and at such points, the rate of change of phase is xg′′ϕ′/n. Then we have

I ∼
∫

dϕ′√
g′′ϕ′

∫ √
x

0

dnn2
n

x
∼ x (8.382)

where the ϕ′ integral is of order one because g′′ϕ′ is generically of order one. This recovers the scaling

exhibited in (8.231), as well as the rough distribution of the power in harmonics.
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[749] A. Abada, D. Bečirević, O. Sumensari, C. Weiland, and R. Zukanovich Funchal, “Sterile

neutrinos facing kaon physics experiments,” Phys. Rev. D 95 (2017) no. 7, 075023,

arXiv:1612.04737 [hep-ph].

[750] J. Heeck, “Light particles with baryon and lepton numbers,” Phys. Lett. B 813 (2021) 136043,

arXiv:2009.01256 [hep-ph].
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