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Abstract
The rigidity of the Riemannian positive mass theorem for asymptotically hyperbolic
manifolds states that the totalmass of such amanifold is zero if and only if themanifold
is isometric to the hyperbolic space. This leads to study the stability of this statement,
that is, if the total mass of an asymptotically hyperbolic manifold is almost zero, is
this manifold close to the hyperbolic space in any way? Motivated by the work of
Huang, Lee and Sormani for asymptotically flat graphical manifolds with respect to
intrinsic flat distance, we show the intrinsic flat stability of the positive mass theorem
for a class of asymptotically hyperbolic graphical manifolds by adapting the positive
answer to this question provided by Huang, Lee and the third named author.
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1 Introduction

In the context of mathematical relativity, asymptotically hyperbolic manifolds cor-
respond to initial data sets for the Einstein equations with a negative cosmological
constant �. An asymptotically hyperbolic manifold is, roughly speaking, a Rie-
mannian manifold (Mn, g) such that the metric g approaches the metric of the
n-dimensional hyperbolic space, H

n , at infinity sufficiently fast. Under appropriate
decay conditions on g there is a well defined notion of total mass of (Mn, g) given by
Chruściel and Herzlich [7], and Wang [26].

From the constraint equations for the Einstein equations, it follows that if the initial
data set is a time-symmetric, asymptotically hyperbolic manifold (Mn, g), then with
a suitable normalization of the cosmological constant, the dominant energy condition
reduces to a lower bound on the scalar curvature, R(g) ≥ −n(n − 1). The positive
mass theorem then asserts that the mass of this type of manifolds is non-negative, and
it is equal to 0 if and only if the manifold is isometric toH

n . The history of the positive
mass theorem and its different proofs is rich. We refer the reader to a recent proof by
Sakovich [21], which also contains a complete description of the history of this result
and previous results. The rigidity part was established in general by Huang, Jang and
Martin in [12].

From the rigidity statement of the positive mass theorem it is natural to ask whether
a stability statement holds. The answer to this question is subtle, as can be seen in
examples for the asymptotically flat setting given by Lee and Sormani in [18], showing
that the answer is negative with respect to some usual topologies. Nonetheless, the
stability of the positive mass theorem has been established in some cases. In particular,
the Sormani–Wenger intrinsic flat distance [25] has shown to be an adequate notion of
distance for this problem. In [23] Sakovich and Sormani obtained a stability result for
the positive mass theorem for complete rotationally symmetric asymptotically hyper-
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bolic manifolds with respect to this distance. Huang and Lee [13] showed stability of
the positive mass theorem with respect to the Federer–Fleming flat distance for a class
of asymptotically flat graphical manifolds. Subsequently Huang, Lee and Sormani
showed stability of the positive mass theorem for a smaller subclass with respect to
the intrinsic flat distance [15]. While there were two gaps in [15], see [16], these are
now completely filled in. The gap in [15, Theorem 1.3] was filled in by work of Del
Nin and the third named author [10], and the gap in [15, Theorem 1.4] by the work
of Huang, Lee and the third named author [14]. There is also a proof of [15, Theorem
1.3] using a different approach to [15] in [14] (cf. [5, Theorem 7.2] for a proof in the
entire case).

Following the work in [13], the first named author showed in [6] the stability of the
positive mass theorem for a class of asymptotically hyperbolic graphical manifolds
with respect to the Federer–Fleming flat distance. In this work, starting from [6]
and following [14], we establish a stability result for a subclass of asymptotically
hyperbolic graphs with respect to the intrinsic flat distance. We note that we cannot
use the results in [10] since they only ensure existence of intrinsic flat limits of the
form (BR

n
(R), dRn , [[BR

n
(R)]]).

For asymptotically hyperbolic manifolds stability has been established in some
other cases (see [4, 23]). The techniques in [13] have been also successfully applied to
obtain a stability result of the Brown–York mass by Alaee, McCormick and the first
named author in [2], and the techniques in [5, 13–15] have also been applied to obtain
flat and intrinsic flat stability results for tori with almost non-negative scalar curvature
by the first and third named authors [8].

Wewill follow the definition of asymptotically hyperbolic graphs and the adaptation
of the total mass for asymptotically hyperbolic manifolds to asymptotically hyperbolic
graphs by Dahl, Gicquaud and Sakovich [9]. We write H

n+1 as the warped product
H

n ×V R with metric b̄ = b + V 2ds2, where b is the metric of H
n which we write in

coordinates defined on R
n = [0,∞) × S

n−1 and V (r) = cosh(r) where r represents
the radial coordinate. We denote the open ball in H

n of radius ρ around the origin by
Bb(ρ). We start by defining the class of asymptotically hyperbolic graphs that where
studied in [6] and which will be the basis for the subclass we will consider here.

Definition 1.1 For n ≥ 3, define Gn to be the space of graphs of functions, graph( f ) ⊂
H

n+1, where f : H
n\U → R is a continuous function which is smooth on H

n \U and
U ⊂ H

n is an open and bounded subset whose complement is connected, such that
graph( f ) is a balanced asymptotically hyperbolic graph (see Sect. 2.1 for definitions)
when endowed with the metric induced by H

n+1, with scalar curvature greater than
or equal to −n(n − 1), and it is either entire or with minimal boundary. In addition,
we require:

(1) The mean curvature vector of graph( f ) in H
n+1 points upward

(2) For almost every h ∈ R, the level set f −1(h) is star-shaped and outer-minimizing
in H

n .

We denote by m( f ) the total mass of any graph( f ) ∈ Gn . The first named author
showed stability of the class Gn [6]. In particular, after vertically translating graph( f ),
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it was shown that in any ball Bb̄(ρ) ⊂ H
n+1 of radius ρ centered at the origin,

dBb̄(ρ)
F (graph( f ), H

n × {0}) → 0 as m( f ) → 0,

where dF denotes the Federer–Fleming flat distance. See Theorem 2.8.
Convergence with respect to the flat distance does not necessarily imply conver-

gence with respect to the intrinsic flat distance. Hence, it is interesting to study the
stability of the positive mass theoremwith respect to intrinsic flat distance for the class
Gn . Since byWenger’s compactness theorem, compact orientedRiemannianmanifolds
with a uniform upper diameter bound and a uniform upper volume bound for the man-
ifolds and their boundaries is precompact with respect to intrinsic flat distance, we
will consider (in a similar way to [14, 15]) a subclass of Gn .
Definition 1.2 For constants ρ0, γ, D > 0, we define Gn(ρ0, γ, D) to be the space
of n-dimensional manifolds (M, g) (possibly with boundary) that admit a smooth
Riemannian isometric embedding into H

n+1, 
 : M → H
n+1, such that 
(M) =

graph( f ) for some graph( f ) ∈ Gn and that in addition the following is satisfied:

(3) U ⊂ Bb(ρ0/2)
(4) For r ≥ ρ0

2 , a uniform decay condition holds,

V 2|∇b f |2b ≤ γ 2 (1.1)

(5) The region �(ρ0) = 
−1(Bb(ρ0) × R) has bounded depth,

depth(�(ρ0)) = sup{dM (p, �(ρ0)) : p ∈ �(ρ0)} ≤ D,

where dM denotes the length distance in M induced by g and �(ρ0) = ∂�(ρ0) \
∂M .

(6) If f is not entire, a stronger condition for the minimal boundary holds,∇b
ν f → ∞

while ∇b
X f remains bounded as one approaches ∂U (where ν is the local vector

field obtained by extending the outward unit normal of ∂U to a neighborhood of
∂U by parallel transport along the flow lines of the normal exponential map and
X is any vector field with X ⊥b ν). We will additionally demand that our minimal
boundary is mean convex, i.e., H ≥ 0, where H denotes the mean curvature of
∂U as a submanifold of H

n , and star-shaped.

Given (M, g) ∈ Gn(ρ0, γ, D) we endow (�(ρ), g|�(ρ)) with the intrinsic length
distance, d intr�(ρ), and the integral current with weight 1, [[�(ρ)]], as in Example 2.11.
Our first result is the following.

Theorem 1.3 Let M j ∈ Gn(ρ0, γ, D) be a sequence of asymptotically hyperbolic
graphs with 
 j : Mj → H

n+1 a smooth Riemannian isometric embedding as in
Definition 1.2. If lim j→∞ m(Mj ) = 0, then for any ρ > ρ0 we have

lim
j→∞ dF ((� j (ρ), d intr� j (ρ), [[� j (ρ)]]), (Bb(ρ), d intr

Bb(ρ)
, [[Bb(ρ)]])) = 0,
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where dF denotes the intrinsic flat distance, and vol(� j (ρ)) → vol(Bb(ρ)).

Conditions (3) and (4) of Definition 1.2 provide a uniform control on the exte-
rior region, i.e. the complement of �(ρ0/2), of the sequence of manifolds, while
(5) prevents the formation of deep “gravity wells” (cf. [15, 19]). Conditions (3)-(5)
provide a uniform intrinsic diameter bound of regions � j (ρ) and a uniform bound
for vol(∂� j (ρ)). Conditions (1) and (2) together with the uniform diameter bound
ensure convergence of vol(� j (ρ)) to vol(Bb(ρ)). Thus, Wenger’s compactness the-
orem ensures convergence to an integral current space. To get the precise limit space
one has to use condition (6) to ensure that the regions � j (ρ) embed into suitable

Riemannian manifolds diffeormorphic to Bb(ρ) via a capping procedure as in [14],
Theorem A.1, in order to apply a convergence result by Allen and the third named
author [5] (see Theorem 4.1). We note that to apply Theorem 4.1 one has to endow
�(ρ) with the structure (�(ρ), d intr�(ρ), [[�(ρ)]]) rather than (�(ρ), dM , [[�(ρ)]]).
The same is true when applying the convergence result from [5] in the proof of [14,
Theorem 3.2]. However, by [10] the result in [15] is correct for (�(ρ), dM , [[�(ρ)]])
as well. We also remark that boundedness of ∇X f for tangential directions X as one
approaches ∂U as specified in (6) was not originally stated in [15], nor in [14], though
in the latter it was implicitly assumed.

We also obtain a pointed version. This is the analogue of [15, Theorem 1.4].

Theorem 1.4 Let M j ∈ Gn(ρ0, γ, D) be a sequence of asymptotically hyperbolic
graph manifolds with lim j→∞ m(Mj ) = 0 and p j ∈ � j (ρ0) be a sequence of points.
Then for almost every R > 0 we have

lim
j→∞ dF ((BMj (p j , R), dMj , [[BMj (p j , R)]]), (Bb(R), dHn , [[Bb(R)]])) = 0

and vol(BMj (p j , R)) → vol(Bb(R)).

This manuscript is organized as follows. In Sect. 2 we provide backgroundmaterial.
In Sect. 3 we prove volume estimates for the regions �(ρ), uniform diameter and area
bounds and also show their volume converges to the volume of a ball in hyperbolic
space provided m( f ) → 0. Additionally, we show Gromov-Hausdoff and intrinsic
flat convergence of annular regions, �(ρ′) \ �(ρ), and that the inner boundaries,
∂M , converge to the zero integral current space. The proofs of the main results are
given in Sect. 4. The proof of Theorem 1.3, in the entire case, consists in applying the
convergence theorem of [5], Theorem 4.1, to the regions �(ρ), and in the non-entire
case, we apply Theorem A.1, proven in Appendix A, where we enlarge the �(ρ)’s
and use condition (6) to carefully construct diffeormorphisms from the enlargements
to Bb(ρ), so that Theorem 4.1 can be applied. Theorem 1.4 follows from Theorem
1.3 and Lemma 4.3, we believe the latter result is interesting in its own. It easily
follows from results in [14], see Theorem 2.24, but in Lemma 4.3 we clearly see
when Gromov-Hausdorff and intrinsic flat convergence of a sequence of subsets of an
intrinsic flat converging sequence imply subconvergence of a sequence of points.
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2 Background

In this section we first collect some results from [9] about asymptotically hyperbolic
graphs and review material from [6] about the class Gn . In the second part, we define
integral current spaces, intrinsic flat distance and state some results that we will apply
in subsequent sections.

2.1 Asymptotically hyperbolic graphs

Here we give some definitions related to asymptotically hyperbolic graphs and state
a Riemannian Penrose-like inequality, obtained in [9]. For a more detailed discussion
about asymptotically hyperbolic graphs the reader is referred to [9].

Let H
n denote the hyperbolic space of dimension n and let b be its Riemannian

metric, which in spherical coordinates (r , θ) ∈ [0,∞) × S
n−1 takes the form

b = dr2 + sinh2(r)σ,

where σ represents the standard Riemannian metric of S
n−1.

We will consider graphs of functions over subsets of H
n inside the (n + 1)-

dimensional hyperbolic space H
n+1 with Riemannian metric b̄, written in coordinates

(r , θ, s) ∈ H
n × R as

b̄ = b + V (r)2ds2,

where V (r) = cosh(r). Note that the scalar curvature of b̄ is R(b̄) = −(n + 1)n.
Given an open set U ⊂ H

n and a continuous function f : H
n\U −→ R which is

smooth on H
n \U , we endow

graph( f ) :=
{

(x, f (x)) ∈ H
n+1

∣

∣ x ∈ H
n \U

}

with the coordinate chart

� : graph( f ) → H
n \U , �(x, f (x)) = x, (2.1)

and the Riemannian metric g induced by H
n+1. To simplify notation, we will often

denote geometric quantities associated to graph( f ) using f instead of its metric. For
example, we denote its scalar curvature as R( f ). This should not cause any confusion
as the meaning of the symbols will be clear from the context.

While there is a more general definition of asymptotically hyperbolic manifolds
and their mass (see [7, 26]) we will only consider asymptotically hyperbolic graphs
and so, in the interest of simplicity, will only present the graph case here (following
[9]).

Definition 2.1 Let n ≥ 3 and U ⊂ H
n be a possibly empty open bounded subset

with connected complement. Let f : H
n\U −→ R be a continuous function which is
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smooth on H
n \ U . We say that (graph( f ), g) is an asymptotically hyperbolic graph

(or simply f is asymptotically hyperbolic) with respect to the chart � as in (2.1) if
e = g − b = V 2d f ⊗ d f satisfies

(i)

∫

Hn\B
(|e|2b + |∇be|2b) cosh(r) dvolb < ∞,

and

∫

Hn\B
|R( f ) + n(n − 1)| cosh(r) dvolb < ∞,

where B is a closed ball in H
n that properly contains U and dvolb denotes the

volume form induced by b.
(ii) |e|2b = V 2|∇b f |2b → 0 at infinity.

In general, the total mass of an asymptotically hyperbolic manifold can be defined
as the minimization of a functional, called the mass functional, that depends on its
coordinate chart at infinity, say
. If themass functional is positive over an appropriate
subset of a vector space, then 
 can be chosen so that the mass takes a simpler form;
this suitable diffeomorphism 
 is then referred to as a set of balanced coordinates [9].
For an asymptotically hyperbolic graph, if� as in (2.1) is a set of balanced coordinates
we say that f is balanced. In this case the mass takes the form given below [9].

Definition 2.2 If f is an asymptotically hyperbolic and balanced function, its mass is
given by

m( f ) = 1

2(n − 1)ωn−1
lim
r→∞

∫

Sr
(V (divbe − dtrbe) + (trbe)dV − e(∇bV , ·))(νr )dvolb, (2.2)

where e := V 2d f ⊗ d f , V (r) = cosh(r), Sr is the coordinate sphere of radius r in
H

n , νr the outward normal vector to Sr and ωn−1 denotes the volume of the round
sphere S

n−1.

Definition 2.3 We say that an asymptotically hyperbolic function f : H
n\U → R is

entire if U = ∅. Moreover, we say that f has a minimal boundary if ∂U 
= ∅, f is
constant on each component of ∂U and |∇b f |b → ∞ as one approaches ∂U .

We now give an example of an asymptotically hyperbolic graph with minimal (and
mean convex) boundarywhich represents an initial data set for theAdS-Schwarzschild
spacetime.
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Example 2.4 (AdS-Schwarzschild manifolds as graphs) Recall that the spatial AdS-
Schwarzschild is defined for m ≥ 0 and n ≥ 3, as the manifold (ρ+,∞) × S

n−1 with
the metric given by

gm = 1

1+ρ2− 2m
ρn−2

dρ2 + ρ2σ,

where ρ+ is the largest root of

ρn + ρn−2 − 2m = 0.

The mass of this manifold is equal to m, and clearly, g0 = b.
To see this manifold as a graph over H

n it is convenient to make the change of
variables ρ = sinh(r) on H

n , so that the metric on H
n+1 is given by

b̄ = (1 + ρ2)ds2 + 1
1+ρ2 dρ2 + ρ2σ.

Then, the AdS-Schwarzschild graph of mass m is given by the function

f (ρ) =
∫ ρ

ρ0

1√
1+s2

√

1

1+s2− 2m
sn−2

− 1
1+s2

ds,

that is this function is constant in the theta parameter, and it can be checked by direct
computations that this graph has a minimal boundary at ρ = ρ+.

We now state a Riemannian Penrose-like inequality, which was very useful when
proving flat convergence of sequences contained in the class Gn . We will use it in
the proofs of Theorem 3.8 and Lemma 3.11, to establish uniform volume bounds for
the regions ∂� j (ρ), and Uj and to show that the inner boundaries of � j (ρ), ∂Mj ,
converge to the zero integral current space, respectively.

Theorem 2.5 (Riemannian Penrose-like inequality [9, Theorem 2.1]) Suppose that
f : H

n \U → R is a balanced asymptotically hyperbolic graph inH
n+1 with minimal

boundary and scalar curvature R( f ) ≥ −n(n − 1). Suppose that ∂U is mean convex
(i.e., H ≥ 0, where H denotes the mean curvature of ∂U in H

n) and that U contains
an inner ball centered at the origin of radius r0. Then,

vol(∂U ) ≤ 2ωn−1
V (r0)

m( f )

where V (r) = cosh(r) and ωn−1 denotes the volume of the round sphere S
n−1. In

particular, vol(∂U ) ≤ 2ωn−1m( f ).

Let us remark at this point that we will from now on, by slight abuse of notation, use
vol to denote volumes of Riemannian (sub-)manifolds regardless of their dimension
and we will suppress specifying the metric in the notation unless there would be
inequivalent canonical choices.
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2.2 The classGn and stability of the PMTwith respect to flat distance

In [6] the first named author, inspired by the work of Huang and Lee [13], defined the
class Gn and proved the stability of the hyperbolic positive mass theorem with respect
to the flat distance (also known as Federer–Fleming distance). Here we review parts
of this work needed in subsequent sections.

We nowgivemore details about the conditions appearing inDefinition 1.1. Given an
asymptotically hyperbolic function, f : H

n \U → R, letH denote the mean curvature
vector of graph( f ) inside H

n+1 and let n0 := (�0, 1) ∈ TpH
n+1, for any p ∈ H

n+1.
We say that H points upward if b̄(n0,H) is a non-negative function that does not
vanish everywhere. The mean curvature vector convention is that deformations in the
direction given by this vector decrease volume. In particular, the standard sphere has
positive mean curvature with respect to the inner pointing unit normal vector field. We
say that f −1(h) is star-shaped if in some radial coordinates (r , θ) on H

n\{0} the set
can be written as a smooth graph (ρ f −1(h)(θ), θ) : S

n−1 → (0,∞)×S
n−1 ∼= H

n\{0}.
Note that this in particular implies that f −1(h) is a differentiable (n−1)-dimensional
submanifold of H

n . For a bounded and finite perimeter set E ⊂ H
n , we say that

∂∗E (where ∂∗E denotes the reduced boundary of E) is outer-minimizing if for any
bounded set F containing E we have Hn−1

b (∂∗E) ≤ P(F) where P denotes the
perimeter of F andHn−1

b denotes the (n − 1) dimensional Hausdorff measure of H
n .

The key idea to prove the stability of the hyperbolic positive mass theorem for Gn
was to find a suitable “height”, h0( f ), which divides any graph( f ) in two parts. In
the lower part,

{

(x, f (x)) ∈ H
n+1 | x ∈ H

n \U , f (x) ≤ h0( f )
}

,

one can show that all level sets of f have volume bounded above by some function that
depends on m( f ) which goes to zero as m( f ) goes to zero. Meanwhile, in the upper
part, the quantity sup( f ) − h0( f ) is bounded above by a function that also depends
onm( f ) and goes to zero asm( f ) does.

In order to define this height, one studies the function

V(h) := P({x ∈ H
n : f̄ (x) < h}),

where f̄ is the extension of f to H
n which is defined to be constant on U . Using

condition (1) of the definition of Gn (i.e. that the mean curvature vector of graph( f )
points upward), it is shown that there exists hmax ∈ R so that f < hmax everywhere
and that V is finite for any h < hmax. Using condition (2) it is shown that V is
non-decreasing. Therefore, V is differentiable almost everywhere and a height can be
defined.

Definition 2.6 ([6, Definition 4.1]) Let β > 1 be any fixed constant. Furthermore, let
n ≥ 3 and f be a balanced asymptotically hyperbolic function. We define the height

123



  132 Page 10 of 45 A. J. C. Pacheco et al.

h0( f ) of f as

h0( f ) := sup{h : Hn−1( f −1(h))} ≤ max{2βωn−1m( f )
n−1
n−2 , 2βωn−1m( f )},

if the above set is non-empty and h0( f ) = min( f ) otherwise.

Ifm( f ) < 1 then it follows that h0( f ) = sup{h : Hn−1( f −1(h)) ≤ 2βωn−1m( f )}.
After an appropriate rescaling of f , using that the mean curvature of the level sets is

nonnegative, a suitable expression form( f ) and the Minkowski inequality, one shows
that V ′(h) ≥ F(V(h)) for almost every h ≥ h0( f ) and some function F . Then the
upper bound for sup( f ) − h0( f ) is obtained by comparing V to the solution of the
equation Y ′(h) = F(Y (h))with initial condition equal to V(h0( f )). That is, one finds
that Y ≤ V and Y goes to infinity at a finite height, implying that V also does and
hence giving an upper bound to the rescaling of f . Rescaling back gives the desired
inequality:

Theorem 2.7 ([6, Lemma 4.8]) Let f ∈ Gn, then there exists a constant C = C(n)

such that

0 < sup( f ) − h0( f ) < Cm( f )
1

n−2 . (2.3)

The stability of the hyperbolic positivemass theoremwith respect to the flat distance
reads as follows.

Theorem 2.8 ([6, Theorem 5.1]) Let n ≥ 3 and f j ∈ Gn be a sequence of balanced
asymptotically hyperbolic functions. Assume that lim j→∞ m( f j ) = 0. Then after
normalizing graph( f j ) so that h0( f j ) = 0, we have

lim
j→∞ dBb̄(ρ)

F ([[graph( f j )]], [[Hn × {0}]]) = 0,

where for anyρ > 0, Bb̄(ρ) ⊂ H
n+1 is the b̄-ball of radiusρ centered at the origin, i.e.,

in terms of our coordinate system, Bb̄(ρ) = {(r , θ, s) | cosh2(r)s2 + sinh2(r) ≤ ρ2}.
Theorem 2.8 is proven by explicitly choosing integral currents A j and Bj such that

A j + ∂Bj = [[graph( f j )]] − [[Hn × {0}]] in Bb̄(ρ) and M(A j ) + M(Bj ) → 0 as
j → 0, which implies the conclusion. All this can be guaranteed by applying Theorem
2.7, the isoperimetric inequality, the definition of h0( f ) and Theorem 2.5.

2.3 Integral currents, intrinsic flat distance and convergence of balls

We now give a brief introduction to integral currents in metric spaces, integral cur-
rent spaces and intrinsic flat distance. For further details about integral currents in
metric spaces we refer the reader to Ambrosio and Kirchheim [3], Lang [17], and
Lang and Wenger [20]. For the definition of integral current spaces and intrinsic flat
distance between them we refer to Sormani and Wenger [24, 25]. For results about
point convergence we refer to Sormani [22] and, Huang, Lee and Perales [14].
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2.3.1 Integral currents

Given a complete metric space (Z , d), let Lip(Z) denote the set of Lipschitz functions
on Z and Lipb(Z) the bounded ones. An n-dimensional current T on Z is a multilinear
map T : Lipb(Z)×[Lip(Z)]n → R that satisfies certain properties, see [3, Definition
3.1]. The n-dimensional current T endows Z with a finite Borel measure, ||T ||, called
the mass measure of T and set(T ) is the set of points in Z where the n-dimensional
lower density of ||T || is positive:

set(T ) =
{

z ∈ Z | lim inf
r↓0

‖T ‖(B(z,r))
rn > 0

}

. (2.4)

The mass of T is defined as M(T ) = ||T ||(Z) and it is known that spt(T ) =
spt(||T ||) = set(T ). For any Lipschitz function ϕ : Z → Y the push-forward of
T is the current ϕ�T : Lipb(Y ) × [Lip(Y )]n → R defined as

ϕ�T ( f , π1, . . . , πn) = T ( f ◦ ϕ, π1 ◦ ϕ, . . . , πn ◦ ϕ).

The boundary of T , ∂T : Lipb(Z) × [Lip(Z)]n−1 → R, is the functional defined as

∂T ( f , π1, ..., πn−1) = T (1, f , π1, ..., πn−1),

where 1 : Z → R denotes the constant function equal to 1. For any Borel set A ⊂ Z ,
the restriction of T to A, is the current T A : Lipb(Z) × [Lip(Z)]n → R given by

T A( f , π1, ..., πn) = T (1A f , π1, ..., πn),

where 1A : Z → R denotes the indicator function of A. In this case ||T A|| = ||T || A
and so spt(T A) ⊂ A.

Remark 2.9 By [17, Proposition 3.3], the current T A can be identified with a current
defined in (A, d) and that we will denote in the same way, that is, T A : Lipb(A) ×
[Lip(A)]n → R (see also [3, Equation (3.6)]).

The main examples of currents are the zero n-dimensional currents, that is,
T ( f , π1, . . . , πn) = 0 for all ( f , π1, . . . , πn), and the ones given by

ϕ�[[θ ]]( f , π1, ..., πn) =
∫

A
θ(x) f (ϕ(x)) det(Dx (π1 ◦ ϕ, . . . , πn ◦ ϕ))dLn(x),

where ϕ : A → Z is a Lipschitz function, A ⊂ R
n is a Borel set and, θ ∈ L1(A, R).

Wewill workwith n-dimensional integral currents T which are n-dimensional currents
that can be written as a sum of currents of the form ϕi�[[θi ]] as given above, with θ ′

i s
integer valued, and so that ∂T is also a current. The class consisting of these currents
will be denoted as In(Z) and to be more precise we will sometimes write In(Z , d).
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2.3.2 Integral current spaces and intrinsic flat distance

An n-dimensional integral current space Q = (X , dX , T ) consists of a metric space
(X , dX ) and an n-dimensional integral current, T ∈ In(X , dX ), where (X , dX ) is
the metric completion of (X , dX ), and such that set(T ) = X . There is the notion of
zero n-dimensional integral current space denoted as 0 = (X , d, T ), here T = 0 and
set(T ) = ∅. We define M(Q) = M(T ), set(Q) = set(T ).

The boundary of Q, ∂Q, is an (n − 1)-dimensional integral current space and is
defined in the following way. By Remark 2.9, ∂T : Lipb(X)×[Lip(X)]n−1 → R can
be identified with a current that we denote in the same way, ∂T : Lipb(spt(∂T )) ×
[Lip(spt(∂T ))]n−1 → R. With this identification

∂Q = ∂(X , dX , T ) := (set(∂T ), dX , ∂T ) ∈ In−1(spt(∂T ), dX ).

We remark that set(∂T ) ⊂ X , and that the second entry of ∂Q is the metric of X
restricted to set(∂T ), which by abuse of notation we write as dX .

Example 2.10 Given ann-dimensional compact orientedRiemannianmanifold (M, g),
we can define several integral current spaces.

(i) (M, g) canbe regarded as ann-dimensional integral current space, (M, dM , [[M]]),
so that the mass measure of [[M]] equals dvolg and set([[M]]) = M . Indeed, let
dM be the length metric induced by the Riemannian metric g. Choose a locally
finite atlas {(Ui , ϕi )}i∈N of M consisting of positively oriented Lipschitz charts
and let {ψi } be a Lipschitz partition of unity of M with respect to this atlas such
that spt(ψi ) ⊂ Ui ⊂ M . Then for ( f , π) ∈ Lipb(M) × [Lip(M)]n we define

[[M]]( f , π) =
∞
∑

i=1

ϕ−1
i �

[[ψi ◦ ϕ−1
i ]]( f , π)

=
∞
∑

i=1

∫

ϕi (Ui )

(ψi ◦ ϕ−1
i )( f ◦ ϕ−1

i ) det(D(π ◦ ϕ−1
i ))dLn .

(ii) ∂M can be regarded as an (n−1)-dimensional integral current space (∂M, dM , [[∂
M]]). Taking ( f , π) ∈ Lipb(M) × [Lip(M)]n−1,

∂[[M]]( f , π) =
∞
∑

i=1

ϕ−1
i �

[[ψi ◦ ϕ−1
i ]](1, f , π)

=
∞
∑

i=1

∫

ϕi (Ui )

ψi ◦ ϕ−1
i (x) det(Dx (( f , π) ◦ ϕ−1

i ))dLn(x)

=
∞
∑

i=1

∫

ϕi (Ui∩∂M)

(ψi ◦ ϕ−1
i (x))( f ◦ ϕ−1

i (x))

det(Dx (π ◦ ϕ−1
i ))dLn−1(x)
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so by Remark 2.9 and abusing notation, we write [[∂M]] = ∂[[M]] ∂M ∈
In−1(∂M, dM ), i.e., the orientation of M passes to ∂M and the atlas of bilip-
schitz maps are taken with respect to the distance of M , and so we write
∂(M, dM , [[M]]) = (∂M, dM , [[∂M]]).

(iii) Let Y be an n-dimensional compact submanifold of M , with possibly non-empty
boundary, and oriented (assume that the orientation of Y and M agree on Y ).
Endow Y with the restricted Riemannian metric, g|Y . Then as in (i) we get an
integral current space (Y , d intrY , [[Y ]]) so that [[Y ]] ∈ In(Y , d intrY ). We reiterate
our notational convention of denoting the intrinsic length distance on Y , obtained
from considering (Y , g|Y ) as a Riemannian manifold, by d intrY . If Y is a totally
geodesic submanifold of M , then dM = d intrY , but in general dM 
= d intrY and it will
be important for us to keep track of which distance we are using.

(iv) If we do not endow Y with the restricted Riemannianmetric g|Y , we can still define
[[M]] Y ∈ In(M, dM ), which is given by

[[M]] Y ( f , π) =
∞
∑

i=1

∫

ϕi (Ui∩Y )

(ψi ◦ ϕ−1
i )( f ◦ ϕ−1

i ) det(D(π ◦ ϕ−1
i ))dLn .

By Remark 2.9 and abusing notation, we let [[Y ]] := [[M]] Y ∈ In(Y , dM )

i.e., the orientation of M passes to Y and the atlas of bilipschitz maps are taken
with respect to the distance ofM. Then (Y , dM , [[Y ]]) is an n-dimensional integral
current space.

Example 2.11 In this article we will work with complete, oriented, noncompact Rie-
mannian manifolds (Mn, g). Note that we cannot define [[M]] as in the previous
example because Ambrosio–Kirchheim currents require the mass measure to be finite
and for M = H

n, graph( f ), for example, this would not be true, though there exist
other definitions of currents by Lang and Lang–Wenger [17, 20] that allow currents
to have locally finite measure. Nonetheless, for n-dimensional compact submanifolds
Y ⊂ M with possibly non-empty boundary we can consider (Y , d intrY , [[Y ]]), with
[[Y ]] ∈ In(Y , d intrY ), and (Y , dM , [[Y ]]), where [[Y ]] ∈ In(Y , dM ), as in the pre-
vious example. In the latter, we still have set([[Y ]]) = Y and ∂(Y , dM , [[Y ]]) =
(∂Y , dM , [[∂Y ]]) with [[∂Y ]] ∈ In−1(∂Y , dM ).

Example 2.12 ([22, Lemma2.34, Lemma2.35, Remark 2.37])Given an n-dimensional
integral current space Q = (X , dX , T ). Then for any p ∈ X and for almost every
r > 0, ||T ||(d−1

p (r)) + ||∂T ||(d−1
p (r)) = 0. For those r it holds

• T B(p, r) = T B(p, r)
• S(p, r) := (set(T B(p, r)), dX , T B(p, r)) ∈ In(B(p, r), dX )

• B(p, r) ⊂ set(T B(p, r)) ⊂ B(p, r)
• Sc(p, r) := (set(T X \ B(p, r)), dX , T X \ B(p, r)) ∈ In(X \ B(p, r), dX ),

where dp : X → R is the function dp(x) = dX (p, x), x ∈ X , and we had use Remark
2.9.

Furthermore, for Q = (M, dM , [[M]]) as in Example 2.10, set(T B(p, r)) =
B(p, r). Hence, for a.e. r > 0, S(p, r) = (B(p, r), dM , T B(p, r)).
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We say that an integral current space (X , d, T ) is precompact if (X , d) is precom-
pact. The definition of intrinsic flat distance is as follows.

Definition 2.13 ([25, Definition 1.1]) Given two n-dimensional precompact integral
current spaces, (X1, d1, T1) and (X2, d2, T2), the intrinsic flat distance between them
is defined as

dF ((X1, d1, T1), (X2, d2, T2))

= inf
{

dZ
F (ϕ1�T1, ϕ2�T2) : ϕ j : X j → Z

}

,

where the infimum is taken over all complete metric spaces Z and all metric isometric
embeddingsϕ j . Theflat distance between twon-dimensional integral currents T1, T2 ∈
In(Z), dZ

F , is defined as

dZ
F (T1, T2) = inf {M(U ) + M(V ) : U ∈ In(Z), V ∈ In+1(Z), T2 − T1 = U + ∂V } .

The function dF is a distance up to current preserving isometries [25, Theorem
3.27]. Hence,

dF ((X1, d1, T1), (X2, d2, T2)) = 0

if and only if there exists ϕ : X1 → X2 metric isometry such that ϕ�T1 = T2. In this
case, we identify both integral currents spaces

(X1, d1, T1) = (X2, d2, T2), (2.5)

and so dF is a distance in the space of equivalence classes of precompact integral
current spaces with this relation. If Mi are compact oriented Riemannian manifolds,
(M1, dM1 , [[M1]]) = (M2, dM2 , [[M2]]) if and only if there is a Riemannian isometry
between M1 and M2 that preserves their orientation.

Wenger proved the following compactness theorem.

Theorem 2.14 ([27, Theorem 1.2]) Let D, V , A > 0 and let {(X j , d j , Tj )}∞j=1 be a
sequence of n-dimensional integral current spaces such that

diam(X j ) ≤ D, M(Tj ) ≤ V and M(∂Tj ) ≤ A.

Then there exists a subsequence {(X jk , d jk , Tjk )}∞k=1 and an n-dimensional integral
current space (X∞, d∞, T∞) such that

lim
k→∞ dF ((X jk , d jk , Tjk ), (X∞, d∞, T∞)) = 0.

We will sometimes use the notation (X j , d j , Tj )
F−→ (X∞, d∞, T∞) to denote

convergence of the sequence (X j , d j , Tj ) to (X∞, d∞, T∞) in the intrinsic flat sense.
Intrinsic flat converging sequences have intrinsic flat converging boundaries and the
mass functional is lower semicontinuous with respect to this distance.
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Theorem 2.15 ([25, Theorem 4.6, Remark 3.3, Remark 3.22]) Let {(X j , d j , Tj )}∞j=1
be a sequence of integral current spaces that converges in the intrinsic flat sense to
(X∞, d∞, T∞), then

(1) lim j→∞ dF (∂(X j , d j , Tj ), ∂(X∞, d∞, T∞)) = 0
(2) M(T∞) ≤ lim inf j→∞ M(Tj )

(3) If lim j→0M(Tj ) = 0, then (X∞, d∞, T∞) = 0.

2.3.3 Convergence of points and balls

Convergence of points and "balls" under intrinsic flat distance ismore subtle thanwhen
using Gromov-Hausdorff distance. With intrinsic flat distance we can have sequences
of points disappearing in the limit or balls converging to the zero integral current space
(see some examples of this in [25, Appendix]). Here we present several results from
Sormani and Huang–Lee–Perales [14, 22] that will be used in the proof of Theorem
1.4. For historical reasons we start defining convergence of points for GH converging
sequences.

Theorem 2.16 ([11, Section 6]) A sequence of compact metric spaces (Y j , d j ), j ∈ N,
converges in Gromov-Hausdorff sense to a compact metric space (Y∞, d∞) if and only
if there exist a compact metric space (Z , d) and isometric embeddings ϕ j : Y j → Z,
j ∈ N ∪ {∞}, such that ϕ j (Y j ) converges with respect to the Hausdorff distance to
ϕ∞(Y∞).

When keeping track of the embeddings and the space, we write:

Y j
GH−−→
Z ,ϕ j

Y∞.

Definition 2.17 (Gromov)Let (Y j , d j ), j ∈ N, be a sequence of compactmetric spaces
that converges in Gromov-Hausdorff sense to the compact metric space (Y∞, d∞). Let
y j ∈ Y j , j ∈ N, and y ∈ Y∞. We say that {y j } converges to y, y j → y, if there exist a
compact metric space (Z , d) and isometric embeddings ϕ j : Y j → Z , j ∈ N ∪ {∞},
as in the previous theorem, such that dZ (ϕ j (y j ), ϕ∞(y)) → 0.

Since it will be important to keep track of the embeddings and space, in the previous
case, we wite:

(Y j , y j )
GH−−→
Z ,ϕ j

(Y∞, y).

For intrinsic flat convergence there is a similar result.

Theorem 2.18 ([25, Theorem 4.2]) A sequence of precompact n-dimensional integral
current spaces (Y j , d j , Tj ), j ∈ N, converges in intrinsic flat sense to the precompact
n-dimensional integral current space (Y∞, d∞, T∞) if andonly if there exist a complete
and separable metric space (Z , d) and isometric embeddings ϕ j : Y j → Z, j ∈
N ∪ {∞}, such that ϕ j�(Tj ) → ϕ∞�(T∞) in the flat sense in Z.
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Similarly, when keeping track of the embeddings and the metric space, we write

(Y j , d j , Tj )
F−−→

Z ,ϕ j
(Y∞, d∞, T∞).

Definition 2.19 ([22, Definition 3.1]) Let (Y j , d j , Tj ) be a sequence of precompact n-
dimensional integral current spaces, j ∈ N, that converges in intrinsic flat sense to the
precompact n-dimensional integral current space (Y∞, d∞, T∞). Let y j ∈ Y j , j ∈ N,
and y ∈ Y∞. We say that {y j } converges to y, y j → y, if there exist a complete and
separable metric space (Z , d) and isometric embeddings ϕ j : Y j → Z , j ∈ N ∪ {∞},
as in the previous theorem, such that dZ (ϕ j (y j ), ϕ∞(y)) → 0.

In this case, to avoid any confusion, we will sometimes write:

((Y j , d j , Tj ), y j )
F−−→

Z ,ϕ j
((Y∞, d∞, T∞), y).

Note that y is not necessarily contained in Y∞ and if this is the case we say that the
sequence of points disappears in the limit and that y disappeared ([22, Definition 3.2]).

When a sequence converges in both Gromov-Hausdorff and intrinsic flat sense to
the same limit space the same embeddings and metric space can be taken.

Theorem 2.20 ([25, Theorem 3.20]) Let (Y j , d j , Tj ) be compact n-dimensional inte-
gral current spaces, j ∈ N ∪ {∞}. Then

(Y j , d j )
GH−→ (Y∞, d∞) and (Y j , d j , Tj )

F−→ (Y∞, d∞, T∞)

if and only if there exist a complete and separable metric space (Z , d) and isometric
embeddings ϕ j : Y j → Z such that

(Y j , d j )
GH−−→
Z ,ϕ j

(Y∞, d∞) and (Y j , d j , Tj )
F−−→

Z ,ϕ j
(Y∞, d∞, T∞).

Under the assumption of the previous theorem, it is easy to see that for any sequence
of points y j ∈ Y j , j ∈ N, there exists y ∈ Y∞ such that y j → y. That is, using the
Hausdorff convergence of the compact sets ϕ j (Y j ) to the compact set ϕ∞(Y∞), one
can find a convergent subsequence of ϕ j (y j ) to a point z = ϕ∞(y) for some y ∈ Y∞.

In our main theorems, Theorem 1.3 and Theorem 1.4, the sequences we consider
do not necessarily converge in the Gromov-Hausdorff sense, but we will be able to
prove that the sequence of points p j in Theorem 1.4 does not disappear in the limit by
showing convergence in both the Gromov-Hausdorff and intrinsic flat sense of annular
subregions to the same limit space.

Theorem 2.21 ([15, Theorem A1], cf. [1, Remark 2.22]) Let (Y , d, T ) be an n-
dimensional integral current space and λ, λ′ > 0. Suppose that d j are metrics on
Y such that for all y, y′ ∈ Y we have
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λ−1d(y, y′) ≤ d j (y, y
′) ≤ λ′d(y, y′). (2.6)

Then there exist a subsequence, also denoted d j , and a metric d∞ satisfying (2.6) such
that d j converges uniformly to d∞,

lim
j→∞ dGH

(

(Y , d j ), (Y , d∞)
) = 0 and lim

j→∞ dF
(

(Y , d j , Tj ), (Y , d∞, T∞)
) = 0,

where Tj = ι j�T and ι j : (Y , d) → (Y , d j ) are all identity functions.

We recall the following useful lemma about intrinsic flat convergence of balls.

Lemma 2.22 ([22, Lemma 4.1]) Let Q j = (X j , d j , Tj ) be a sequence of n-
dimensional integral current spaces, j ∈ N ∪ {∞}, such that

(Q j , y j )
F−−→

Z ,ϕ j
(Q∞, y∞),

then there exists a subsequence y jk ∈ X jk such that for almost every r > 0 and all
k ∈ N ∪ {∞} the triples S(y jk , r) and Sc(y jk , r) are integral currents spaces, and
using the same isometric embeddings we have,

S(y jk , r)
F−−−→

Z ,ϕ jk

S(y∞, r)

Sc(y jk , r)
F−−−→

Z ,ϕ jk

Sc(y∞, r).

Remark 2.23 If we further assume in the previous lemma that lim j→∞ M(Q j ) =
M(Q∞), then limk→∞ M(S(y jk , r)) = M(S(y∞, r)), i.e. limk→∞ ||Tjk ||(B(y jk , r)) =
||T∞||(B(y∞, r)). Indeed, by Theorem 2.15 we know that

lim inf
k→∞ M(S(y jk , r)) ≥ M(S(y∞, r))

and

lim inf
k→∞ M(Sc(y jk , r)) ≥ M(Sc(y∞, r)).

Now, by Example 2.12 we know that ||Tjk ||(d−1
y jk

(r)) = 0 and thus the mass measures
of S(y jk , r) and Sc(y jk , r) are ||Tjk || B(y jk , r) and ||Tjk || X jk\B(y jk , r), corre-
spondingly. Assume that our assertion does not hold, then the first inequality above
must be a strict inequality, and we get

||T∞||(X∞) = lim inf
k→∞ ||Tjk ||(X jk )

= lim inf
k→∞ {||Tjk ||(B(y jk , r)) + ||Tjk ||(X j \ B(y jk , r))}

>||T∞||(B(y∞, r)) + ||T∞||(X∞ \ B(y∞, r)) = ||T∞||(X∞),
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which is a contradiction.

We now introduce notation similar to Example 2.11 and Example 2.12. Given an
integral current space Q = (X , d, T ) and a subset Y ⊂ X , we define the restriction
of Q to Y by

Q Y := (set(T Y ), d, T Y )

and note that T Y is a current but might not be an integral current, so in particular
the triple is not necessarily an integral current space.

We now see when a non-disappearing sequence of points y j ∈ Y j , with Y j ⊂ X j ,
is a non-disappearing sequence if we consider each y j as an element in X j .

Theorem 2.24 ([14, Theorem 2.9]) Let Q j = (X j , d j , Tj ) be a sequence of n-
dimensional integral current spaces, j ∈ N ∪ {∞}, such that

Q j
F−−→

Z ,ϕ j
Q∞,

and let Y j ⊂ X j such that Q j Y j are n-dimensional integral current spaces that
converge to some integral current space N∞,

(Q j Y j , y j )
F−−−→

W ,ψ j
(N∞, y),

where y j ∈ Y j and y ∈ set(N∞). If there exists r > 0 such that the metric ball

BX j (y j , r) is contained in Y j for all large j , then there exists a subsequence y jk and
a point y∞ ∈ X∞ such that

(Q jk , y jk )
F−−−→

Z ,ϕ jk

(Q∞, y∞).

We give a lower bound of the distance between a point in a limit space to the set of
the boundary.

Theorem 2.25 ([14, Theorem 2.11]) Let Q j = (Y j , d j , Tj ) be a sequence of n-
dimensional integral current spaces, j ∈ N ∪ {∞}, so that

(Q j , y j )
F−−→
Z

(Q∞, y∞).

Suppose that ∂Q j 
= 0, that we can write ∂Tj = R1
j + R2

j so that R1
j , R

2
j ∈

In−1(Y j , d j ) and that (set(R2
j ), d j , R2

j )
F−→ 0, then

d∞(y∞, set(∂T∞)) ≥ lim sup
j→∞

d j (y j , set(R
1
j )).

In particular, B(y∞, r) ∩ set(∂T∞) = ∅ for all r < lim sup j→∞ d j (y j , set(R1
j )).
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Lemma 2.26 Let {(Y j , d j , Tj )}∞j=1 be a sequence of n-dimensional integral cur-
rent spaces that converges in the intrinsic flat sense to (Y∞, d∞, T∞). Assume that

Tj = R1
j + R2

j so that R1
j , R

2
j ∈ In(Y j , d j ) and (set(R2

j ), d j , R2
j )

F−→ 0, then

(set(R1
j ), d j , R1

j )
F−→ (Y∞, d∞, T∞).

Proof By Theorem 2.18 there exist a complete and separable metric space (Z , d) and
isometric embeddings ϕ j : Y j → Z , j ∈ N ∪ {∞}, such that ϕ j�(Tj ) → ϕ∞�(T∞) in
the flat sense in Z . Thus there existUj ∈ In(Z) and Vj ∈ In+1(Z) so that Tj − T∞ =
Uj + ∂Vj andM(Uj ) +M(Vj ) → 0. Then R1

j − T∞ = (Uj − R2
j ) + ∂Vj , and since

M(Uj − R2
j ) ≤ M(Uj ) + M(R2

j ), we obtain the desired convergence by applying
Theorem 2.15. ��

To end up this section we state a result that allow us to pass from subconvergence
of balls for almost all radii to convergence of all balls for all radii provided one deals
with manifolds and has volume convergence.

Theorem 2.27 ([14, Theorem 2.12]) Let (Mj , g j ) be Riemannianmanifolds with p j ∈
Mj , for j ∈ N ∪ {∞}. Assume that for every subsequence of {p jk }k∈N of {p j } j∈N

there is a subsequence {p jk �
}�∈N such that for almost every r > 0, vol(B(p jk �

, r)) →
vol(B(p∞, r)) and S(p jk �

, r)
F−→ S(p∞, r). Then for all almost every r > 0, we

have vol(B(p j , r)) → vol(B(p∞, r)) and S(p j , r)
F−→ S(p∞, r).

3 Preliminary results

Given (M, g) ∈ Gn(ρ0, γ, D) and ρ > 0, we set �(ρ) = 
−1(Bb(ρ) ×
R). In Theorem 1.3 we will show intrinsic flat convergence of integral current
spaces (�(ρ), d intr�(ρ), [[�(ρ)]]), associated to (�(ρ), g|�(ρ)) as in Example 2.11,

to (Bb(ρ), d intr
Bb(ρ)

, [[Bb(ρ)]]), which is the current associated to (Bb(ρ), b|
Bb(ρ)

).

By the following remark we will in general denote the previous space as (Bb(ρ),

dHn , [[Bb(ρ)]]) and b|
Bb(ρ)

as b. Clearly, we have that volb(A) = volb|
Bb(ρ)

(A) for

any A ⊂ Bb(ρ) and volg(A) = volg|�(ρ)
(A) for any A ⊂ �(ρ) and thus we will not

use any subindex for the volume.

Remark 3.1 All open and closed balls in (Hn, b) are totally geodesic given that b =
dr2 + sinh2(r)σ with r ∈ [0,∞] and sinh is increasing. Indeed, for any piecewise
Lipschitz curve γ (t) = (r(t), θ(t)) : [0, 1] → H

n joining any two points in Bb(ρ),
the curve (r̃(t), θ(t)) with r̃(t) = min{r(t),max{r(0), r(1)}} has smaller length than
γ and is contained in Bb(ρ). The same holds for Bb(ρ).

Evidently the same proof does not give geodesic convexity of �(ρ) in (M, g)
because the metric on graph( f ) is given by b + V 2d f ⊗ d f and we have insufficient
control on how the correction term V 2d f ⊗ d f depends on r . It may be that some
of the properties of the class Gn(ρ0, γ, D) influence the geometry enough to ensure
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(geodesic) convexity via a different argument, but we do not see any concrete mecha-
nism for this at the moment.1 Therefore we will be working with the intrinsic distance
d intr�(ρ) on �(ρ) obtained from g|�(ρ) for Theorem 1.3. For Theorem 1.4 we will be
able to use dMj thanks to Lemma 4.4.

In this section, we first calculate some estimates that will be used in the proof of
Theorem 1.3. We establish uniform intrinsic diameter bounds for regions of the form
�(ρ) and their volumes, and uniform volume bounds of their boundaries. We also
show that for any sequence Mj ∈ Gn(ρ0, γ, D) such that m(Mj ) → 0, the volumes

of the � j (ρ)’s converge to the volume of the ball Bb(ρ).
In the last part we show that the annular regions � j (ρ′)\� j (ρ), ρ0/2 < ρ ≤ ρ′ <

∞, converge in Gromov-Hausdorff sense to Bb(ρ′)\Bb(ρ), and that the sequence of
inner boundaries of � j (ρ), ∂Mj , converge to the zero integral current space. These
two convergence results in combination with results in Sect. 2.3.3 will be used in the
proof of Theorem 1.4.

3.1 Volume estimates

Herewe get uniform upper volume estimates for vol(�(ρ)) in terms of vol(Bb(ρ)) and
an extra term that depends on the hyperbolic mass m(M) of M . The key ingredients
to obtain the estimates are an isoperimetric inequality for the hyperbolic space, the
coarea formula and the fact that the manifolds are graphs that satisfy the properties
listed in Definition 1.2.

We recall the following isoperimetric inequality applicable to domains in the hyper-
bolic space.

Proposition 3.2 ([28, Proposition 3]) Let M be a complete simply connected n-
dimensional Riemannian manifold with sectional curvature bounded from above by
−K, K > 0. Then, for any compact domain D ⊂ M,

vol(D) ≤ vol(∂D)/
√
K (n − 1).

We also recall the following useful fact originally stated in the Euclidean case in
the proof of Theorem 3.1 in [15].

Proposition 3.3 Let S = ∂∗E ⊂ H
n, for some E ⊂ H

n, be an outer-minimizing
hypersurface, where ∂∗ denotes the reduced boundary. Then Hn−1(S ∩ Bb(ρ)) ≤
Hn−1(∂Bb(ρ)).

Proof Let S′ = ∂∗(E ∪ Bb(ρ)). ThenHn−1(S) ≤ Hn−1(S′) by the outer-minimizing
property of S. Removing S ∩ S′ from S and S′, respectively, we get

Hn−1(S � S′) = Hn−1(S � (S ∩ S′)) ≤ Hn−1(S′
� (S ∩ S′)) ≤ Hn−1(S′

� S).

1 Any counterexamples would need to not be spherically symmetric, making it more difficult to find
conditions ensuring that they indeed satisfy all the assumptions placed on the class Gn(ρ0, γ, D). However,
one can readily imagine and write down explicit two dimensional toy models in Euclidean space with
ellipsoidal level sets (in particular these are still outer-minimizing and starshaped), where one can explicitly
see non-convexity from the graphs.
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Finally, note that S � S′ = S ∩ Bb(ρ) and S′
� S ⊂ ∂Bb(ρ). ��

Lemma 3.4 Let M ∈ Gn(ρ0, γ, D) be a manifold such that 
(M) = graph( f ) and
m( f ) < 1. Define

�−(ρ) := 
−1
(

Bb(ρ) × (−∞, h0( f ))
)

,

where h0( f ) is given in Definition 2.6. Then, for any ρ ≥ ρ0 the following holds:

vol(�−(ρ)) ≤ 2βωn−1m( f )

(

cn + cosh(ρ)|h0( f ) − min
Bb(ρ)\U

f |
)

.

Here cn comes from the isoperimetric inequality, i.e. it equals 1/(n − 1).

Proof By standard computations and the coarea formula,

vol(�−(ρ)) =
∫

Bb(ρ)∩{ f <h0( f )}

√

1 + V 2|∇b f |2 dvolb

≤
∫

Bb(ρ)∩{ f <h0( f )}
(1 + V |∇b f |) dvolb

≤ Hn( f −1(−∞, h0( f ))) + cosh(ρ)

∫ h0( f )

−∞
Hn−1( f −1(s) ∩ Bb(ρ)) ds.

Nowwe calculate the first term on the right hand side. By Definition 2.6, for all regular
values h ≤ h0( f ) of f ,

Hn−1( f −1(h)) ≤ 2βωn−1m( f ).

If necessary, taking a nondecreasing sequence of regular values hi ∈ R of f with
limi→∞ hi = h0( f ) and for which f −1(hi ) is star-shaped, and applying the isoperi-
metric inequality, Proposition 3.2, we have

Hn( f −1(−∞, h0( f ))) = lim
i→∞Hn( f −1(−∞, hi )) ≤ cn2βωn−1m( f ). (3.1)

For the second term, we use again the fact that for any regular value h ≤ h0( f ) of f
we have Hn−1( f −1(h)) ≤ 2βωn−1m( f ) and, we note that min f ≤ h0( f ). Hence,

∫ h0( f )

−∞
Hn−1( f −1(s) ∩ Bb(ρ)) ds ≤ 2βωn−1m( f )|h0( f ) − min

Bb(ρ)\U
f |. (3.2)

Adding (3.1) and (3.2),
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vol(�−(ρ)) ≤ 2βωn−1m( f )

(

cn + cosh(ρ)|h0( f ) − min
Bb(ρ)\U

f |
)

.

��
Lemma 3.5 Let M ∈ Gn(ρ0, γ, D) be a manifold such that 
(M) = graph( f ) and
m( f ) < 1. Define

�+(ρ) := 
−1
(

Bb(ρ) × [h0( f ),∞)
)

.

Then, for any ρ ≥ ρ0 the following holds:

vol(�+(ρ)) ≤ vol(Bb(ρ)) + Cm( f )1/(n−2) cosh(ρ)vol(∂Bb(ρ)).

Here C = C(n) comes from Theorem 2.7.

Proof We estimate the volume of �+(ρ) in the same way as in the proof of Lemma
3.4,

vol(�+(ρ)) =
∫

Bb(ρ)∩{ f >h0( f )}

√

1 + V 2|∇b f |2 dvolb

≤
∫

Bb(ρ)∩{ f >h0( f )}
(1 + V |∇b f |) dvolb

≤ vol(Bb(ρ)) + cosh(ρ)

∫ ∞

h0( f )
Hn−1( f −1(h) ∩ Bb(ρ)) dh,

Since f ∈ Gn(ρ0, γ, D), almost every level set of f is outer-minimizing. Thus we
can apply Proposition 3.3. Hence, Hn−1( f −1(h) ∩ Bb(ρ)) ≤ vol(∂Bb(ρ)) almost
everywhere. Moreover, by Theorem 2.7, f < Cm( f )1/(n−2) + h0( f ). It follows that

vol(�+(ρ)) ≤ vol(Bb(ρ)) + Cm( f )1/(n−2) cosh(ρ)vol(∂Bb(ρ)).

��
Corollary 3.6 Let M ∈ Gn(ρ0, γ, D) be a manifold so that m(M) < 1. Then for any
ρ ≥ ρ0,

vol(�(ρ)) ≤vol(Bb(ρ)) + Cm(M)1/(n−2) cosh(ρ)vol(∂Bb(ρ))

+ 2βωn−1m(M)

(

cn + cosh(ρ)|h0( f ) − min
Bb(ρ)\U

f |
)

.

Remark 3.7 Note that there is an easier way to obtain a uniform upper bound estimate
for vol(�(ρ)). Indeed, by the coarea formula and Proposition 3.3, it follows that

vol(�(ρ)) ≤ vol(Bb(ρ)) + | max
Bb(ρ)�U

f − min
Bb(ρ)�U

f | cosh(ρ)vol(∂Bb(ρ)).

123



Intrinsic flat stability of the positive mass theorem for... Page 23 of 45   132 

Nonetheless, this bound does not immediately imply convergence of the vol(�(ρ))

to vol(Bb(ρ)) provided m(M) → 0. Since the estimate in Corollary 3.6 involves
m(M), this estimate implies the aforementioned volume convergence as we will see
in Theorem 3.8. This is important to be able to apply Theorem 4.1 in the proof of
Theorem 1.3.

3.2 Diameter bounds, area bounds and volume convergence

Nowwe prove that for any sequence {Mj } ⊂ Gn(ρ0, γ, D)withmassm(Mj ) converg-
ing to zero, the sequence � j (ρ) has uniform intrinsic diameter bounds, the volumes

converge to the volume of the ball Bb(ρ) and, the boundaries have uniform volume
bounds. These estimates will be used in the proof of Theorem 1.3 and Lemma 3.11.

Theorem 3.8 Let {Mj } ⊂ Gn(ρ0, γ, D) be a sequence of manifolds such that
lim j→∞ m( f j ) = 0 and ρ ≥ ρ0. Then there exist D0(ρ0, γ, D, ρ),C0(γ, ρ) > 0
so that

diam((� j (ρ), d intr� j (ρ))) ≤ D0(ρ0, γ, D, ρ), vol(∂� j (ρ)) ≤ C0(γ, ρ), (3.3)

where diam(� j (ρ), d intr� j (ρ)) is the diameter of� j (ρ)with respect to d intr� j (ρ), the intrin-

sic length distance in � j (ρ0) induced by g j |� j (ρ0).
2 Further

vol(� j (ρ)) → vol(Bb(ρ)).

Proof Recall that each Mj ∈ Gn(ρ0, γ, D) satisfies (1.1):

V 2(r)|∇b f j |2(r , θ) ≤ γ 2 ∀r ≥ ρ0
2 , θ ∈ S

n−1.

Any two points in 
−1
j (Bb(ρ)\Bb(ρ0) × R) ⊂ � j (ρ) can be connected by first

moving radially inward along the graph of f j , then following an arc on� j (ρ0) and then
connecting radially outward to the desired endpoint. By the above estimate the length
of the first and last segment of this curve must each be bounded by (ρ − ρ0)

√

1 + γ 2

and the length of the middle segment is bounded by π sinh(ρ0)
√

1 + γ 2 since it is an
arc on � j (ρ0), so the total length of the connecting curve is no longer than

2(ρ − ρ0)

√

1 + γ 2 + π sinh(ρ0)
√

1 + γ 2.

For points contained in 
−1
j (Bb(ρ0) × R), we note that, while the definition of depth

in Definition 1.2 uses the restricted distance dM , one also has

depth(� j (ρ0)) = sup{d intr� j (ρ0)
(p, � j (ρ0)) : p ∈ � j (ρ0)}

2 Note however that then the estimate clearly also holds for the diameter of � j (ρ) with respect to dM j

because dM j ≤ d intr
� j (ρ)

.
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because any curve leaving � j (ρ0) can only do so through � j (ρ0) which implies
dM (p, � j (ρ0)) = d intr� j (ρ0)

(p, � j (ρ0)) for p ∈ � j (ρ0). Thus by the triangle inequal-
ity,

diam(� j (ρ), d intr� j (ρ)) ≤ 2D + 2(ρ − ρ0)

√

1 + γ 2 + π sinh(ρ0)
√

1 + γ 2

=: D0(ρ0, γ, D, ρ).

Hence, we have the required uniform upper diameter bound, denoted by D0 =
D0(ρ0, γ, D, ρ).

By Theorem 2.5 (and V ≥ 1) and (1.1), we get

vol(∂� j (ρ)) = vol(∂Mj ) + vol(� j (ρ))

≤ 2ωn−1m( f j ) +
√

1 + γ 2vol(∂Bb(ρ)).

Since lim j→∞ m( f j ) = 0 it follows that vol(∂� j (ρ)) is uniformly bounded.
Since lim j→∞ m( f j ) = 0 we can assume that m(Mj ) < 1 and apply Corollary

3.6,

vol(� j (ρ)) ≤vol(Bb(ρ)) + Cm(Mj )
1/(n−2) cosh(ρ)vol(∂Bb(ρ))

+ 2βωn−1m(Mj )(cn + cosh(ρ)|h0( f j ) − min
Bb(ρ)\Uj

f j |).

Let us find a uniform upper bound for |h0( f j ) − min
Bb(ρ)\Uj

f j |. Note that for any
x, y ∈ H

n \Uj

| f j (x) − f j (y)| ≤ dHn+1((x, f j (x)), (y, f j (y)))

≤ dMj (

−1
j (x, f j (x)),


−1
j (y, f j (y))).

When restricting the previous to Bb(ρ) \Uj and using dMj ≤ d intr� j (ρ) we get,

max
Bb(ρ)�Uj

f j − min
Bb(ρ)�Uj

f j ≤ diam(� j (ρ), d intr� j (ρ)) ≤ D0. (3.4)

Thus,

vol(� j (ρ)) ≤vol(Bb(ρ)) + Cm(Mj )
1/(n−2) cosh(ρ)vol(∂Bb(ρ))

+ 2βωn−1m(Mj )(cn + cosh(ρ)D0) → vol(Bb(ρ)). (3.5)

Finally, since each Mj is isometric to graph( f j ), we also have

vol(� j (ρ)) ≥vol(Bb(ρ)) − vol(Uj ), (3.6)
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and vol(Uj ) → 0 by Theorem 2.5 and Proposition 3.2. So vol(� j (ρ)) → vol(Bb(ρ)).
��

3.3 GH convergence of annular regions and IF convergence of boundaries

In this sectionwe prove two results needed in the proof of Theorem1.4. In Theorem1.4
we have a sequence of points p j ∈ � j (ρ0) and have to prove intrinsic flat convergence

of the balls (BMj (p j , R), dMj , [[BMj (p j , R)]]) to a ball in hyperbolic space. By
Theorem 1.3 we will have (� j (˜R), d intr

� j (˜R)
, [[� j (˜R)]]) converging in intrinsic flat

sense to (Bb(˜R), dHn , [[Bb(˜R)]]). To ensure that up to a subsequence p j → p∞ for

some p∞ ∈ Bb(˜R), the main ingredient will be Corollary 3.10 where one obtains
Gromov-Hausdorff and intrinsic flat convergence of the annular regions A(ρ, ρ′) :=
�(ρ′) \ �(ρ) to Bb(ρ′)\Bb(ρ). Then to ensure that Bb(p∞, R) ⊂ Bb(˜R) we will
have at our disposal Lemma 3.11 where we show that the sequence of inner boundaries
(∂Mj , d intr� j (ρ), [[∂Mj ]]) converge in intrinsic flat sense to the zero (n−1)-dimensional
integral current space.

Lemma 3.9 Assume M ∈ Gn(ρ0, γ, D) such that 
(M) = graph( f ), for f ∈ Gn.
Write 
 = (
1, 
2) : M → H

n × R. Then for any ρ > ρ0/2 there exists a constant
� = �(ρ0, ρ, γ ) > 0, such that


1 : (M \ �(ρ), dM ) → (Hn \ Bb(ρ), dHn ) (3.7)

is bilipschitz with Lip(
1) = 1 and Lip((
1)−1) = �. Furthermore, for any R ≥
ρ′ > ρ > ρ0/2


1 : (A(ρ, ρ′), d intr�(R)) → (Bb(ρ′) \ Bb(ρ), dHn ),

is bilipschitz with Lip(
1) = 1 and Lip((
1)−1) = �(ρ0, ρ, γ ).

Proof Recall that 
 : M → H
n+1 \U is a smooth Riemannian isometric embedding

and that 
(M) = graph( f ). Hence, 
1 : (M, dM ) → (Hn \ U , dHn ) is bijective
and 1-Lipschitz. To simplify notation, denote the inverse of 
1|M\�(ρ) : M\�(ρ) →
H

n\Bb(ρ) by �. We have to show that � is �-Lipschitz.
Let x, x ′ ∈ H

n \ Bb(ρ) be two points. If the unit-speed b-geodesic c(t) :
[0, dHn (x, x ′)] → H

n that connects them lies in H
n \ Bb(ρ), then by the Cauchy-

Schwartz inequality and (1.1),

dM (�(x),�(x ′)) ≤
∫ dHn (x,x ′)

0

√

b(c′(t), c′(t)) + V 2b2(c′(t),∇ f )

≤dHn (x, x ′)
√

1 + γ 2 (3.8)
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If c passes through Bb(ρ) then there exist intervals [0, t1], [t1, t2], [t2, dHn (x, x ′)],
see Remark 3.1, such that c([0, t1]), c([t2, dHn (x, x ′)]) ⊂ H

n\Bb(ρ) and c([t1, t2]) ⊂
Bb(ρ).Note that estimate (3.8) holds fordM (�(x),�(c(t1))) anddM (�(c(t2)),�(x ′)).

For the remaining part, note that dHn (p, ∂Bb(
ρ0
2 )) = ρ − ρ0

2 (as the radial curve
provides a minimizing geodesic) for any p ∈ ∂Bb(ρ), so if dHn (c(t1), c(t2)) ≤ ρ −
ρ0
2 =: �∗, then the unit-speed b-geodesic from c(t1) to c(t2) lies in Bb(ρ) \ Bb(ρ0/2).
Hence, (3.8) holds for dM (�(c(t1)),�(c(t2)). If dHn (c(t1), c(t2)) ≥ �∗, observe that
the pullback metric of b under the inclusion map, ∂Bb(ρ) → H

n , equals the standard
round metric in a sphere of radius sinh(ρ). Thus, the diameter of ∂Bb(ρ) ⊂ H

n with
respect to its induced Riemannian metric equals π sinh(ρ) and so c(t1) and c(t2) can
be connected by a curve σ in ∂Bb(ρ) of length bounded above by π sinh(ρ). We have

dM (�(c(t1)),�(c(t2))) ≤
√

1 + γ 2LHn (σ ) ≤
√

1 + γ 2π sinh(ρ)

�∗
�∗

≤
√

1 + γ 2π sinh(ρ)

�∗
dHn (c(t1), c(t2)).

From the triangle inequality and using that c is a minimizing b-geodesic from x to
x ′, we conclude that

dM (�(x),�(x ′)) ≤ max(1, π sinh(ρ)

ρ− ρ0
2

)

√

1 + γ 2dHn (x, x ′).

Then define �(ρ0, ρ, γ ) := max(1, π sinh(ρ)

ρ− ρ0
2

)
√

1 + γ 2.

Similarly 
1 : (�(R), d intr�(R)) → (Bb(R)\U , dHn ) is 1-Lipschitz and bijective.

Proceeding as in the previous case and taking into account that Bb(R) ⊂ H
n is a

totally geodesic submanifold (see Remark 3.1), the inverse of 
1 restricted to the
annular region A(ρ, ρ′) is �(ρ0/2, ρ, γ )-Lipschitz. ��

By applying Theorem 2.21 to the sequence A j (ρ, ρ′) we get the following.

Corollary 3.10 Let M j ∈ Gn(ρ0, γ, D) be a sequence. Then for any R ≥ ρ′ ≥ ρ >

ρ0/2 and with the same notation as in the previous lemma, we have

(A j (ρ, ρ′), d intr� j (R))
GH−→ (Ab(ρ, ρ′), d∞)

and

(A j (ρ, ρ′), d intr� j (R), [[A j (ρ, ρ′)]]) F−→ (Ab(ρ, ρ′), d∞, T∞),

where Ab(ρ, ρ′) = Bb(ρ′) \ Bb(ρ), d∞ : Ab(ρ, ρ′) × Ab(ρ, ρ′) → R is a distance
function that satisfies dHn (y, y′) ≤ d∞(y, y′) ≤ �(ρ0, ρ, γ )dHn (y, y′) for any y, y′ ∈
Ab(ρ, ρ′), ι∞ : (Ab(ρ, ρ′), dHn ) → (Ab(ρ, ρ′), d∞) is the identity function and
T∞ = ι∞�[[Ab(ρ, ρ′)]].
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Now we show that the inner boundaries converge to the zero integral current space
and that the outer boundaries converge to the boundary of the limit space.

Lemma 3.11 Let {Mj } ⊂ Gn(ρ0, γ, D) be a sequence such that lim j→∞ m( f j ) = 0
and ρ ≥ ρ0. Then there exist a subsequence {(� jk (ρ), d intr� jk (ρ), [[� jk (ρ)]])} and an

integral current space (�
ρ∞, dρ∞, T ρ∞) such that

(� jk (ρ), d intr� jk (ρ), [[� jk (ρ)]]) F−→ (�
ρ∞, dρ∞, T ρ∞).

With no loss of generality assume that (this is true up to a sign) for all j ∈ N,

∂[[� j (ρ)]] = [[� j (ρ)]] − [[∂Mj ]] ∈ In−1(� j (ρ), d intr� j (ρ))

with [[� j (ρ)]], [[∂Mj ]] ∈ In−1(� j (ρ), d intr� j (ρ)) and where � j (ρ) = ∂� j (ρ) � ∂Mj .
Then we have

(∂Mjk , d
intr
� jk (ρ), [[∂Mjk ]]) F−→ 0

and

(� jk (ρ), d intr� jk (ρ), [[� jk (ρ)]]) F−→ ∂(�
ρ∞, dρ∞, T ρ∞).

Proof By Wenger’s compactness theorem, Theorem 2.14, and Theorem 3.8 there
exist a subsequence {(� jk (ρ), d intr� jk (ρ), [[� jk (ρ)]])} and an integral current space

(�
ρ∞, dρ∞, T ρ∞) such that (� jk (ρ), d intr� jk (ρ), [[� jk (ρ)]]) converges in intrinsic flat sense

to (�
ρ∞, dρ∞, T ρ∞). Then by Theorem 2.15 we get

∂(� jk (ρ), d intr� jk (ρ), [[� jk (ρ)]]) F−→ ∂(�
ρ∞, dρ∞, T ρ∞).

Since M([[∂Mj ]]) = vol(∂Mj ) and by the Riemannian Penrose-like inequal-
ity for asymptotically hyperbolic graphs, Theorem 2.5, we have vol(∂Mj ) ≤
2ωn−1m( f j ) → 0. It follows by Theorem 2.15 that (∂Mjk , d

intr
� jk (ρ), [[∂Mjk ]]) F−→ 0.

Then by Lemma 2.26 we conclude the proof of the lemma. ��

4 Proofs of themain theorems

Here we prove Theorem 1.3 and Theorem 1.4. A key tool to prove the former is
Theorem 4.1. Unlike Wenger’s compactness theorem, Theorem 2.14, Theorem 4.1
tells us which space is the limit. Theorem 4.1 was applied in [5, 14] to fill in a gap in
the proof of the stability of the positive mass theorem for asymptotically flat graphical
manifolds under intrinsic flat distance [15, 16].
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Theorem 4.1 ([5, Theorem 4.2, cf. Proof of Theorem 1.1 in [5]]) Let D, A > 0 and
λ j ∈ (0, 1] be a sequence such that lim inf j→∞ λ j = 1. Let (� j , g j ) be a sequence
of n-dimensional compact oriented Riemannian manifolds with non-empty boundary,
j ∈ N ∪ {∞}, with g j continuous for j ∈ N and g∞ smooth, so that any g∞-
minimizing geodesic between two points in the interior of �∞ lies completely in the
interior. Assume that for all j ∈ N,

diam(� j ) ≤ D, vol(∂� j ) ≤ A,

that

vol(� j ) → vol(�∞) as j → ∞,

and that there exist C1 diffeomorphisms � j : �∞ → � j so that for all v ∈ T�∞

λ j g∞(v, v) ≤ g j (d� jv, d� jv).

Then (� j , d� j , [[� j ]]) converges in intrinsic flat sense to (�∞, d�∞ , [[�∞]]).
Let us recall our first main theorem, Theorem 1.3.

Theorem 4.2 Let M j ∈ Gn(ρ0, γ, D) be a sequence of asymptotically hyperbolic
graphs with 
 j : Mj → H

n+1 a smooth Riemannian isometric embedding as in
Definition 1.2. If lim j→∞ m(Mj ) = 0, then for any ρ > ρ0 we have

lim
j→∞ dF ((� j (ρ), d intr� j (ρ), [[� j (ρ)]]), (Bb(ρ), dHn , [[Bb(ρ)]])) = 0

and vol(� j (ρ)) → vol(Bb(ρ)).

In the non-entire case we prove Theorem 1.3 by enlarging each� j (ρ), as described

in Appendix A, to get manifolds diffeormorphic to Bb(ρ) and then apply Theorem 4.1
to the new sequence. The uniform diameter, volume and area bounds needed follow
by the corresponding uniform diameter and area bounds shown in Theorem 3.8 and
the way the enlargements and diffeomorphisms are chosen.

Proof of Theorem 1.3 We first assume that all the manifolds Mj have non-empty
boundary. Let λ j ∈ (0, 1] be a sequence such that lim inf j→∞ λ j = 1 and fix some
L > D+ 1

2 sinh(ρ0) π
√

1 + γ 2. We replace each (� j (ρ), g j ) by a manifold (˜� j , g̃ j )

diffeomorphic to Bb(ρ) by applying Theorem A.1 for λ = λ j . To obtain the conclu-
sion of the first part of the theorem, by the triangle inequality, it is enough to prove
that

lim
j→∞ dF ((� j (ρ), d intr� j (ρ), [[� j (ρ)]]), (˜� j , d˜� j

, [[˜� j ]])) = 0
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and

lim
j→∞ dF ((˜� j , d˜� j

, [[˜� j ]]), (Bb(ρ), dHn , [[Bb(ρ)]])) = 0.

We get the first limit as follows. By the definition of intrinsic flat distance and
given that by Theorem A.1 (� j (ρ), d intr� j (ρ)) embeds in a distance preserving way into

(˜� j , d˜� j
), we get

dF ((� j (ρ), d intr� j (ρ), [[� j (ρ)]]), (˜� j , d˜� j
, [[˜� j ]])) ≤ d

˜� j
F ([[� j (ρ)]],

[[˜� j ]]) ≤ vol(˜� j \ � j (ρ)).

ByTheoremA.1,Theorem2.5 andour hypothesis on themassesweget vol(˜� j\� j (ρ)) ≤
˜V (L, ρ0, ∂Uj ) → 0. Thus, we get the first limit.

The second limit is proven by ensuring that we can apply Theorem 4.1 to
{(˜� j , d˜� j

, [[˜� j ]])} j∈N, where the limit space has to be the hyperbolic ball (Bb(ρ),

dHn , [[Bb(ρ)]]). In Theorem 3.8 it was shown that for all j ∈ N

diam((� j (ρ), d intr� j (ρ))) ≤ D0(ρ0, γ, D, ρ), vol(∂� j (ρ)) ≤ C0(γ, ρ),

and lim j→∞ vol(� j (ρ)) = vol(Bb(ρ)).
Recall that (� j (ρ), d intr� j (ρ)) distance preserving embeds into (˜� j , d˜� j

). Thus, a

uniform diameter bound for the ˜� j ’s is

diam((� j (ρ), d intr� j (ρ))) + diam((˜� j \ � j (ρ), d
˜� j

)) ≤ D0(ρ0, γ, D, ρ) + ˜D(L, ρ0),

where ˜D(L, ρ0) is the upper diameter bound provided in Theorem A.1. Now, ∂˜� j =
∂� j (ρ)\∂Mj so vol(∂˜� j ) ≤ C0(γ, ρ). Since we saw above that vol(˜� j\� j (ρ)) ≤
˜V (L, ρ0, ∂Uj ) → 0, we get

lim
j→∞ vol(˜� j ) = lim

j→∞
(

vol(� j (ρ)) + vol(˜� j \ � j (ρ))
) = vol(Bb(ρ)).

Since lim inf j→∞ λ j = 1 and g̃ j ≥ λ j b by Theorem A.1, and by Remark 3.1 the ball

Bb(ρ) is totally convex, we can apply Theorem 4.1 to conclude that the second limit
holds. Putting both limits together we get the conclusion,

lim
j→0

dF ((� j (ρ), d intr� j (ρ), [[� j (ρ)]]), (Bb(ρ0), dHn , [[Bb(ρ0)]])) = 0.

If the Mj are the graphs over entire functions, then there is no need to enlarge the
manifolds. The result follows immediately from Theorem 3.8 and Theorem 4.1. If the
sequence Mj contains subsequences of both entire and non-entire manifolds the result
follows from the previous cases. ��
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Next we will rewrite Theorem 1.4 and give its proof. However, before we do this,
let us first establish the following lemmas.

Lemma 4.3 Let Q j = (X j , d j , Tj ) be a sequence of n-dimensional integral current

spaces, j ∈ N ∪ {∞}, so that Q j
F−→ Q∞. Suppose that y j ∈ X j and Y j ⊂ X j are

compact sets, j ∈ N, such that

• (Y j , d j )
GH−→ (Y , d) for some (non-empty) compact metric space (Y , d)

• (Y j , d j , Tj Y j ) are n-dimensional integral current spaces that converge to the
integral current space N = (Y , d, S), for some S ∈ In(Y )

• there exists r > 0 such that BX j (y j , r) is contained in Y j for all large j .

Then for any complete metric space Z and isometric embeddings ϕ j : X j → Z that
satisfy

Q j
F−−→

Z ,ϕ j
Q∞,

we can ensure that there exist a subsequence y jk and y∞ ∈ X∞ such that

(Q jk , y jk )
F−−−→

Z ,ϕ jk

(Q∞, y∞).

Proof By Theorem 2.20 we have

(Y j , d j )
GH−−−→

W ,ψ j
(Y , d) and (Y j , d j , Tj Y j )

F−−−→
W ,ψ j

(Y , d, S),

where W is a complete and separable metric space and ψ j are isometric embeddings.
Since ψ∞(Y ) is a compact subset of a complete space, W , and

ψ j (Y j )
H−→
W

ψ∞(Y ),

there exists a subsequence of ψ j (y j ) that converges to ψ∞(y) for some y ∈ Y .
Therefore

((Y j , d j , Tj Y j ), y j )
F−−−→

W ,ψ j
((Y , d, S), y).

By the third bulleted hypothesis we can apply Theorem 2.24 to get a point y∞ ∈ X∞
and a subsequence such that

(Q jk , y jk )
F−−−→

Z ,ϕ jk

(Q∞, y∞).

��
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The next lemma compares dM and d intr�(ρ) on relevant regions of M for large ρ. This
is important as it will allow us to use Theorem 1.3 in the proof of Theorem 1.4.

Lemma 4.4 Let (M, g) ∈ Gn(ρ0, γ, D) and fix R̄ > 1+(4+π sinh(ρ0+1))
√

1 + γ 2.
Then

(1) d intr
�(ρ0+R̄)

= dM on BM (p, R) for all p ∈ �(ρ0) and R < R̄
3 ,

(2) d intr
�(ρ0+R̄)

= dM on A(ρ0 − 1, ρ0 + 1).

Proof To show d intr
�(ρ0+R̄)

= dM on the desired subsets we need to show that for two

points x, y ∈ BM (p, R) (resp. x, y ∈ A(ρ0−1, ρ0+1)) any curve of length dM (x, y)
from x to y in M will remain in �(ρ0 + R̄). This is satisfied if any curve of length
bounded by diam((BM (p, R), dM )) ≤ 2R (resp. diam((A(ρ0 − 1, ρ0 + 1), dM )))
starting at point x ∈ BM (p, R) (resp. x ∈ A(ρ0 − 1, ρ0 + 1)) remains in �(ρ0 + R̄).

We first consider the case x ∈ BM (p, R). Let c be a curve in M starting at x of
g-length L ≤ 2R. We may extend c to a curve c̃ in M starting at p ∈ �(ρ0) of length
L ≤ 3R. Since M is a graph over H

n , the b-length of the projection of c̃ onto H
n

is similarly bounded by 3R and this projection starts at ∂Bb(ρ0). So by the triangle

inequality the projection must remain in Bb(ρ0 + 3R) ⊂ Bb(ρ0 + R̄). Hence c̃ itself
remains in �(ρ0 + R̄).

The case x ∈ A(ρ0 − 1, ρ0 + 1) goes similarly: First note that diam((A(ρ0 −
1, ρ0 +1), dM )) is bounded from above by 4

√

1 + γ 2 +π sinh(ρ0 +1)
√

1 + γ 2 (this
follows as always by considering curves along the graph of f between any two points
in A(ρ0 − 1, ρ0 + 1) which first move radially outward, then follow �(ρ0 + 1) and
then move radially inward). Then we see, analogously to the above, that any curve in
M starting at x of g-length L ≤ 4

√

1 + γ 2 + π sinh(ρ0 + 1)
√

1 + γ 2 must remain in
�((ρ0 + 1) + 4

√

1 + γ 2 + π sinh(ρ0 + 1)
√

1 + γ 2) ⊂ �(ρ0 + R̄). ��

Now we are ready to rewrite Theorem 1.4 and give its proof. The proof consists
in applying Theorem 1.3 and the results of Sects. 2.3.3 and 3.3 in combination with
Lemma 4.4.

Theorem 4.5 Let M j ∈ Gn(ρ0, γ, D) be a sequence of asymptotically hyperbolic
graph manifolds with lim j→∞ m(Mj ) = 0 and p j ∈ � j (ρ0) be a sequence of points.
Then for almost every R > 0 we have

lim
j→∞ dF ((BMj (p j , R), dMj , [[BMj (p j , R)]]), (Bb(R), dHn , [[Bb(R)]])) = 0

and vol(BMj (p j , R)) → vol(Bb(R)).

In the following we abuse notation and do not change indexes when passing to
subsequences.
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Proof of Theorem 1.4 Let R̄ > 1+(4+π sinh(ρ0+1))
√

1 + γ 2. Then by Theorem 1.3
and Theorem 2.18 we know that

Q j := (� j (ρ0 + R̄), d intr
� j (ρ0+R̄)

, [[� j (ρ0 + R̄)]])
F−−→

Z ,ϕ j
(Bb(ρ0 + R̄), dHn , [[Bb(ρ0 + R̄)]]),

for some metric space Z and isometric embeddings ϕ j . Assume with no loss of gen-
erality that ρ0 > 2, so ρ0 − 1 > ρ0/2, and A j (ρ0 − 1, ρ0 + 1) ⊂ � j (ρ0 + R̄) since
R̄ > 1. Thus we can apply Corollary 3.10 to get that

(A j (ρ0 − 1, ρ0 + 1), d intr
� j (ρ0+R̄)

, [[A j (ρ0 − 1, ρ0 + 1)]])

converges in intrinsic flat sense to some integral current space

(Bb(ρ0 + 1) \ Bb(ρ0 − 1), d∞, T∞)

and (A j (ρ0 − 1, ρ0 + 1), d intr
� j (ρ0+R̄)

) converges to (Bb(ρ0 + 1)\Bb(ρ0 − 1), d∞) in

the Gromov-Hausdorff distance. Now, notice that since dMj ≤ d intr
� j (ρ0+R̄)

, we always

have B� j (ρ0+R̄)(p j , 1) ⊂ BMj (p j , 1) ⊂ A j (ρ0 − 1, ρ0 + 1). So by Lemma 4.3 we
obtain a subsequence of p j ∈ � j (ρ0) such that

(Q j , p j )
F−−→

Z ,ϕ j

(

(Bb(ρ0 + R̄), dHn , [[Bb(ρ0 + R̄)]]), p∞
)

. (4.1)

By Lemma 3.11 and Theorem 2.25, we get that

dHn (p∞, ∂Bb(ρ0 + R̄)) ≥ lim sup
j→∞

d intr
� j (ρ0+R̄)

(

p j , � j (ρ0 + R̄)
) ≥ R̄.

So Bb(p∞, R) ⊂ Bb(ρ0 + R̄) holds for almost every R ∈ (0, R̄) and using the
notation from Example 2.12

S(p∞, R) =(Bb(p∞, R), dHn , [[Bb(p∞, R)]])
=(Bb(R), dHn , [[Bb(R)]]),

where in the last equality we use the fact that for manifolds Ni with integral current
spaces (Ni , dNi , [[Ni ]]), we have (N1, dN1 , [[N1]]) = (N2, dN2 , [[N2]]) if and only
if there exists an orientation preserving isometry between the Ni ’s. Furthermore, by
applying Example 2.12 and Lemma 4.4 item (1), we get that for almost every R ∈
(0, R̄

3 )
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S(p j , R) =
(

B� j (ρ0+R̄)(p j , R), d intr
� j (ρ0+R̄)

, [[B� j (ρ0+R̄)(p j , R)]]
)

=(BMj (p j , R), dMj , [[BMj (p j , R)]]).

Now by (4.1), Lemma 2.22 and Remark 2.23, we get that for almost every R > 0
and a subsequence of p j ,

S(p j , R)
F−−→

Z ,ϕ j
S(p∞, R),

andM(S(p j , R)) → M(S(p∞, R)). Thus, for a subsequence of p j and almost every

R ∈ (0, R̄
3 ) it holds

(BMj (p j , R), dMj , [[BMj (p j , R)]]) F−→ (Bb(R), dHn , [[Bb(R)]])

and vol(BMj (p j , R)) → vol(Bb(R)).

To finalize the proof, take a sequence of positive real numbers R̄i → ∞, R̄1 >

1+ (4+ π sinh(ρ0 + 1))
√

1 + γ 2, and by a diagonalization argument, proceeding as
above, get a further subsequence of the p j such that for almost all R > 0 we have

BMj (p j , R)
F−→ Bb(R) and vol(BMj (p j , R)) → vol(Bb(R)). Thus, we can apply

Theorem 2.27 to conclude the proof. ��
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Appendix A. Capping and construction of suitable diffeomorphisms

Let Mn be an asymptotically hyperbolic manifold and let 
 : M → H
n+1 be an

isometric embedding such that 
(M) = graph( f ) for some f : H
n\U → R, with

non-empty minimal boundary ∂U . Recall that this implies, among other things, that f
is constant at the boundary – for simplicity assume that f |∂U = 0. As before, we set
�(ρ) = 
−1(Bb(ρ) × R) for ρ > 0. We also identify �(ρ) with 
(�(ρ)) ⊂ H

n+1

and equip it with the induced metric from H
n+1. Our goal is to “cap-off” �(ρ) to

obtain a differentiable manifold ˜�with a C0 Riemannian metric and to construct aC1

diffeomorphism ˜� : Bb(ρ) → ˜� so that the conditions on the Riemannian metrics
of Theorem 4.1 (cf. [5, 14]) are satisfied. More precisely, we are interested in proving
the following theorem. The proof consists in a direct adaptation of the argument in
[14] to our setting.

Theorem A.1 Let M ∈ Gn(ρ0, γ, D) be an asymptotically hyperbolic graph with non-
empty boundary and 
 : M → H

n+1 a smooth Riemannian isometric embedding as
in Definition 1.2. For any ρ > ρ0, L > 0, there exists a differentiable manifold

˜� = �(ρ) ∪ [∂U × (−L, 0)] ∪ ˜U ⊂ H
n+1

which we endow with the induced Riemannian metric from (Hn+1, b̄), g, such that
g is a C0 metric, 
|�(ρ) is a Riemannian isometric embedding into ˜� and for any

λ ∈ (0, 1) there exists a C1 diffeomorphism ˜�λ : Bb(ρ) → ˜� with the properties
that

g(˜�λ∗(u), ˜�λ∗(u)) ≥ λb(u, u), ∀u ∈ T Bb(ρ).

Further, we have upper bounds ˜D(L, ρ0) and ˜V (L, ρ0, vol(∂U )) for diam(˜�\�(ρ),

d
˜�) and vol(˜�\�(ρ)), respectively, given by

˜D(L, ρ0) := diam(˜� \ �(ρ), d intr
˜�\�(ρ)

) ≤ 2 cosh( ρ0
2 )L + 1

2 + cosh( ρ0
2 ) + ρ0

and

˜V (L, ρ0, vol(∂U )) :=
(

L cosh( ρ0
2 ) + 1

n−1 + 2 cosh( ρ0
2 )

)

vol(∂U )

and, for L > D+ 1
2 sinh(ρ0) π

√

1 + γ 2, the space (�(ρ), d intr�(ρ)) embeds in a distance

preserving way into ˜�.

The remainder of the appendix will be dedicated to working in detail through all
the steps necessary in the construction from [14] in our hyperbolic setting.

A.1. Normal exponential map, defining ˜U and fc

Consider the normal exponential map of ∂U ⊂ H
n . By compactness ofU , there exists

an ε∗ > 0 and an open neighborhood Nε∗ of ∂U such that E : (−ε∗, ε∗) × ∂U →
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Nε∗ , (t, x) �→ expx (t ν(x)) is a diffeomorphism and by shrinking ε∗ we may assume
that E is still a diffeomorphism on I ×∂U for some open subset I with [−ε∗, ε∗] ⊂ I .

With the previous notation, we are able to define a map φ from (−L, ε∗) × ∂U to
H

n+1 with image in ˜� ⊂ H
n+1 by setting φ(t, x) := (E(t, x), f (E(t, x))) if t ≥ 0

and φ(t, x) := (E(0, x), t) if t ≤ 0. Note that φ is not a C1 map (but piecewise
smooth), so we will replace φ by a C1 map �λ in order to construct ˜�λ appearing in
Theorem A.1. This will be done by introducing an appropriate scaling. The scaling
will crucially rely on ∇b

ν f = d
dt f (E(t, x)) → ∞ as t → 0+. This will show that the

image of �λ is indeed a C1 submanifold of H
n+1.

Now we want to construct a cap ˜U which will be given as the graph of a capping
function fc : U → [−1, 0], smooth on U and satisfying fc|∂U = 0 and ∇b

ν fc =
d
dt fc(E(t, x)) → ∞ as t → 0−, i.e. as one approaches ∂U , so that we will be able
to attach it to the cylinder and will be able to make the resulting manifold C1 in the
same way as we will be doing for f above. We construct this capping now:

We start by defining fc on E((−ε∗, 0] × ∂U ) ⊂ U ⊂ H
n by setting

fc(E(t, x)) := χ(t)

where χ : (−ε∗, 0] → [−1, 0] is smooth on (−ε∗, 0), strictly monotonically increas-
ing on (− ε∗

2 , 0], χ(0) = 0, χ |
(−ε∗,− ε∗

2 ] = −1 and χ ′(t) → ∞ as t → 0−. On
U\E((−ε∗, 0] × ∂U ) we simply set fc = −1.

By shrinking ε∗ if necessary, we further assume that for all s ∈ (−1, 0] we have
Hn−1(( fc ◦ E)−1(s)) = volω

χ−1(s)
(∂U ) ≤ 2volω0(∂U ) = 2|∂U |b, where {ωt } is the

family ofRiemannianmetrics on ∂U induced by the normal exponentialmap (see (A.1)
below). Recall that ∂U is star-shaped and this implies that ∂U has a single connected
component which is C1-diffeomorphic to S

n−1 via the graph θ �→ (ρ∂U (θ), θ) ∈
(0,∞) × S

n−1 ∼= H
n\{0}. Thus, we may further shrink ε∗ to additionally ensure that

the level sets are star-shaped as well: Since, by assumption, ρ∂U : S
n−1 → (0,∞)

is a C1 function whose graph coincides with ∂U , the spherical coordinate vector
field ∂ρ can never be tangential to ∂U and 〈∂ρ, ν〉b > 0 near ∂U and one can use
the monotonicity of t �→ ρ(E(t, θ)) and an implicit function theorem argument to
obtain a unique differentiable family of differentiable maps ρd : S

n−1 → (0,∞),
d ∈ [− ε∗

2 , 0], satisfying {(ρd(θ), θ) ∈ H
n : θ ∈ S

n−1} = E({d} × ∂U ). This
construction is very similar to the process we will encounter in defining the scaling α̃

in Lemma A.2 hence we will skip the details here.

A.2 Construction of ˜8�

We already introduced the normal exponential map of ∂U , which gives a diffeomor-
phism E : (−ε∗, ε∗) × ∂U → Nε∗ onto an open neighborhood Nε∗ of ∂U in H

n

for ε∗ > 0 as before. Pulling back the metric and using "t" to denote the coordinate
on (−ε∗, ε∗), standard properties of the normal exponential map give that the metric
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splits as

E∗b = dt2 + ωt (A.1)

where ωt = ωi j (t, x)dxi dx j (for coordinates (xi ) on ∂U ) is a family of Riemannian
metrics on ∂U . Let f̂ := f ◦ E : (0, ε∗) × ∂U → �(ρ) and f̂c := fc ◦ E :
(−ε∗, 0) × ∂U → H

n+1 be the expressions of f and fc in the geodesic normal
coordinates.

Fix λ ∈ (0, 1). Let ε ≡ ε(λ, f , ∂U , L, fc) ∈ (0, 1), ε < ε∗, satisfy ε < ε0 for ε0
from the Lemmas A.3 and A.4, 2L

ε
≥ 1 and

inf
(t,s)∈(−ε,ε)×(−ε,ε)

min
x∈∂U , ū∈Rn−1,|ū|e=1

∑

i, j ωi j (s,x)ūi ū j
∑

i, j ωi j (t,x)ūi ū j ≥ √
λ > λ (A.2)

where ‖ · ‖e denotes the Euclidean norm on R
n−1. Note that this is possible because

the function in the infimum above is continuous and equal to one on the diagonal.
We will define a C1 diffeomorphism �λ from (−ε, ε)× ∂U to an open subset of ˜�

containing ∂U × (−L, 0) such that �λ|
(
2ε
3 ,ε)

= (id, f̂ ), �λ|
(−ε,− 5ε

6 )
= (id, f̂c − L)

and g(�λ∗(u),�λ∗(u)) ≥ λ (E∗b)(u, u) holds for all u ∈ T ((−ε, ε) × ∂U )).
Once we have defined �λ we will set

˜�λ(p) :=

⎧

⎪

⎨

⎪

⎩

(p, fc(p) − L) p ∈ U \ E((−ε, ε) × ∂U )

�λ(E−1(p)) p ∈ E((−ε, ε) × ∂U )

(p, f (p)) p ∈ �(ρ) \ E((−ε, ε) × ∂U )

givingus thedesiredC1 diffeomorphism from Bb(ρ) → ˜� satisfying g(˜�λ∗(u), ˜�λ∗(u))

≥ λ b(u, u) everywhere because it is either a graph (where g ≥ b automatically since
V ≥ 1) or given by �λ ◦ E−1 which will be constructed to do so.

A.2.1. Definition of8� on (0,")× @U

To make �λ continuously differentiable across the gluing surface between �(ρ) and
the cylinder, we re-scale the t parameter. This is accomplished by the function α from
Lemma A.3: Set

�λ(t, x) := (E(α(t, x), x), f̂ (α(t, x), x)) ∈ �(ρ) ⊂ H
n+1 for (t, x) ∈ (0, ε) × ∂U .

By the properties of α this smoothly matches (id, f̂ ) near t = ε. We now show that
g(�λ∗(u),�λ∗(u)) ≥ λ (E∗b)(u, u) holds for all u ∈ T ((0, ε) × ∂U )).

For bookkeeping let us denote local coordinates on (0, ε)×∂U by t and (xi ). These
induce canonical coordinates on the graph {(E(t, x), f̂ (t, x)) ∈ H

n+1 : (t, x) ∈
(0, ε) × ∂U } ⊂ Image(�λ) ⊂ �(ρ) ↪→ H

n+1, which we – by a slight abuse of
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notation – again denote by t and (xi ), and on E((0, ε)× ∂U )× R ⊂ H
n+1, which we

denote by t, (xi ), s.
In the coordinates we are using,

�λ(t, x) := (α(t, x), x, f̂ (α(t, x), x)) ∈ (0, ε) × ∂U × R (A.3)

and we have:

�λ∗(∂t |(t,x)) = (∂tα)|(t,x) ∂t |�λ(t,x) + (∂t f̂ )|(α(t,x),x) (∂tα)|(t,x) ∂s |�λ(t,x)

�λ∗(∂xi |(t,x)) = (∂iα)|(t,x)∂t |�λ(t,x) + ∂i |�λ(t,x)

+ [

(∂t f̂ )|(α(t,x),x) (∂iα)|(t,x) + (∂i f̂ )|(α(t,x),x)
]

∂s |�λ(t,x).

Since the metric g on ˜� is induced by b̄, we have

g(�λ∗(∂t |(t,x)),�λ∗(∂t |(t,x))) =b̄(�λ∗(∂t |(t,x)),�λ∗(∂t |(t,x)))
=(∂tα)2|(t,x) + V (r(α(t, x), x))2

(∂t f̂ )
2|(α(t,x),x) (∂tα)2|(t,x)

g(�λ∗(∂t ),�λ∗(∂i )) =∂tα ∂iα + V 2[∂t f̂ ∂iα + ∂i f̂
]

∂t f̂ ∂tα

g(�λ∗(∂i ),�λ∗(∂ j )) =(∂iα)(∂ jα) + ωi j + V 2[∂t f̂ ∂iα + ∂i f̂
][

∂t f̂ ∂ jα + ∂ j f̂
]

,

where we suppressed the arguments for the second and third formula (as a rule of
thumb: f̂ and its derivativeswill have argument (α(t, x), x),α and its derivatives (t, x)
and ω and V = cosh are evaluated at prHn (�λ(t, x)) = (α(t, x), x) and r(α(t, x), x)
respectively) and used the form of b̄ = b + V (r)2ds2 = dt2 + ωt + V (r)2ds2 =
dt2 + ωi j (t, x)dxi dx j + V (r)2ds2 in our chosen coordinates.

We introduce the following notation

B j (t, x) := ωi j (α(t, x), x)
[

(∂t f̂ )|(α(t,x),x) (∂iα)|(t,x) + (∂i f̂ )|(α(t,x),x)
]

, (A.4)

A j (t, x) := ωi j (α(t, x), x)(∂iα)(t, x). (A.5)

With this the above expressions can be rewritten as

g(�λ∗(∂t ),�λ∗(∂t )) = (∂tα)2 + V 2(∂t f̂ )
2 (∂tα)2

g(�λ∗(∂t ),�λ∗(∂i )) = ∂tα ωik A
k + V 2 ωik B

k ∂t f̂ ∂tα

g(�λ∗(∂i ),�λ∗(∂ j )) = ω jk A
kωi�A

� + ωi j + V 2 ω jk B
kωi�B

�.
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Now let u = a∂t |(t,x) + ui∂i |(t,x) = a∂t |(t,x) + ū ∈ T(t,x)((0, ε) × ∂U ) be arbitrary
and compute (ignoring basepoints/arguments for now for readability)

g(�λ∗(u),�λ∗(u)) = a2g(�λ∗(∂t ),�λ∗(∂t )) + 2aui g(�λ∗(∂t ),�λ∗(∂i ))
+ uiu j g(�λ∗(∂i ),�λ∗(∂ j ))

= a2(∂tα)2 + a2V 2(∂t f̂ )
2 (∂tα)2 + 2a〈ū, A〉ω ∂tα

+ 2aV 2〈ū, B〉ω∂t f̂ ∂tα

+ 〈ū, A〉2ω + ω(α(t,x),x)(ū, ū) + V 2〈ū, B〉2ω. (A.6)

By Lemma A.3 we know that either

(∂t f̂ )
2 (∂tα)2 ≥ 1 and |B(t, x)|ω(α(t,x),x) ≤ 1

V (r(α(t,x),x))2
(1 − √

λ) or,

(∂tα)2 ≥ 1 and |A(t, x)|ω(α(t,x),x) ≤ (1 − √
λ).

In the first case we estimate

g(�λ∗(u),�λ∗(u)) ≥ (a∂tα + 〈ū, A〉ω)2 + a2V 2(∂t f̂ )
2 (∂tα)2

+ 2aV 2〈ū, B〉ω∂t f̂ ∂tα + ω(α(t,x),x)(ū, ū)

≥ a2V 2(∂t f̂ )
2 (∂tα)2 − V 2|B|ω(α(t,x),x)(2a|∂t f̂ | |∂tα||ū|ω(α(t,x),x))

+ ω(α(t,x),x)(ū, ū)

≥ a2V 2(∂t f̂ )
2 (∂tα)2(1 − |B|ω(α(t,x),x))

+ ω(α(t,x),x)(ū, ū)(1 − V 2|B|ω(α(t,x),x))

≥ a2
√

λ + ω(α(t,x),x)(ū, ū)
√

λ ≥ a2λ + ω(α(t,x),x)(ū, ū)
√

λ

wherewe used theCauchy-Schwarz inequality and that V 2 ≥ 1.Nowby (A.2)we have
ω(α(t,x),x)(ū, ū) ≥ √

λω(t,x)(ū, ū) (note that this is scaling invariant so it is sufficient
to consider ū with Euclidean norm equal one) and we obtain the desired

g(�λ∗(u),�λ∗(u)) ≥ λ(a2 + ω(t,x)(ū, ū)) = λb(u, u). (A.7)

In the second case we proceed similarly and estimate

g(�λ∗(u),�λ∗(u)) ≥ a2(∂tα)2 + (aV ∂t f̂ ∂tα + V 〈ū, B〉ω)2

+ 2a〈ū, A〉ω ∂tα + ω(α(t,x),x)(ū, ū)

≥ a2(∂tα)2 − |A|ω(α(t,x),x)(2a |∂tα||ū|ω(α(t,x),x)) + ω(α(t,x),x)(ū, ū)

≥ a2(∂tα)2(1 − |A|ω(α(t,x),x)) + ω(α(t,x),x)(ū, ū)(1 − |A|ω(α(t,x),x))

≥ a2
√

λ + ω(α(t,x),x)(ū, ū)
√

λ ≥ λb(u, u)

again using the Cauchy-Schwarz inequality and (A.2).
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A.2.2. Definition of8� on (−"
2 , 0)× @U

We set

�λ(t, x) := (E(0, x), 2L
ε
t) ≡ (0, x, 2L

ε
t) for (t, x) ∈ (− ε

2 , 0) × ∂U . (A.8)

Let us check that �λ : (− ε
2 , ε) → ˜� defined by (A.3) and (A.8) (and continuously

extended across t = 0 where both functions become (0, x, 0)) is C1: On (0, ε) × ∂U
from (A.3) we see

(∂t�
λ)(t, x) = (∂tα|(t,x), 0, ∂t f̂ |(α(t,x),x) ∂tα|(t,x)) → (0, 0, 2L

ε
) as t → 0+

(∂i�
λ)(t, x) = (∂iα|(t,x), ei , ∂t f̂ |(α(t,x),x) ∂iα|(t,x) + ∂i f̂ |(α(t,x),x)) → (0, ei , 0)

as t → 0+

byLemmaA.3.On (− ε
2 , 0)×∂U clearly (∂t�

λ)(t, x) = (0, 0, 2 L
ε

) and (∂i�
λ)(t, x) =

(0, ei , 0), so �λ is indeed C1 across ε = 0.
Next we check that g(�λ∗(u),�λ∗(u)) ≥ λ(E∗b)(u, u) for u = a∂t + ui∂i ∈

T(t,x)(− ε
2 , 0]×∂U for (t, x) ∈ (− ε

2 , 0]×∂U : Using�λ∗(∂t ) = 2L
ε

∂s and�λ∗(∂i ) = ∂i
we get

g(�λ∗(u),�λ∗(u)) = ωi j (0, x)u
iu j + a2V 2( 2L

ε
)2

≥ ωi j (0, x)u
iu j + a2 ≥ λ(E∗b)(u, u) (A.9)

where we used that 2L
ε

≥ 1 and (A.2) by assumption on ε.

A.2.3. Definition of8� on (−",−"
2 )× @U

This will be completely analogous to the first part, but using f̂c − L instead of f̂ and
the function αc : (−ε,− ε

2 ) → (−ε, 0) from Lemma A.4 instead of α. We set

�λ(t, x) := (E(αc(t, x), x), f̂c(αc(t, x), x) − L)

≡ (αc(t, x), x, f̂c(αc(t, x), x) − L) (A.10)

for (t, x) ∈ (−ε,− ε
2 )× ∂U . Similarly to the computations for �λ on (0, ε)× ∂U and

(− ε
2 , 0) × ∂U we see that this has the desired properties.

A.3. Defining the rescalings˛,˛c

We first show that we can guarantee suitable behavior near 0.

Lemma A.2 Fix C ∈ (0,∞), c ∈ (0, ε∗). There exists 0 < δ0(C, c, f̂ ) < c
3 and

a smooth, strictly increasing in t, map α̃ : (0, δ0) × ∂U → (0, c
3 ) such that for all

x ∈ ∂U
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(1) f̂ (α̃(t, x), x) = C t for t ∈ (0, δ0) and
(2) lim

t→0+ α̃(t, x) = 0

Proof Consider the map F(t, x) := 1
C f̂ (t, x). This is a smooth map from (0, ε∗) to

(0,∞) which extends continuously to 0 as one approaches {0} × ∂U . By the asymp-
totic assumption on ∇b

ν f we have lims→0−(∂t f̂ )(s, x) = ∞ for all x ∈ ∂U , so we
may choose ε(C, c, f̂ , x) ≡ ε(x) < c

3 small enough such that s �→ F(s, x) is strictly
monotonically increasing on (0, ε(x)]. Note that we may choose ε(x) depending con-
tinuously on x . Let δ0(C, c, f̂ ) := minx∈∂U F(ε(x), x) and set ε̃(x) := F−1(δ0, x) ≤
ε(x) < c

3 . Then s �→ F(s, x)maps (0, ε̃(x)) bijectively onto (0, δ0), so for any t < δ0

there exists a unique solution α̃(t, x) ∈ [0, ε̃(x)) to the equation 1
C f̂ (α̃(t, x), x) = t .

Clearly α̃ : (0, δ0) × ∂U → (0, c
3 ) satisfies lim

t→0+ α̃(t, x) = 0 for all x ∈ ∂U an

is strictly increasing in t . It remains to argue that (t, x) �→ α̃(t, x) is smooth. For
this we note that α̃ will agree with maps obtained from the local implicit function
theorem near any (t0, x0) ∈ (0, ε0) × ∂U : Since G(α, t, x) := F(α, x) − t satis-
fies G(α0, t0, x0) = 0 and ∂αG|(α0,t0,x0) > 0 for α0 := α̃(t0, x0) ∈ (0, c

3 ) there
exists locally around (t0, x0) a smooth map (t, x) �→ α(t, x) to a neighborhood of
α0 ∈ (0, ε̃(x0)) with G(α(t, x), t, x) = 0. So by the noted uniqueness of the solution
α̃(t, x) to 1

C f̂ (α̃(t, x), x) = t , α̃ = α on this neighborhood and smoothness of α̃

follows. ��

We now obtain α by interpolating between α̃ near t = 0 and the identity near t = ε.

Lemma A.3 Fix L > 0 and 0 < λ < 1. There exists ε0(L, λ, ∂U , f̂ ) > 0 such that
for any 0 < ε < ε0 there exists a C1 function α : (0, ε) × ∂U → (0, ε) (depending
on f̂ , ε, L and λ) such that

(1) for any x ∈ ∂U, t �→ α(t, x) is strictly increasing,
(2) f̂ (α(t, x), x) = 2 L

ε
t for t near 0,

(3) α(t, x) → 0 as t → 0+ and
(4) α(t, x) = t for (t, x) ∈ ( 2ε3 , ε) × ∂U.

Note that (2) implies the following formulas for the derivatives near t = 0

(∂t f̂ )|(α(t,x),x) (∂tα)|(t,x) = 2L
ε

(A.11)

(∂t f̂ )|(α(t,x),x) (∂iα)|(t,x) + (∂i f̂ )|(α(t,x),x) = 0. (A.12)

In particular (∂tα)(t, x), (∂iα)(t, x) → 0 as t → 0+. Further, for any (t, x) ∈
(0, ε) × ∂U we can guarantee either

• ∂t f̂ |(α(t,x),x) (∂tα)|(t,x) ≥ 1 and |B(t, x)|ω(α(t,x),x) ≤ 1
V (r(α(t,x),x))2

(1 − √
λ) or

• ∂tα|(t,x) ≥ 1 and |A(t, x)|ω(α(t,x),x) ≤ 1 − √
λ

where B(t, x), A(t, x) are as in (A.4) resp. (A.5).
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Proof Choose ε0(L, λ, ∂U , f̂ ) < min(ε∗, 2L) such that f̂ satisfies ∂t f̂ > 1 on
(0, ε0) × ∂U and

∣

∣

∣ω
i j (s, x) 1

(∂t f̂ )|(t,x) (∂i f̂ )|(t,x)
∣

∣

∣

ω(s,x)
< 1 − √

λ (A.13)

for any (s, t, x) ∈ (0, ε0) × (0, ε0) × ∂U . Fix any 0 < ε < ε0. Then, by Lemma A.2
there exists a δ0(

2L
ε

, ε) and a α̃ : (0, δ0)× ∂U → (0, ε
3 ) which is smooth, satisfies (2)

and is strictly increasing in t .
For any ξ ∈ (0,min(δ0, ε

3 )) small enough such that (∂t α̃)(t, x) = 2L
ε

(∂t f̂ (α̃(t, x),
x))−1) < 1 for all (t, x) ∈ (0, ξ) × ∂U we set

α(t, x) =

⎧

⎪

⎨

⎪

⎩

α̃(t, x) on (0, ξ ] × ∂U
ε−2α̃(ξ,x)

ε−2ξ (t − ξ) + α̃(ξ, x) on [ξ, ε
2 ] × ∂U

t on [ ε
2 , ε) × ∂U ,

where the middle segment is a simple linear interpolation. This is piecewise C1 and
smooth in x for any fixed t with (t, x) �→ (∂iα)(t, x) continuous. Further, the slope
of the linear segments is ≥ 1 by construction since α̃(ξ, x) < ξ . Assumption (A.13)
ensures |A(t, x)|ω(α(t,x),x) < 1 − √

λ for all (t, x) ∈ (0, ε) × ∂U . (We will skip
the detailed computations here, let us however remark that we get that |A(t, x)|ω is
given by the left hand side of (A.13) for t ∈ (0, ξ), while on the first linear segment
|A(t, x)|ω is essentially given by (A.13)|t=ξ · ε−2t

ε−2ξ , and on the second linear segment
A(t, x) = 0.) On (0, ξ ] on the other hand, B(t, x) = 0 (note that B is continuous on
(0, ε)) and ∂t f̂ |(α(t,x),x) (∂tα)|(t,x) = 2 L

ε
> 1. So this α satisfies all our requirements

except only being piecewiseC1. To make itC1 we only need to modify it in arbitrarily
small neighborhoods of the corners at {ξ} × ∂U and { ε

2 } × ∂U (and join the modified
bits to the original α using a partition of unity). At both corners the C1 versions of α

can be created via convolution in t while fixing x . At the second corner this clearly
preserves ∂tα ≥ 1 and |A(t, x)|ω(α(t,x),x) < 1 − √

λ. For the second corner note that
f̂ , ω, V are smooth near {ξ} × ∂U and ∂i commutes with the smoothing of α in t , so
we can use B = 0 on {ξ}× ∂U to keep V 2 |B|ω arbitrarily small, in particular smaller
than 1 − √

λ, by making the neighborhood of {ξ} × ∂U on which we modify small
enough. Secondly, since we have ∂t f̂ > 1 on (0, ε) and ∂tα ≥ 1 for t > ξ it follows
that ∂t f̂ |(α(t,x),x) (∂tα)|(t,x) > 1 on (0, ξ) and (ξ, ε), so we may use smoothness of
f̂ near {ξ} × ∂U and boundedness of ∂tα to ensure that also the smoothed α satisfies
∂t f̂ |(α(t,x),x) (∂tα)|(t,x) > 1 provided we make the neighborhood of {ξ} × ∂U on
which we modify small enough. ��
Lemma A.4 Fix L > 0, 0 < λ < 1 and the capping function fc constructed in Section
A.1. There exists ε0(L, λ, ∂U , f̂c) > 0 such that for any 0 < ε < ε0 there exists a C1

function αc : (−ε,− ε
2 ) × ∂U → (−ε, 0) (depending on f̂c, ε, L and λ) such that

(1) for any x ∈ ∂U, t �→ αc(t, x) is strictly increasing,
(2) f̂c(αc(t, x), x) = 2 L

ε
(t + ε

2 ) for t near − ε
2 ,

(3) αc(t, x) → 0 as t → − ε
2
−,
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(4) αc(t, x) = t for (t, x) ∈ (−ε,− 5ε
6 ) × ∂U

Note that (2) implies the following formulas for the derivatives near t = − ε
2

(∂t f̂c)|(αc(t,x),x) (∂tαc)|(t,x) = 2L
ε

(A.14)

(∂t f̂c)|(αc(t,x),x) (∂iαc)|(t,x) + (∂i f̂c)|(αc(t,x),x) = 0. (A.15)

In particular (∂tαc)(t, x), (∂iαc)(t, x) → 0 as t → − ε
2
−. Further, for any (t, x) ∈

(−ε,− ε
2 ) × ∂U we can guarantee either

• ∂t f̂c|(αc(t,x),x) (∂tαc)|(t,x) ≥ 1 and |Bαc (t, x)|ω(αc(t,x),x) ≤ 1
V (r(αc(t,x),x))2

(1 −√
λ) or

• ∂tαc|(t,x) ≥ 1 and |Aαc (t, x)|ω(αc(t,x),x) ≤ 1 − √
λ

where Bαc (t, x), Aαc (t, x) are as in (A.4) resp. (A.5), but with α replaced by αc and
f̂ replaced by f̂c.

Proof The function f̂ ∗
c : (t, x) �→ − f̂c(−t, x) has the same behavior near t = 0

as f̂ (in particular f̂ ∗
c (0, x) = 0 and its gradient behaves appropriately as t →

0+), so by Lemma A.3 there exists a ε0(L, λ, ∂U , f̂ ∗
c ) such that for any 0 < ε <

ε0(L, λ, ∂U , f̂ ∗
c ) there exists a suitable α : (0, ε) × ∂U → (0, ε) corresponding to

f̂ ∗
c . We set αc(t, x) = −α(−2t − ε

2 , x) for (t, x) ∈ (−ε,− ε
2 ) × ∂U and the claims

follow. ��

A.4. Volume and diameter estimates

We start by estimating vol(˜�\�(ρ)). First,

vol(˜� \ �(ρ)) = vol(graph( fc)) + vol(∂U × (−L, 0)).

We obtain the following estimate using the coarea formula as in Lemma 3.4,

vol(graph( fc)) =
∫

U

√

1 + V 2|∇b fc|2 dvolb

≤ vol(U ) + cosh( ρ0
2 )

∫ 0

−1
Hn−1( f −1

c (t)) dt

≤ ( 1
n−1 + 2 cosh( ρ0

2 ))vol(∂U ),

where we have also used the isoperimetric inequality given in Proposition 3.2 and that
by construction the level sets of fc satisfyHn−1( f −1

c (s)) ≤ 2vol(∂U ) for s ∈ (−1, 0].
To estimate vol(∂U × (−L, 0)) we use that g = b|∂U + V (r)2 ds2 on the cylinder, so
vol(∂U × (−L, 0)) ≤ L vol(∂U ) cosh( ρ0

2 ) and the desired estimate for vol(˜�\�(ρ))

follows.
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To estimate diam(˜� \ �(ρ)) note that

diam(˜� \ �(ρ))) ≤diam(graph( fc)) + 2 sup
p∈∂U×(−L,0)

dCyl(p, ∂U )

≤diam(graph( fc)) + 2 cosh( ρ0
2 ) L

as the metric on the cylinder part is b|∂U + V 2ds2 and, again, V is bounded above
by cosh( ρ0

2 ) on U . To estimate the diameter of graph( fc), we go back to the explicit

construction of f̂c in normal exponential coordinates (see Section A.1). Fix x ∈ ∂U .
Set p = (E(0, x), 0) ∈ H

n+1, q := (E(− ε∗
2 , x),−1) ∈ graph( fc) ⊂ H

n+1. Then the
curve γ : t �→ (E(t, x), χ(t)) for t ∈ [− ε∗

2 , 0] connects q to p and has length

L(γ ) =
∫ 0

− ε∗
2

√

1 + V (r(E(t, x)))2(χ ′)2dt

≤
∫ 0

− ε∗
2

(1 + cosh( ρ0
2 )χ ′(t))dt

= ε∗
2 + cosh( ρ0

2 ) ≤ 1
2 + cosh( ρ0

2 ).

So

max
x∈∂U

dgraph( fc)
(

(E(0, x), 0), E(− ε∗
2 , ∂U ) × {−1}

)

≤ 1
2 + cosh( ρ0

2 ).

Thus, using star-shapedness of E(− ε∗
2 , ∂U ), we readily see that

diam(graph( fc)) ≤ 1
2 + cosh( ρ0

2 )

+ diam{(r , θ) ∈ H
n : θ ∈ S

n−1, 0 ≤ r ≤ ρ− ε∗
2

(θ) ≤ ρ0
2 }

≤ 1
2 + cosh( ρ0

2 ) + ρ0

establishing the desired diameter bound.
Finally, to show that for L > D + 1

2 sinh(ρ0) π
√

1 + γ 2, (�(ρ), d intr�(ρ)) embeds

in a distance preserving way into (˜�, d
˜�) take any two points in p, q ∈ �(ρ) and

a piecewise Lipschitz curve c : [0, 1] → ˜� joining p to q. Assume the curve exits
�(ρ) at c(s0) ∈ ∂U and reenters �(ρ) at c(s1) ∈ ∂U , if it does not enter graph( fc)
for any s ∈ [s0, s1], i.e., it remains in the cylinder, then replacing the segment c|[s0,s1]
by a curve contained in ∂U ⊂ �(ρ) connecting p0 = c(s0) to p1 = c(s1) will
clearly yield a shorter curve. If, on the other hand, c enters graph( fc) at any s ∈
[s0, s1], then L(γ |[s0,s1]) > 2 cosh(ρmin)L ≥ 2 L . We will now construct a curve
connecting c(s0) to c(s1) that is entirely contained in �(ρ) which will have length at
most 2D + sinh(ρ0) π

√

1 + γ 2 (with D from Definition 1.2), i.e., it will be shorter
than the original curve if L > D+ 1

2 sinh(ρ0) π
√

1 + γ 2 (cf. the proof of the diameter
estimates for � j (ρ) in Theorem 3.8): First, follow the graph of f radially outward
from c(s0) (resp. c(s1)) until hitting ∂�(ρ0) in a point p0 (resp. p1). Then byDefinition
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1.2 the length of each of these segments is bounded by the depth D. Second, connect
p0 and p1 along an arc in ∂�(ρ0). Since V 2|∇b f |2 ≤ γ 2 in the region r ≥ ρ0

2 by

Definition 1.2 the length of this arc is bounded by sinh(ρ0) π
√

1 + γ 2.
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