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Abstract

The rigidity of the Riemannian positive mass theorem for asymptotically hyperbolic
manifolds states that the total mass of such a manifold is zero if and only if the manifold
is isometric to the hyperbolic space. This leads to study the stability of this statement,
that is, if the total mass of an asymptotically hyperbolic manifold is almost zero, is
this manifold close to the hyperbolic space in any way? Motivated by the work of
Huang, Lee and Sormani for asymptotically flat graphical manifolds with respect to
intrinsic flat distance, we show the intrinsic flat stability of the positive mass theorem
for a class of asymptotically hyperbolic graphical manifolds by adapting the positive
answer to this question provided by Huang, Lee and the third named author.

Keywords Positive mass theorem - Intrinsic flat convergence - Asymptotically
hyperbolic manifolds - Graphical manifolds - Volume preserving - Intrinsic flat -
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1 Introduction

In the context of mathematical relativity, asymptotically hyperbolic manifolds cor-
respond to initial data sets for the Einstein equations with a negative cosmological
constant A. An asymptotically hyperbolic manifold is, roughly speaking, a Rie-
mannian manifold (M", g) such that the metric g approaches the metric of the
n-dimensional hyperbolic space, H", at infinity sufficiently fast. Under appropriate
decay conditions on g there is a well defined notion of total mass of (M", g) given by
Chrusciel and Herzlich [7], and Wang [26].

From the constraint equations for the Einstein equations, it follows that if the initial
data set is a time-symmetric, asymptotically hyperbolic manifold (M", g), then with
a suitable normalization of the cosmological constant, the dominant energy condition
reduces to a lower bound on the scalar curvature, R(g) > —n(n — 1). The positive
mass theorem then asserts that the mass of this type of manifolds is non-negative, and
itis equal to O if and only if the manifold is isometric to H". The history of the positive
mass theorem and its different proofs is rich. We refer the reader to a recent proof by
Sakovich [21], which also contains a complete description of the history of this result
and previous results. The rigidity part was established in general by Huang, Jang and
Martin in [12].

From the rigidity statement of the positive mass theorem it is natural to ask whether
a stability statement holds. The answer to this question is subtle, as can be seen in
examples for the asymptotically flat setting given by Lee and Sormani in [18], showing
that the answer is negative with respect to some usual topologies. Nonetheless, the
stability of the positive mass theorem has been established in some cases. In particular,
the Sormani—Wenger intrinsic flat distance [25] has shown to be an adequate notion of
distance for this problem. In [23] Sakovich and Sormani obtained a stability result for
the positive mass theorem for complete rotationally symmetric asymptotically hyper-
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bolic manifolds with respect to this distance. Huang and Lee [13] showed stability of
the positive mass theorem with respect to the Federer—Fleming flat distance for a class
of asymptotically flat graphical manifolds. Subsequently Huang, Lee and Sormani
showed stability of the positive mass theorem for a smaller subclass with respect to
the intrinsic flat distance [15]. While there were two gaps in [15], see [16], these are
now completely filled in. The gap in [15, Theorem 1.3] was filled in by work of Del
Nin and the third named author [10], and the gap in [15, Theorem 1.4] by the work
of Huang, Lee and the third named author [14]. There is also a proof of [15, Theorem
1.3] using a different approach to [15] in [14] (cf. [S, Theorem 7.2] for a proof in the
entire case).

Following the work in [13], the first named author showed in [6] the stability of the
positive mass theorem for a class of asymptotically hyperbolic graphical manifolds
with respect to the Federer—Fleming flat distance. In this work, starting from [6]
and following [14], we establish a stability result for a subclass of asymptotically
hyperbolic graphs with respect to the intrinsic flat distance. We note that we cannot
use the results in [10] since they only ensure existence of intrinsic flat limits of the
form (B¥' (R), dgn. [[B¥" (R)]).

For asymptotically hyperbolic manifolds stability has been established in some
other cases (see [4, 23]). The techniques in [13] have been also successfully applied to
obtain a stability result of the Brown—York mass by Alaee, McCormick and the first
named author in [2], and the techniques in [5, 13—15] have also been applied to obtain
flat and intrinsic flat stability results for tori with almost non-negative scalar curvature
by the first and third named authors [8].

We will follow the definition of asymptotically hyperbolic graphs and the adaptation
of the total mass for asymptotically hyperbolic manifolds to asymptotically hyperbolic
graphs by Dahl, Gicquaud and Sakovich [9]. We write H"*! as the warped product
H" xy R with metric b = b+ V2ds?, where b is the metric of H" which we write in
coordinates defined on R” = [0, 00) x S*~! and V (r) = cosh(r) where r represents
the radial coordinate. We denote the open ball in H” of radius p around the origin by
B”(p). We start by defining the class of asymptotically hyperbolic graphs that where
studied in [6] and which will be the basis for the subclass we will consider here.

Definition 1.1 Forn > 3, define G, to be the space of graphs of functions, graph( f) C
H"*+!, where f: H*\U — R is a continuous function which is smooth on H" \ U and
U C H" is an open and bounded subset whose complement is connected, such that
graph( f) is a balanced asymptotically hyperbolic graph (see Sect.2.1 for definitions)
when endowed with the metric induced by H"*!, with scalar curvature greater than
or equal to —n(n — 1), and it is either entire or with minimal boundary. In addition,
we require:

(1) The mean curvature vector of graph( f) in H"*! points upward
(2) For almost every h € R, the level set f~!(h) is star-shaped and outer-minimizing
in H".

We denote by m( f) the total mass of any graph(f) € G,. The first named author
showed stability of the class G, [6]. In particular, after vertically translating graph( f),
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it was shown that in any ball Bb (p) € H™*! of radius p centered at the origin,

dBi’(ﬂ)( h n
e graph(f), H" x {0}) - 0 as m(f) — 0,

where dr denotes the Federer—Fleming flat distance. See Theorem 2.8.

Convergence with respect to the flat distance does not necessarily imply conver-
gence with respect to the intrinsic flat distance. Hence, it is interesting to study the
stability of the positive mass theorem with respect to intrinsic flat distance for the class
G, . Since by Wenger’s compactness theorem, compact oriented Riemannian manifolds
with a uniform upper diameter bound and a uniform upper volume bound for the man-
ifolds and their boundaries is precompact with respect to intrinsic flat distance, we
will consider (in a similar way to [14, 15]) a subclass of G,,.

Definition 1.2 For constants pg, y, D > 0, we define G, (09, y, D) to be the space
of n-dimensional manifolds (M, g) (possibly with boundary) that admit a smooth
Riemannian isometric embedding into H**!, W : M — H"*! such that ¥(M) =
graph(f) for some graph(f) € G, and that in addition the following is satisfied:

(3) U C B®(po/2)
(4) Forr > 22, a uniform decay condition holds,

VAVEfIE < y? (1.1)
(5) The region Q(pg) = ¥~ 1(B(py) x R) has bounded depth,

depth(€2(po)) = sup{dm (p, Z(po)) : p € L2(po)} = D,

where dj; denotes the length distance in M induced by g and X (pg) = 92(pp) \
oM.

(6) If f is notentire, a stronger condition for the minimal boundary holds, Vf f— o0
while Vf( f remains bounded as one approaches dU (where v is the local vector
field obtained by extending the outward unit normal of dU to a neighborhood of
oU by parallel transport along the flow lines of the normal exponential map and
X is any vector field with X L? v). We will additionally demand that our minimal
boundary is mean convex, i.e., H > 0, where H denotes the mean curvature of
dU as a submanifold of H", and star-shaped.

Given (M, 8) € Gu(po, vy, D) we endow (22(p), gla(p)) With the intrinsic length
distance, dg‘? ) and the integral current with weight 1, [[€2(p)]], as in Example 2.11.
Our first result is the following.

Theorem 1.3 Let M; € G,(po,y, D) be a sequence of asymptotically hyperbolic
graphs with V; : M; — H"*+! a smooth Riemannian isometric embedding as in
Definition 1.2. If limj_, oo m(M;) = 0, then for any p > py we have

[[B®(0)1D) =0,

i . intr . b intr
Jim (o). di,)- 12 (21D, (B2 (). dt
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where dx denotes the intrinsic flat distance, and vol(2j(p)) — vol(B®(p)).

Conditions (3) and (4) of Definition 1.2 provide a uniform control on the exte-
rior region, i.e. the complement of €2(pp/2), of the sequence of manifolds, while
(5) prevents the formation of deep “gravity wells” (cf. [15, 19]). Conditions (3)-(5)
provide a uniform intrinsic diameter bound of regions €2;(p) and a uniform bound
for vol(d€2;(p)). Conditions (1) and (2) together with the uniform diameter bound
ensure convergence of vol(£2;(p)) to VO](Bb(,O)). Thus, Wenger’s compactness the-
orem ensures convergence to an integral current space. To get the precise limit space
one has to use condition (6) to ensure that the regions €2;(p) embed into suitable

Riemannian manifolds diffeormorphic to B?(p) via a capping procedure as in [14],
Theorem A.1, in order to apply a convergence result by Allen and the third named
author [5] (see Theorem 4.1). We note that to apply Theorem 4.1 one has to endow
Q2 (p) with the structure (2 (p), dg’go), [[2(p)]]) rather than (2(p), dar, [[2(0)]])-
The same is true when applying the convergence result from [5] in the proof of [14,
Theorem 3.2]. However, by [10] the result in [15] is correct for (2(p), dar, [[2(p)]])
as well. We also remark that boundedness of Vy f for tangential directions X as one
approaches dU as specified in (6) was not originally stated in [15], nor in [14], though
in the latter it was implicitly assumed.
We also obtain a pointed version. This is the analogue of [15, Theorem 1.4].

Theorem 1.4 Let M; € G,(po,y, D) be a sequence of asymptotically hyperbolic
graph manifolds with lim;_, .o m(M;) = 0 and p; € X;(po) be a sequence of points.
Then for almost every R > 0 we have

jlingodf((BMf (pj» R, dy;, [1BMi (pj, ROID, (BE(R), dyn, [[BY(R)]])) = O

and vol(BMi(p;, R)) — vol(B®(R)).

This manuscript is organized as follows. In Sect. 2 we provide background material.
In Sect. 3 we prove volume estimates for the regions €2(p), uniform diameter and area
bounds and also show their volume converges to the volume of a ball in hyperbolic
space provided m(f) — 0. Additionally, we show Gromov-Hausdoff and intrinsic
flat convergence of annular regions, (o) \ €(p), and that the inner boundaries,
dM, converge to the zero integral current space. The proofs of the main results are
given in Sect. 4. The proof of Theorem 1.3, in the entire case, consists in applying the
convergence theorem of [5], Theorem 4.1, to the regions 2(p), and in the non-entire
case, we apply Theorem A.1, proven in Appendix A, where we enlarge the Q2(p)’s
and use condition (6) to carefully construct diffeormorphisms from the enlargements
to BY(p), so that Theorem 4.1 can be applied. Theorem 1.4 follows from Theorem
1.3 and Lemma 4.3, we believe the latter result is interesting in its own. It easily
follows from results in [14], see Theorem 2.24, but in Lemma 4.3 we clearly see
when Gromov-Hausdorff and intrinsic flat convergence of a sequence of subsets of an
intrinsic flat converging sequence imply subconvergence of a sequence of points.
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2 Background

In this section we first collect some results from [9] about asymptotically hyperbolic
graphs and review material from [6] about the class G,. In the second part, we define
integral current spaces, intrinsic flat distance and state some results that we will apply
in subsequent sections.

2.1 Asymptotically hyperbolic graphs

Here we give some definitions related to asymptotically hyperbolic graphs and state
a Riemannian Penrose-like inequality, obtained in [9]. For a more detailed discussion
about asymptotically hyperbolic graphs the reader is referred to [9].

Let H" denote the hyperbolic space of dimension n and let b be its Riemannian
metric, which in spherical coordinates (r, 8) € [0, c0) x S"—1 takes the form

b=dr*+ sinhz(r)a,

where o represents the standard Riemannian metric of "~

We will consider graphs of functions over subsets of H”" inside the (n + 1)-
dimensional hyperbolic space H"+! with Riemannian metric b, written in coordinates
(r,0,s) e H* x R as

b=>b+ V()ds?,

where V (r) = cosh(r). Note that the scalar curvature of b is R(b) = —(n + D)n.
Given an open set U C H" and a continuous function f: H"\U — R which is
smooth on H" \ U, we endow

graph( f) = {(x, f@) e HH | x e B \ﬁ}
with the coordinate chart
I1: graph(f) — H*\ U, TI(x, f(x)) =x, .1

and the Riemannian metric g induced by H"*!. To simplify notation, we will often
denote geometric quantities associated to graph( f) using f instead of its metric. For
example, we denote its scalar curvature as R( f). This should not cause any confusion
as the meaning of the symbols will be clear from the context.

While there is a more general definition of asymptotically hyperbolic manifolds
and their mass (see [7, 26]) we will only consider asymptotically hyperbolic graphs
and so, in the interest of simplicity, will only present the graph case here (following

[9D.

Definition 2.1 Let n > 3 and U C H" be a possibly empty open bounded subset
with connected complement. Let f: H"\U — R be a continuous function which is
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smooth on H" \ U. We say that (graph(f), g) is an asymptotically hyperbolic graph
(or simply f is asymptotically hyperbolic) with respect to the chart IT as in (2.1) if
e=g—b=V?df ® df satisfies

()
/ (le|? + [V?e|2) cosh(r) dvol;, < oo,
H"\ B
and
/ |R(f) + n(n — 1)| cosh(r) dvol, < oo,
H"\ B

where B is a closed ball in H" that properly contains U and dvol, denotes the
volume form induced by b.
(i) lel? = V2|V? £]2 — 0 at infinity.

In general, the total mass of an asymptotically hyperbolic manifold can be defined
as the minimization of a functional, called the mass functional, that depends on its
coordinate chart at infinity, say W. If the mass functional is positive over an appropriate
subset of a vector space, then W can be chosen so that the mass takes a simpler form;
this suitable diffeomorphism W is then referred to as a set of balanced coordinates [9].
For an asymptotically hyperbolic graph, if IT as in (2.1) is a set of balanced coordinates
we say that f is balanced. In this case the mass takes the form given below [9].

Definition 2.2 If f is an asymptotically hyperbolic and balanced function, its mass is
given by

m(f) =

— lim
2(n — Nwy—1 r—o0

(V(divPe — duPe) + (ttPe)dV — e(VPV, ) (vy)dvoly, (2.2)
S

where e := V2df ® df, V(r) = cosh(r), S, is the coordinate sphere of radius r in
H", v, the outward normal vector to S, and w,_; denotes the volume of the round
sphere S~ 1.

Definition 2.3 We say that an asymptotically hyperbolic function f: H*\U — R is
entire if U = (). Moreover, we say that f has a minimal boundary if dU # @, f is
constant on each component of dU and |V” f|, — oo as one approaches dU .

We now give an example of an asymptotically hyperbolic graph with minimal (and

mean convex) boundary which represents an initial data set for the AdS-Schwarzschild
spacetime.
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Example 2.4 (AdS-Schwarzschild manifolds as graphs) Recall that the spatial AdS-
Schwarzschild is defined for m > 0 and n > 3, as the manifold (o4, 0c0) x S~ with
the metric given by

1 2 2
8m = de + p-o,
I+p *F

where p is the largest root of
o+ p" "t —2m = 0.
The mass of this manifold is equal to m, and clearly, gg = b.

To see this manifold as a graph over H" it is convenient to make the change of
variables p = sinh(r) on H", so that the metric on H"*! is given by

b= (14 p>ds®+ 1+lpzdp2 + p’o.

Then, the AdS-Schwarzschild graph of mass m is given by the function

P
1 1 1
flp) = / — ——ds
/ 2 2m 1452 ’
00 1+4s 1+‘Y2_SI1_*2 +s

that is this function is constant in the theta parameter, and it can be checked by direct
computations that this graph has a minimal boundary at p = p_.

We now state a Riemannian Penrose-like inequality, which was very useful when
proving flat convergence of sequences contained in the class G,. We will use it in
the proofs of Theorem 3.8 and Lemma 3.11, to establish uniform volume bounds for
the regions 9€2;(p), and U; and to show that the inner boundaries of ;(p), 0M;,
converge to the zero integral current space, respectively.

Theorem 2.5 (Riemannian Penrose-like inequality [9, Theorem 2.1]) Suppose that
f:H"\U — Risabalanced asymptotically hyperbolic graph in H' ' with minimal
boundary and scalar curvature R(f) > —n(n — 1). Suppose that dU is mean convex
(i.e., H > 0, where H denotes the mean curvature of dU in H") and that U contains
an inner ball centered at the origin of radius r¢. Then,

2wy, —
vol(@U) = Ftm(f)

where V (r) = cosh(r) and w,—1 denotes the volume of the round sphere sl In
particular, vol(dU) < 2w,—1m(f).

Let us remark at this point that we will from now on, by slight abuse of notation, use
vol to denote volumes of Riemannian (sub-)manifolds regardless of their dimension
and we will suppress specifying the metric in the notation unless there would be
inequivalent canonical choices.
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2.2 The class G, and stability of the PMT with respect to flat distance

In [6] the first named author, inspired by the work of Huang and Lee [13], defined the
class G, and proved the stability of the hyperbolic positive mass theorem with respect
to the flat distance (also known as Federer—Fleming distance). Here we review parts
of this work needed in subsequent sections.

We now give more details about the conditions appearing in Definition 1.1. Given an
asymptotically hyperbolic function, f: H*\U — R, let H denote the mean curvature
vector of graph(f) inside H"t! and let ng := (0, 1) € T,H"*!, for any p € H't1,
We say that H points upward if 5(ng, H) is a non-negative function that does not
vanish everywhere. The mean curvature vector convention is that deformations in the
direction given by this vector decrease volume. In particular, the standard sphere has
positive mean curvature with respect to the inner pointing unit normal vector field. We
say that £~!(h) is star-shaped if in some radial coordinates (r, #) on H"\{0} the set
can be written as a smooth graph (-1 (6),0) : S"1 — (0, 00) x "~ = H"\{0}.
Note that this in particular implies that f —1(h) is a differentiable (n — 1)-dimensional
submanifold of H". For a bounded and finite perimeter set £ C H", we say that
d*E (where 0*E denotes the reduced boundary of E) is outer-minimizing if for any
bounded set F containing E we have ’HZ_I (0*E) < P(F) where P denotes the
perimeter of F and HZ_I denotes the (n — 1) dimensional Hausdorff measure of H".

The key idea to prove the stability of the hyperbolic positive mass theorem for G,
was to find a suitable “height”, ho(f), which divides any graph(f) in two parts. In
the lower part,

[ ren em™ e m U, £() <ho(D),

one can show that all level sets of f have volume bounded above by some function that
depends on m( f) which goes to zero as m( f) goes to zero. Meanwhile, in the upper
part, the quantity sup(f) — ho(f) is bounded above by a function that also depends
on m( f) and goes to zero as m( f) does.

In order to define this height, one studies the function

V(h):= P({x e H" : f(x) < h}),

where f is the extension of f to H" which is defined to be constant on U. Using
condition (1) of the definition of G, (i.e. that the mean curvature vector of graph(f)
points upward), it is shown that there exists imax € R so that f < hpmax everywhere
and that V is finite for any &7 < hpax. Using condition (2) it is shown that V is
non-decreasing. Therefore, V is differentiable almost everywhere and a height can be
defined.

Definition 2.6 ([6, Definition 4.1]) Let 8 > 1 be any fixed constant. Furthermore, let
n > 3 and f be a balanced asymptotically hyperbolic function. We define the height
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ho(f) of f as

n—1
ho(f) := sup{h : H*'(f~ (h)} < max{2Bw,—1m(f)n=2, 2w, 1m(f)},

if the above set is non-empty and /o (f) = min( f) otherwise.

If m(f) < 1 then it follows that ho(f) = sup{h : H"~'(f~'(h)) < 2Bw,_1m(f)}.

After an appropriate rescaling of f, using that the mean curvature of the level sets is
nonnegative, a suitable expression for m( f) and the Minkowski inequality, one shows
that V'(h) > F(V(h)) for almost every i > ho(f) and some function F. Then the
upper bound for sup(f) — ho(f) is obtained by comparing V to the solution of the
equation Y'(h) = F(Y (h)) with initial condition equal to V(o ( f)). That is, one finds
that Y < V and Y goes to infinity at a finite height, implying that V' also does and
hence giving an upper bound to the rescaling of f. Rescaling back gives the desired
inequality:

Theorem 2.7 ([6, Lemma 4.8]) Let f € Gy, then there exists a constant C = C(n)
such that

1
0 < sup(f) —ho(f) < Cm(f)n=2. (2.3)

The stability of the hyperbolic positive mass theorem with respect to the flat distance
reads as follows.

Theorem 2.8 ([6, Theorem 5.1]) Let n > 3 and f; € G, be a sequence of balanced
asymptotically hyperbolic functions. Assume that lim; . m(f;) = 0. Then after
normalizing graph(f;) so that ho(f;) = 0, we have

Jim. dE"® ([graph(£)11, [TH" x (0}1]) = 0,

where forany p > 0, BE(,O) c Ht! is the b-ball of radius p centered at the origin, i.e.,
in terms of our coordinate system, Bb(,o) ={(,0,s)] cosh? (r)s2 +sinh?(r) < ,02}.

Theorem 2.8 is proven by explicitly choosing integral currents A ; and B; such that
Aj + 9B; = [[graph(f)]] — [[H" x {0}]] in B (p) and M(A;) + M(B;) — 0 as
Jj — 0, which implies the conclusion. All this can be guaranteed by applying Theorem
2.7, the isoperimetric inequality, the definition of 4o (f) and Theorem 2.5.

2.3 Integral currents, intrinsic flat distance and convergence of balls

We now give a brief introduction to integral currents in metric spaces, integral cur-
rent spaces and intrinsic flat distance. For further details about integral currents in
metric spaces we refer the reader to Ambrosio and Kirchheim [3], Lang [17], and
Lang and Wenger [20]. For the definition of integral current spaces and intrinsic flat
distance between them we refer to Sormani and Wenger [24, 25]. For results about
point convergence we refer to Sormani [22] and, Huang, Lee and Perales [14].
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2.3.1 Integral currents

Given a complete metric space (Z, d), let Lip(Z) denote the set of Lipschitz functions
on Z and Lip, (Z) the bounded ones. An n-dimensional current 7 on Z is a multilinear
map T : Lip, (Z) x [Lip(Z)]" — R that satisfies certain properties, see [3, Definition
3.1]. The n-dimensional current 7 endows Z with a finite Borel measure, ||T||, called
the mass measure of 7' and set(T) is the set of points in Z where the n-dimensional
lower density of ||T'|| is positive:

set(T) = {z €Z| li%%)nf ITIB ) , o} . (2.4)

The mass of T is defined as M(T) = ||T||(Z) and it is known that spt(T) =
spt(||T'||) = set(T). For any Lipschitz function ¢ : Z — Y the push-forward of
T is the current 4T : Lip, (Y) x [Lip(Y)]* — R defined as

(pﬁT(f’jT13’an) =T(f0§0,7'[10§0,...,7'[n0§0).
The boundary of T', 9T : Lip,(Z) x [Lip(Z)]"~! — R, is the functional defined as
aT(f’ 7[]5 ey jTVL*]) = T(lv fv T[]5 ey jTVL*])’

where 1 : Z — R denotes the constant function equal to 1. For any Borel set A C Z,
the restriction of 7" to A, is the current 7 L A : Lip,(Z) x [Lip(Z)]" — R given by

TLA(fajTlv "'anl’l) - T(lA fajTla '-'57-[}1)7

where 14 : Z — Rdenotes the indicator function of A. Inthis case ||TLA|| = [|T||LA
and so spt(T L A) C A.

Remark 2.9 By [17, Proposition 3.3], the current 7L A can be identified with a current
deﬁne_d in (A, d) and that we will denote in the same way, thatis, 7L A : Lip,(A) x
[Lip(A)]" — R (see also [3, Equation (3.6)]).

The main examples of currents are the zero n-dimensional currents, that is,
T(f,m,...,my) =0forall (f,my,...,m,),and the ones given by

s ON(S, 71, oy 700) = AG(X)J’GP(X))det(Dx(m 0@, ...,y 0p)dL" (x),

where ¢ : A — Z is a Lipschitz function, A C R” is a Borel set and, € L!(A, R).
We will work with n-dimensional integral currents 7 which are n-dimensional currents
that can be written as a sum of currents of the form ¢;1[[6;]] as given above, with 0[ Ky
integer valued, and so that d7 is also a current. The class consisting of these currents
will be denoted as I,,(Z) and to be more precise we will sometimes write I,(Z, d).
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2.3.2 Integral current spaces and intrinsic flat distance

An n-dimensional integral current space Q = (X, dx, T) consists of a metric space
(X, dx) and an n-dimensional integral current, T € I, X, dv), where X, dv) is
the metric completion of (X, dx), and such that set(7T) = X. There is the notion of
zero n-dimensional integral current space denoted as 0 = (X, d, T'), here T = 0 and
set(T) = . We define M(Q) = M(T), set(Q) = set(T).

The boundary of Q, 00, is an (n — 1)-dimensional integral current space and is
defined in the following way. By Remark 2.9, 9T : Lip, (X) x [Lip(X)]"~! — R can
be identified with a current that we denote in the same way, 07 : Lip, (spt(d7)) x
[Lip(spt(dT))]*~' — R. With this identification

90 = d(X,dx, T) := (set(dT), dx, IT) € L1 (spt(dT), d).

We remark that set(d7) C X, and that the second entry of dQ is the metric of X
restricted to set(d7), which by abuse of notation we write as d.

Example 2.10 Given an n-dimensional compact oriented Riemannian manifold (M, g),
we can define several integral current spaces.

(i) (M, g) canberegarded as an n-dimensional integral current space, (M, dy, [[M]]),
so that the mass measure of [[M]] equals dvol, and set([[M]]) = M. Indeed, let
dyr be the length metric induced by the Riemannian metric g. Choose a locally
finite atlas {(U;, ¢;)}ien of M consisting of positively oriented Lipschitz charts
and let {1;} be a Lipschitz partition of unity of M with respect to this atlas such
that spt(y;) C U; C M. Then for (f, m) € Lip, (M) x [Lip(M)]" we define

(M 7) =)o Ll o9 NS, 7)
i=1

=3[ ieg i g det(DGr 0 g L'

i=1 %i (Ui)

(i) 0 M canbe regarded as an (n — 1)-dimensional integral current space (d M, dyy, [[0
M]]). Taking (f, 7) € Lip, (M) x [Lip(M)]”_l,

AMNS,m) =) o i o NI, f, )

i=1

> / Viog; () det(Dx((f, 1) 0 ¢ DAL (x)
%i (Ui)

i=1

> / Wi o9 N (f o g (x))

i=1 %i (UiNaM)

det(Dy (7 0 ¢, 1)dL" " (x)

@ Springer



Intrinsic flat stability of the positive mass theorem for... Page130f45 132

so by Remark 2.9 and abusing notation, we write [[0M]] = d[[M]IL OM €
I,—1(0M,dy), i.e., the orientation of M passes to dM and the atlas of bilip-
schitz maps are taken with respect to the distance of M, and so we write
O(M, dy, [[M]]) = (OM, dpy, [[dM]]).

(iii) Let Y be an n-dimensional compact submanifold of M, with possibly non-empty
boundary, and oriented (assume that the orientation of ¥ and M agree on Y).
Endow Y with the restricted Riemannian metric, g|y. Then as in (i) we get an
integral current space (Y, d}“‘r, [[Y]D so that [[Y]] € L, (Y, d%}“r). We reiterate
our notational convention of denoting the intrinsic length distance on Y, obtained
from considering (Y, gly) as a Riemannian manifold, by di,mr. If Y is a totally
geodesic submanifold of M, then dy; = d;}“r, but in general dy; # d;lm and it will
be important for us to keep track of which distance we are using.

(iv) If we donotendow Y with the restricted Riemannian metric g|y, we can still define
[[MIILY € I,(M, dy), which is given by

[IMILY(f,7) = Zf Wi o N(f og ) det(D(r o g ))dL".
i=1

i (UiNY)

By Remark 2.9 and abusing notation, we let [[Y]] := [[M]IL Y € I,(Y,dy)
i.e., the orientation of M passes to ¥ and the atlas of bilipschitz maps are taken
with respect to the distance of M. Then (Y, dy, [[Y]]) is an n-dimensional integral
current space.

Example 2.11 In this article we will work with complete, oriented, noncompact Rie-
mannian manifolds (M", g). Note that we cannot define [[M]] as in the previous
example because Ambrosio—Kirchheim currents require the mass measure to be finite
and for M = H", graph(f), for example, this would not be true, though there exist
other definitions of currents by Lang and Lang—Wenger [17, 20] that allow currents
to have locally finite measure. Nonetheless, for n-dimensional compact submanifolds
Y C M with possibly non-empty boundary we can consider (Y, d%}m, [[Y]]), with
[[YN € I,(Y, di}m), and (Y, dp, [[Y]]), where [[Y]] € I,(Y,dy), as in the pre-
vious example. In the latter, we still have set([[Y]]) = Y and 9(Y, dy, [[Y]]) =
OY, dy, [[0Y]]) with [[0Y]] € 1,,—1(3Y, dpr).

Example 2.12 ([22, Lemma 2.34, Lemma 2.35, Remark 2.37]) Given an n-dimensional
integral current space Q = (X, dx, T). Then for any p € X and for almost every
r>0, ||T||(d;1(r)) + ||8T||(d1jl(r)) = 0. For those r it holds

TLB(p,r)=TLB(p,r)

S(p,r):=(set(TLB(p,r)),dx, TLB(p,r)) € [,(B(p,r),dy)

B(p,r) Cset(T_B(p,r)) C B(p,r)

S(p,r):=(set(TLX\ B(p,r)),dx, TLX\B(p,r)) € [,(X\ B(p,r),dy),

where d), : X — Ris the function d), (x) = dx(p, x), x € X, and we had use Remark
2.9.

Furthermore, for Q = (M, dy, [[M]]) as in Example 2.10, set(T L B(p,r)) =
B(p,r). Hence, forae.r >0, S(p,r) = (B(p,r),dy, T L B(p,r)).
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We say that an integral current space (X, d, T') is precompact if (X, d) is precom-
pact. The definition of intrinsic flat distance is as follows.

Definition 2.13 ([25, Definition 1.1]) Given two n-dimensional precompact integral
current spaces, (X1, di, T1) and (X3, d3, T»), the intrinsic flat distance between them
is defined as
dr (X1,d1, Th), (X2, da, T2))
- inf{dﬁz-(wal,(pthz) LX) > z},
where the infimum is taken over all complete metric spaces Z and all metric isometric

embeddings ¢ ;. The flat distance between two n-dimensional integral currents 71, T, €
1,(Z), df, is defined as

d%(Tl, D)=mfMWU)+MV) : Uel,(Z2), Vel,1(2), h—-Ti=U+0V}.

The function dr is a distance up to current preserving isometries [25, Theorem
3.27]. Hence,

dr((X1,d1, Th), (X2,d>,T2)) =0

if and only if there exists ¢ : X1 — X2 metric isometry such that @471 = T5. In this
case, we identify both integral currents spaces

(X1,d1, ) = (X2, dz, Tn), (2.5)

and so dr is a distance in the space of equivalence classes of precompact integral
current spaces with this relation. If M; are compact oriented Riemannian manifolds,
(M1, dupy, [[IM1]1]) = (M2, duy,, [[M2]]) if and only if there is a Riemannian isometry
between M7 and M, that preserves their orientation.

Wenger proved the following compactness theorem.

Theorem 2.14 ([27, Theorem 1.2]) Let D, V, A > 0 and let {(X;, d;, Tj)}‘l?oz1 be a
sequence of n-dimensional integral current spaces such that '

diam(X;) < D, M(T;) <V and M(3T}) < A.

Then there exists a subsequence {(X j.,d;,, Tj)}{2, and an n-dimensional integral
current space (X oo, doo, To) Such that

lim dr((Xj,,dj,, Tj), (Xoo, doo, Tec)) = 0.
k—o00

We will sometimes use the notation (X, d;, T;) L (X00, dxo, To) to denote
convergence of the sequence (X, d;, Tj) to (X0, doo, Too) in the intrinsic flat sense.
Intrinsic flat converging sequences have intrinsic flat converging boundaries and the
mass functional is lower semicontinuous with respect to this distance.
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Theorem 2,15 ([25, Theorem 4.6, Remark 3.3, Remark 3.22]) Let {(X;, d;, Tj)}?":l
be a sequence of integral current spaces that converges in the intrinsic flat sense to
(XOO’ dOO7 TOO)v then

(1) limj_mo d]-‘(a(Xj, dj, Tj), 0(Xoo, doo, Too)) =0
(2) M(Ty) < lim infj_,oo M(Tj)
(3) Iflimj—>0 M(Tj) =0, then (X0, doo, Too) = 0.

2.3.3 Convergence of points and balls

Convergence of points and "balls" under intrinsic flat distance is more subtle than when
using Gromov-Hausdorff distance. With intrinsic flat distance we can have sequences
of points disappearing in the limit or balls converging to the zero integral current space
(see some examples of this in [25, Appendix]). Here we present several results from
Sormani and Huang—Lee—Perales [14, 22] that will be used in the proof of Theorem
1.4. For historical reasons we start defining convergence of points for GH converging
sequences.

Theorem 2.16 ([11, Section 6]) A sequence of compact metric spaces (Y, d;), j € N,
converges in Gromov-Hausdorff sense to a compact metric space (Yo, dxo) if and only
if there exist a compact metric space (Z, d) and isometric embeddings ¢; : Y; — Z,
J € NU {co}, such that ¢;(Y;) converges with respect to the Hausdorff distance to

@Yoo (Yo).

When keeping track of the embeddings and the space, we write:

GH
Yj — Yoo‘
Z,pj

Definition 2.17 (Gromov)Let (Y}, d;), j € N, be asequence of compact metric spaces
that converges in Gromov-Hausdorff sense to the compact metric space (Yoo, do). Let
vj€Yj,jeNandy € Y. Wesay that {y;} convergesto y, y; — y, if there exist a
compact metric space (Z, d) and isometric embeddings ¢; : Y; — Z, j € N U {00},
as in the previous theorem, such that dz(¢; (y;), o (y)) — 0.

Since it will be important to keep track of the embeddings and space, in the previous
case, we wite:

GH
Z,(pj

For intrinsic flat convergence there is a similar result.

Theorem 2.18 ([25, Theorem 4.2]) A sequence of precompact n-dimensional integral
current spaces (Y;,dj, Tj), j € N, converges in intrinsic flat sense to the precompact
n-dimensional integral current space (Yoo, doo, Too) if and only if there exist a complete
and separable metric space (Z,d) and isometric embeddings ¢; : Y; — Z, j €
N U {oo}, such that ¢ ;4(T;) — @oor(To) in the flat sense in Z.
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Similarly, when keeping track of the embeddings and the metric space, we write

F
(Yj,d;, Tj) ﬁ (Yoo, doos Tro)-
9

Definition 2.19 ([22, Definition 3.1]) Let (¥}, d;, T;) be a sequence of precompact n-
dimensional integral current spaces, j € N, that converges in intrinsic flat sense to the
precompact n-dimensional integral current space (Yoo, doo, To). Let y; € Y;, j € N,
and y € Y. We say that {y j} converges to y, y; — y, if there exist a complete and
separable metric space (Z, d) and isometric embeddings ¢; : ¥; — Z, j € NU{oo},
as in the previous theorem, such that dz(¢;(y;), ¢o(¥)) — 0.

In this case, to avoid any confusion, we will sometimes write:
f

((Y;,d;j, Tj), yj) z—¢> (Yoo, doo, Teo), ¥)-
i)

Note that y is not necessarily contained in Y, and if this is the case we say that the
sequence of points disappears in the limit and that y disappeared ([22, Definition 3.2]).

When a sequence converges in both Gromov-Hausdorff and intrinsic flat sense to
the same limit space the same embeddings and metric space can be taken.

Theorem 2.20 ([25, Theorem 3.20]) Let (Y}, d;, T;) be compact n-dimensional inte-
gral current spaces, j € NU {oo}. Then

GH F
(Y;, dj) — (Yoo, doo) and (Y;, dj, Tj) — (Yoo, doo, To)

if and only if there exist a complete and separable metric space (Z, d) and isometric
embeddings ¢; : Y; — Z such that

GH F
Z,9; Z.pj

Under the assumption of the previous theorem, it is easy to see that for any sequence
of points y; € Y, j € N, there exists y € Y such that y; — y. That is, using the
Hausdorff convergence of the compact sets ¢;(Y;) to the compact set ¢ (Yoo), OnE
can find a convergent subsequence of ;(y;) to a point z = @ (y) for some y € Y.

In our main theorems, Theorem 1.3 and Theorem 1.4, the sequences we consider
do not necessarily converge in the Gromov-Hausdorff sense, but we will be able to
prove that the sequence of points p; in Theorem 1.4 does not disappear in the limit by
showing convergence in both the Gromov-Hausdorff and intrinsic flat sense of annular
subregions to the same limit space.

Theorem 2.21 ([15, Theorem Al], cf. [1, Remark 2.22]) Let (Y,d,T) be an n-
dimensional integral current space and A, > 0. Suppose that d; are metrics on
Y such that for all y, y’ € Y we have
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Ay, y) <dj(y,y) = Vd(y, Y. (2.6)

Then there exist a subsequence, also denoted dj, and a metric d, satisfying (2.6) such
that d; converges uniformly to dw,

lim dgy ((Y.d)), (Y,dx)) =0and lim dr ((Y.d;, Tj), (Y, d, Teo)) = 0,
J—)OO j—)OO

where T; = 13T and ¢j : (Y, d) — (Y, d;) are all identity functions.
We recall the following useful lemma about intrinsic flat convergence of balls.

Lemma2.22 ([22, Lemma 4.1]) Let Q; = (X;,d;, Tj) be a sequence of n-
dimensional integral current spaces, j € N U {oo}, such that

(07,71 —2= (Qoor Yoo
Z,(pj

then there exists a subsequence yj, € X j, such that for almost every r > 0 and all
k € N U {oo} the triples S(yj,,r) and S°(yj,, r) are integral currents spaces, and
using the same isometric embeddings we have,

F
SWjs 1) —— S(Voo. 1)
Z,{pjk

F
S Wjis 1) ——> 8 (Yoo, 7).
Z,(pjk

Remark 2.23 1f we further assume in the previous lemma that lim; .. M(Q;) =
M(Qco), thenlimj—, oo M(S(yj,, 7)) = M(S (Yoo, 1)), 1.6 limk— o0 [| T [[(B (v, 7)) =
1 Tso || (B (Yoo, 7). Indeed, by Theorem 2.15 we know that

likm inf M(S(yj,, 7)) = M(S(Yoo, 7))

and

lim inf M(S€(yj,, 7)) = M(S(yoo, 7).
— 00

Now, by Example 2.12 we know that ||T;, ||(dy_j: (r)) = 0 and thus the mass measures
of S(yj,,r) and S°(yj,,r) are ||Tj ||L B(yj,,r) and ||T; || L X j\B(y,, 1), corre-
spondingly. Assume that our assertion does not hold, then the first inequality above
must be a strict inequality, and we get

Too||(Xoo) = liminf [|T5, [|(X j,)
k— 00
= likrgiogf{HTjk”(B()’jk, ) + T (X \ B(yj. )}

> [Tl (B (yoor 1)) + [[Too| (X0 \ B(yoos 1)) = [[Tool (X o).
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which is a contradiction.

We now introduce notation similar to Example 2.11 and Example 2.12. Given an
integral current space Q = (X, d, T) and a subset ¥ C X, we define the restriction
of Qto Y by

QLY :=(set(TLY),d, TLY)

and note that 7 L Y is a current but might not be an integral current, so in particular
the triple is not necessarily an integral current space.

We now see when a non-disappearing sequence of points y; € ¥;, withY; C X,
is a non-disappearing sequence if we consider each y; as an element in X ;.

Theorem 2.24 ([14, Theorem 2.9]) Let Q; = (X;,dj, T;) be a sequence of n-
dimensional integral current spaces, j € N U {00}, such that

]_‘
Qj — O,
Z,gj

and let Y; C X such that Q; L Y; are n-dimensional integral current spaces that
converge to some integral current space N,

F
LY, . N , ,
(Qj J y/) Wﬂﬁj) (Noo» y)

where y; € Yj and y € set(Nxo). If there exists r > 0 such that the metric ball

BXi (yj, r) is contained in Y for all large j, then there exists a subsequence y j, and
a point yoo € X oo such that

Qs ¥ir) {—» (Qoor Yoo)-
Pk

We give a lower bound of the distance between a point in a limit space to the set of
the boundary.

Theorem 2.25 ([14, Theorem 2.11]) Let Q; = (Y;,d;, T;) be a sequence of n-
dimensional integral current spaces, j € N U {00}, so that

(0}, 3)) = Qs ¥oo).

Suppose that 0Q; # 0, that we can write 0T; = le. + R? so that le., RJZ. €
Li-1(Y}. d}) and that (set(R2). d;, R?) 2> 0, then

doo (Yoo, 5€1(dToo)) = limsupd; (y;, set(R})).

j—o00
In particular, B(yoo, 1) N set(0Tx) = @ for all r < lim SUP 00 di(yj, set(le-)).
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Lemma2.26 Let {(Y;,d;, Tj)}i":1 be a sequence of n-dimensional integral cur-
rent spaces that converges in the intrinsic flat sense to (Yoo, doo, Too). Assume that

- F
Tj = R} + R? so that R},R? € 1,(Y;,dj) and (set(R?),dj,Rjz) > 0, then
]_'
(set(R}), dj, R}) == (Yoo, doo, Too)-

Proof By Theorem 2.18 there exist a complete and separable metric space (Z, d) and
isometric embeddings ¢; : Y; — Z, j € NU{oo}, such that ¢+ (T}) — @oot(Teo) in
the flat sense in Z. Thus there exist U; € I,(Z) and V; € I, 1(Z) sothat T; — T =
Uj+aV;and M(U;) +M(V;) — 0. Then R} — Too = (Uj — R7) + 8V}, and since
MU, - RJZ.) < MUj;) + M(RJZ.), we obtain the desired convergence by applying
Theorem 2.15. O

To end up this section we state a result that allow us to pass from subconvergence
of balls for almost all radii to convergence of all balls for all radii provided one deals
with manifolds and has volume convergence.

Theorem 2.27 ([14, Theorem 2.12]) Let (M, g ;) be Riemannian manifolds with p; €
M;j, for j € N U {00}. Assume that for every subsequence of {pj, }ken of {Pj}jeN
there is a subsequence {pj,,}¢eN such that for almost every r > 0, vol(B(pj,,, 1)) —

vol(B(poo, 1)) and S(pj,. 1) i> S(poos 1). Then for all almost every r > 0, we
have vol(B(pj, r)) — vol(B(peo, 1)) and S(pj,r) i) S(Poos 1)-

3 Preliminary results

Given (M,g) € Gu(po,y,D) and p > 0, we set Q(p) = ¥ (B (p) x
R). In Theorem 1.3 we will show intrinsic flat convergence of integral current

spaces (2(p), dg‘?p), [[$2(p)]]), associated to (£2(p), gla(p)) as in Example 2.11,

to (B(p), dgl;%, [[B?(p)]]), which is the current associated to (B?(p), b|
0

B
By the following remark we will in general denote the previous space as (B?(p),

dur, [[B?(p)]]) and b'BT(M as b. Clearly, we have that vol,(A) = VOlb\BT()(A) for
P

any A C B%(p) and volg(A) = volgm(p) (A) forany A C Q(p) and thus we will not
use any subindex for the volume.

Remark 3.1 All open and closed balls in (H", b) are totally geodesic given that b =
dr? + sinh? (r)o with r € [0, oo] and sinh is increasing. Indeed, for any piecewise
Lipschitz curve y(t) = (r(t),6(t)) : [0, 1] — H" joining any two points in Bb(,o),
the curve (7 (), 6(¢)) with 7(¢) = min{r(z), max{r(0), r(1)}} has smaller length than
y and is contained in B”(p). The same holds for B (p).

Evidently the same proof does not give geodesic convexity of 2(p) in (M, g)
because the metric on graph( f) is given by b + V2df ® df and we have insufficient
control on how the correction term V2df ® df depends on r. It may be that some
of the properties of the class G, (oo, y, D) influence the geometry enough to ensure
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(geodesic) convexity via a different argument, but we do not see any concrete mecha-
nism for this at the moment.! Therefore we will be working with the intrinsic distance
dg“(rp) on £2(p) obtained from g|q,) for Theorem 1.3. For Theorem 1.4 we will be
able to use dyy i thanks to Lemma 4.4.

In this section, we first calculate some estimates that will be used in the proof of
Theorem 1.3. We establish uniform intrinsic diameter bounds for regions of the form
Q2 (p) and their volumes, and uniform volume bounds of their boundaries. We also
show that for any sequence M; € G,(po, y, D) such that m(M;) — 0, the volumes
of the ©2;(p)’s converge to the volume of the ball B?(p).

In the last part we show that the annular regions Q;(0)\2;(p), po/2 < p < p' <
00, converge in Gromov-Hausdorff sense to B?(p’ )\Bb(p), and that the sequence of
inner boundaries of 2;(p), M, converge to the zero integral current space. These
two convergence results in combination with results in Sect.2.3.3 will be used in the
proof of Theorem 1.4.

3.1 Volume estimates

Here we get uniform upper volume estimates for vol(2 (0)) in terms of vol(B?(p)) and
an extra term that depends on the hyperbolic mass m(M) of M. The key ingredients
to obtain the estimates are an isoperimetric inequality for the hyperbolic space, the
coarea formula and the fact that the manifolds are graphs that satisfy the properties
listed in Definition 1.2.

We recall the following isoperimetric inequality applicable to domains in the hyper-
bolic space.

Proposition 3.2 ([28, Proposition 3]) Let M be a complete simply connected n-
dimensional Riemannian manifold with sectional curvature bounded from above by
—K, K > 0. Then, for any compact domain D C M,

vol(D) < vol(dD) /K (n — 1).
We also recall the following useful fact originally stated in the Euclidean case in

the proof of Theorem 3.1 in [15].

Proposition3.3 Let S = 0*E C H", for some E C H", be an outer-minimizing
hypersurface, where 8* denotes the reduced boundary. Then H"~'(S N B(p)) <
(9B (p)).

Proof Let §' = 8*(E U B?(p)). Then H"~'(S) < H"~1(S’) by the outer-minimizing
property of S. Removing S N §” from S and §’, respectively, we get

HHSN S =HHS N (SNS) < H' IS (SN SH)) < HIHS N 9).

1 Any counterexamples would need to not be spherically symmetric, making it more difficult to find
conditions ensuring that they indeed satisfy all the assumptions placed on the class G, (pg, v, D). However,
one can readily imagine and write down explicit two dimensional toy models in Euclidean space with
ellipsoidal level sets (in particular these are still outer-minimizing and starshaped), where one can explicitly
see non-convexity from the graphs.
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Finally, note that S ~. &' = S N B?(p) and §' . § C dB”(p). m]

Lemma3.4 Let M € G,(po, ¥, D) be a manifold such that ¥ (M) = graph(f) and
m(f) < 1. Define

Q7 (p) = " (BP(p) x (=00, ho(/))).

where ho(f) is given in Definition 2.6. Then, for any p > pg the following holds:
vol(27 (p)) < 2Bw,—m(f) (C,, + cosh(p)|ho(f) — _min fl) .
B (p)\U
Here c,, comes from the isoperimetric inequality, i.e. it equals 1/(n — 1).

Proof By standard computations and the coarea formula,

vol(Q™ (p)) = /7 J 14 V2IVP £ 2 dvol,,

BP(0)N{f <ho(f))
(1 + V|VP£]) dvol,

)
B (0)N{f <ho(f))

ho(f) -
< H"(f (=00, ho(£))) + cosh(p) HN (7 s) N B (p)) ds.

—00

Now we calculate the first term on the right hand side. By Definition 2.6, for all regular
values h < ho(f) of f,

H' LN () < 2Bwp-m(f).
If necessary, taking a nondecreasing sequence of regular values #; € R of f with

lim; 00 h; = ho(f) and for which f’l (h;) is star-shaped, and applying the isoperi-
metric inequality, Proposition 3.2, we have

H"(f ™ (=00, ho(f))) = Jim H' (f~ (=00, hi)) < ca2Bou—im(f).  (3.1)

For the second term, we use again the fact that for any regular value 2 < ho(f) of f
we have H"~1(f~1(h)) < 2Bw,_1m(f) and, we note that min f < ho(f). Hence,

ho(f) —
/ H''(f 7 (s) N BP(p)) ds < 2Bw,m(f)lho(f) — _min  f|. (3.2)
—o0 B (p)\U

Adding (3.1) and (3.2),
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vol(Q7(p)) = 2Bwu—1m(f) (Cn + cosh(p)|ho(f) — _min f|> .

Bb(p)\U
O

Lemma3.5 Let M € G,(po, ¥, D) be a manifold such that V(M) = graph(f) and
m(f) < 1. Define

@ (p) = ! (BP(0) x [ho(f), 00)) .
Then, for any p > po the following holds:
vol(21(p)) < vol(B?(p)) + Cm( )™ cosh(p)vol (3B (p)).

Here C = C(n) comes from Theorem 2.7.

Proof We estimate the volume of Q2 (p) in the same way as in the proof of Lemma

3.4,
vol(2F(p)) = / V14 V2|Vl £ |2 dvol,

BP(0)N{f>ho(f))

(1 + VIV? £])dvol,,

<

/Bb(mmf>h0(f)}

< vol(Bb(p)) + cosh(p) N H*N(f7 (k) N BY(p)) dh,
ho(f)

Since f € G,(po, ¥, D), almost every level set of f is outer-minimizing. Thus we

can apply Proposition 3.3. Hence, H"~'(f~'(h) N B?(p)) < vol(dB”(p)) almost
everywhere. Moreover, by Theorem 2.7, f < Cm(f)"/ "= 4 ho(f). It follows that

vol(Q*(p)) < vol(B?(p)) + Cm(f)" = cosh(p)vol(d B” ().

O

Corollary 3.6 Let M € G,(po, ¥, D) be a manifold so that m(M) < 1. Then for any
0 = po,

vol(£2(p)) <vol(Bb(p)) + Cm(M)"/ =2 cosh(p)vol(d B’ (p))

+ 2Bwy—1m(M) (Cn + cosh(p)|ho(f) — _min f|> .

Bb(p)\U

Remark 3.7 Note that there is an easier way to obtain a uniform upper bound estimate
for vol(€2(p)). Indeed, by the coarea formula and Proposition 3.3, it follows that

vol(R2(p)) < vol(Bb(p)) +| max f— min f]| cosh(p)vol(aBb(p)).
B (p)\U Bb(p)\U
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Nonetheless, this bound does not immediately imply convergence of the vol($2(p))
to vol(B%(p)) provided m(M) — 0. Since the estimate in Corollary 3.6 involves
m(M), this estimate implies the aforementioned volume convergence as we will see
in Theorem 3.8. This is important to be able to apply Theorem 4.1 in the proof of
Theorem 1.3.

3.2 Diameter bounds, area bounds and volume convergence

Now we prove that for any sequence {M;} C G,(po, y, D) with massm(M ;) converg-
ing to zero, the sequence 2;(p) has uniform intrinsic diameter bounds, the volumes

converge to the volume of the ball BY(p) and, the boundaries have uniform volume
bounds. These estimates will be used in the proof of Theorem 1.3 and Lemma 3.11.

Theorem 3.8 Let {M;} C Gu(po,y, D) be a sequence of manifolds such that
limj ,oom(f;) = 0 and p > po. Then there exist Dy(po, y, D, p), Co(y, p) > 0
so that

diam((R2;(0), d3%,))) < Do(po, v, D, p), vol(@K2(p)) < Co(y. p), (3.3)

where diam(Q2; (p), d};‘;r(p)) is the diameter of 2 j (p) with respect to d};‘;"(p), the intrin-

sic length distance in $2j(po) induced by gjlq; (o0)-> Further

vol(R2;(p)) — vol(B?(p)).
Proof Recall that each M; € G, (po, v, D) satisfies (1.1):
VEOIVP P 0) <y?  Vr=2.6es" .
Any two points in W;l(Bb—@\Bb(po) x R) C Qj(p) can be connected by first
moving radially inward along the graph of f;, then following an arc on X ; (00) and then

connecting radially outward to the desired endpoint. By the above estimate the length
of the first and last segment of this curve must each be bounded by (o — pg)+/1 + 2

and the length of the middle segment is bounded by 7 sinh(,09)+/1 + y2 since it is an
arc on X (o), so the total length of the connecting curve is no longer than

2(p — po)y/ 1 + ¥2 + m sinh(pg)/ 1 + ¥2.

For points contained in \IJ;] (B®(pg) x R), we note that, while the definition of depth
in Definition 1.2 uses the restricted distance dj;, one also has

depth(€; (p0)) = sup{dgs’i ) (P, Zj(p0)) : p € 2j(po))

2 Note however that then the estimate clearly also holds for the diameter of €2 (p) with respect to d M,

because djy; < dg“,r(p).
: j
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because any curve leaving €2;(poo) can only do so through X;(p9) which implies

du(p, Z(po)) = dg‘;r(po)(p, T (po)) for p € ;(po). Thus by the triangle inequal-
ity,

diam(£2; (p), d;g;r(p)) < 2D +2(p — po)y/ 1 + y2 + 7 sinh(pg)y/ 1 + y2
=: Do(po, v, D, p).

Hence, we have the required uniform upper diameter bound, denoted by Dy =

Do(po, v, D, p).
By Theorem 2.5 (and V > 1) and (1.1), we get

vol(0R2;(p)) = vol(dM ;) + vol(X;(p))
< 2w, 1m(f)) + /1 + y>vol(@ B’ (p)).

Since lim ;. oo m( f;) = 0 it follows that vol(9€2 (p)) is uniformly bounded.
Since lim; oo m(f;) = 0 we can assume that m(M;) < 1 and apply Corollary
3.6,

vol(€2;(p)) <vol(B?(p)) + Cm(M )"/ "= cosh(p)vol(d B (p))

+ 2Bwp—1m(M;)(c, + cosh(p)|ho(f;) — min  f;]).
B (p)\U;

Let us find a uniform upper bound for |Ao(f;) — min |. Note that for any

x,y e H"\ U;

Bony; I
1£500) = FiO] < dggasi ((x, £, (v, £7(0)))
< du; (V5 Ox, £500), 95 s £ (00).

When restricting the previous to B”(p) \ U; and using du; = dg‘]“( ) e get,

max fj —_min f; < diam(R;(p), dg',) < Do. (3.4)
BY(p)\U; BY(p)\U;

Thus,

vol(Q2;(p)) <vol(B(p)) + Cm(M )"/~ cosh(p)vol(d B (p))
+ 2Bwp—1m(M ) (cy + cosh(p) Do) — vol(B?(p)). (3.5)

Finally, since each M is isometric to graph(f;), we also have

vol(82;(p)) =vol(B®(p)) — vol(U}), (3.6)
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and vol(U;) — 0by Theorem 2.5 and Proposition 3.2. So vol(£2(p)) — vol(BY(p)).
O

3.3 GH convergence of annular regions and IF convergence of boundaries

In this section we prove two results needed in the proof of Theorem 1.4. In Theorem 1.4
we have a sequence of points p; € X (o) and have to prove intrinsic flat convergence
of the balls (BMi(p;, R),dy,.[[BMi(p;, R)]]) to a ball in hyperbolic space. By

Theorem 1.3 we will have (2; (E), dg‘r( R’ [[€2; (ﬁ)]]) converging in intrinsic flat
J

sense to (Bb(ﬁ), dmn, [[Bb(ﬁ)]]). To ensure that up to a subsequence p; — poo for

some poo € BP(R), the main ingredient will be Corollary 3.10 where one obtains
Gromov-Hausdorff and intrinsic flat convergence of the annular regions A(p, p’) :=
Q) \ Q(p) to Bb(p')\B”(p). Then to ensure that B?(pe, R) C BP(R) we will
have at our disposal Lemma 3.11 where we show that the sequence of inner boundaries
(oM, dgjtr( ) [[0M ]]) converge in intrinsic flat sense to the zero (n — 1)-dimensional
integral current space.

Lemma 3.9 Assume M € G,(po, v, D) such that V(M) = graph(f), for f € G,.
Write W = (W', W?) : M — H" x R. Then for any p > po/2 there exists a constant
I' =T (po, p,y) > 0, such that

Wl (M\ Q(p),dy) — (H"\ B®(p), dun) (3.7)

is bilipschitz with Lip(W') = 1 and Lip((¥")~") = I". Furthermore, for any R >
p' > p>po/2

W' (Ap, p), dgir)) = (BP(p)) \ B (p), din),

is bilipschitz with Lip(W') = 1 and Lip((¥ ")~ = T'(po, p, y).

Proof Recall that W : M — H"*! \ U is a smooth Riemannian isometric embedding
and that (M) = graph(f). Hence, vl (M, dy) > (H" \ U, dyn) is bijective
and 1-Lipschitz. To simplify notation, denote the inverse of W! | M\Q(p) : M\Q(p) —
H"\ B?(p) by ®. We have to show that ® is I'-Lipschitz.

Let x,x’ € H" \ B’(p) be two points. If the unit-speed b-geodesic c(¢)
[0, dgn (x, x’)] — H" that connects them lies in H" \ Bb (p), then by the Cauchy-
Schwartz inequality and (1.1),

dygn (x,x")

dy (@(x), @(x")) S/ \/b(C’(t), (1) + VI (1), V f)
0

<dmr (x,x")y/1+ y? (3.8)
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If ¢ passes through Bb(p) then there exist intervals [0, 11, [t1, t2], [t2, dmn (x, x))],
see Remark 3.1, such that c([0, t11), ¢([£2, dmr (x, x')]) € H"\B?(p) and c([t1, 1]) C
B?(p).Note that estimate (3.8) holds for dy; (® (x), ®(c(t1))) and dy (P (c(12)), P(x')).

For the remaining part, note that d» (p, dB”(2)) = p — £ (as the radial curve
provides a minimizing geodesic) for any p € dB®(p), so if dyn (c(t1), c(t2)) < p —
% =: {,., then the unit-speed b-geodesic from c(#;) to c(2) lies in BY(p) \ Bb(po/Z).
Hence, (3.8) holds for dy; (P (c(t1)), ®(c(tp)). If dyn (c(t1), c(t2)) > L4, observe that
the pullback metric of b under the inclusion map, d B” (p) — H", equals the standard
round metric in a sphere of radius sinh(p). Thus, the diameter of dB’(p) c H" with
respect to its induced Riemannian metric equals 7 sinh(p) and so c(#1) and c(t2) can
be connected by a curve o in 9 B?(p) of length bounded above by 7 sinh(p). We have

/1 + y2m sinh(p)
Ly

y

dy(®(c(11)), ®(c(r2))) <\/1 4+ y>Lmn (o) <
_ /1 + y2m sinh(p)

= .

dyn (c(t1), c(12)).

From the triangle inequality and using that ¢ is a minimizing b-geodesic from x to
x’, we conclude that

dy (P (), D)) = max(l, ) 1+ y 2 (x, x').

Then define I'(pg, p, y) := max(l, ”;if—lép))\/l + y2.
Similarly W' : (Q(R),dglgm) — (BP(R)\U, dm) is 1-Lipschitz and bijective.

Proceeding as in the previous case and taking into account that B®(R) c H" is a
totally geodesic submanifold (see Remark 3.1), the inverse of W! restricted to the
annular region A(p, p’) is T'(09/2, p, y)-Lipschitz. |

By applying Theorem 2.21 to the sequence A (p, p’) we get the following.

Corollary 3.10 Let M; € G,(po, v, D) be a sequence. Then for any R > p' > p >
po/2 and with the same notation as in the previous lemma, we have

i GH
(Aj(p, P, dR) == (A%(p, 0. doo)
and
i F
(Aj (0, ), dS Ry A (s PO == (A% (p, p'), doo, T,

where A(p, p') = Bb(p") \ B%(p), dso : AP(p, p') x AP(p, p’) — R is a distance
function that satisfies dyn (y, y') < doo(y, ") < T(po, p, y)dur(y, y") foranyy,y' €
Al(p, p)), too @ (AP(p, p)), dun) — (AP(p, p'), dso) is the identity function and
Too = too[[A” (p, P11

@ Springer



Intrinsic flat stability of the positive mass theorem for... Page27of45 132

Now we show that the inner boundaries converge to the zero integral current space
and that the outer boundaries converge to the boundary of the limit space.

Lemma3.11 Let {M;} C Gun(po, v, D) be a sequence such that lim;_, .o m(f;) =0
and p > po. Then there exist a subsequence {(2j,(p), dg’jt_r o) [[£2;,(p) 1D} and an
k

integral current space (b, d5, TL) such that

i F
(R (0, 4B ), 12 () = (o, dB, TL).
With no loss of generality assume that (this is true up to a sign) for all j € N,
a2 (P =[[%;(p)]] — [[0M;]] € I,—1(82(p), dg;r(p))

with [T ()11, [1OM ;1] € L1 (R (p), 3% ) and where £j(p) = 32 (p) ~ M.

Then we have

i F
(8M,-k,dgz(p), [[aM; 1) — 0

and
i F
(2. (o), d?{i(p), [([Z ()] —— (R, ds, TS).

Proof By Wenger’s compactness theorem, Theorem 2.14, and Theorem 3.8 there
exist a subsequence {(£2; (p), dg;r (o)’ [[£2,(p)ID} and an integral current space
k

(5, d%, TL) such that (2, (0), dg‘]‘]f (o)’ [[£2, (0)1]) converges in intrinsic flat sense

to (5%, d%, TX). Then by Theorem 2.15 we get

intr F
0 (p). gy (- 12 (P)IN) > (0. do. T).-

Since M([[0M;]]) = vol(dM;) and by the Riemannian Penrose-like inequal-
ity for asymptotically hyperbolic graphs, Theorem 2.5, we have vol(0M;) <

20, 1m(f;) — 0. It follows by Theorem 2.15 that (M, di2* . [[8M,11) = 0.

Then by Lemma 2.26 we conclude the proof of the lemma. O

4 Proofs of the main theorems

Here we prove Theorem 1.3 and Theorem 1.4. A key tool to prove the former is
Theorem 4.1. Unlike Wenger’s compactness theorem, Theorem 2.14, Theorem 4.1
tells us which space is the limit. Theorem 4.1 was applied in [5, 14] to fill in a gap in
the proof of the stability of the positive mass theorem for asymptotically flat graphical
manifolds under intrinsic flat distance [15, 16].
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Theorem 4.1 ([5, Theorem 4.2, cf. Proof of Theorem 1.1 in [5]]) Let D, A > 0 and
Aj € (0, 1] be a sequence such that iminf ; o A; = 1. Let (2, g;) be a sequence
of n-dimensional compact oriented Riemannian manifolds with non-empty boundary,
J € N U {oo}, with g; continuous for j € N and g smooth, so that any gso-
minimizing geodesic between two points in the interior of Qo lies completely in the
interior. Assume that for all j € N,

diam(2;) < D, vol(02;) < A,

that
vol(£2;) — vol(Rx) as j — oo,

and that there exist C' diffeomorphisms D Qoo — Qjsothatforallv e TQx
Aj8oo(V, V) < gj(d®jv,dD;v).

Then (£2;, de, [[£2;1]) converges in intrinsic flat sense to (o0, day, » [[R00]]).

Let us recall our first main theorem, Theorem 1.3.

Theorem4.2 Let M; € G,(po,y, D) be a sequence of asymptotically hyperbolic
graphs with V; : M; — H"*! a smooth Riemannian isometric embedding as in
Definition 1.2. If limj_, oo m(M;) = 0, then for any p > po we have

Jim dr(©(p), di . 125 (1D, (BY(p), ds [BP (1) = 0

and vol(Qj(p)) — vol(Bb(p)).

In the non-entire case we prove Theorem 1.3 by enlarging each 2 (p), as described

in Appendix A, to get manifolds diffeormorphic to B?(p) and then apply Theorem 4.1
to the new sequence. The uniform diameter, volume and area bounds needed follow
by the corresponding uniform diameter and area bounds shown in Theorem 3.8 and
the way the enlargements and diffeomorphisms are chosen.

Proof of Theorem 1.3 We first assume that all the manifolds M; have non-empty
boundary. Let A.; € (0, 1] be a sequence such that liminf; .o A; = 1 and fix some

L>D+ % sinh(pg) /1 + y2. We replace each (£2j(p), g;) by amanifold (SNZJ-, gj)
diffeomorphic to B?(p) by applying Theorem A.1 for A = ;. To obtain the conclu-
sion of the first part of the theorem, by the triangle inequality, it is enough to prove
that

Jlim dr((2;(p). dg ), 1192, (D, (R, dg,, [12;11) = 0
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and
Jlim dr((€2;. dg;,. [[1D). (B (). din. 1B (p)ID) = 0.

We get the first limit as follows. By the definition of intrinsic flat distance and
given that by Theorem A.1 (£2;(p), d‘slz“( p)) embeds in a distance preserving way into

(Q], in), we get

dr((2;(p), dB 112501, &, dg . [18;1) < dp’ (125 ()],
[[2,1D) =< vol(2; \ 2;(p)).
By Theorem A.1, Theorem 2.5 and our hypothesis on the masses we get vol(Q \Q2;(p))

V(L po, 0U;) — 0. Thus, we get the first limit.
The second limit is proven by ensuring that we can apply Theorem 4.1 to

{(SNZj, dﬁj, [[SNZj]])}jeN, where the limit space has to be the hyperbolic ball (B?(p),
dmr, [[B®(0)]]). In Theorem 3.8 it was shown that for all j € N

diam((£2;(p), d}?]‘.r(p))) < Do(po, v, D, p), vol(3R2;(p)) = Coly, p),

and lim; _, o vol(£2;(p)) = vol(Bb(,o))
Recall that (£2;(p), dlnt Q( p)) distance preserving embeds into (Q j dQ ). Thus, a

uniform diameter bound for the Q. S is
diam((2; (). dg¥(,)) + diam((2; \ 2;(p). d)) < Do(po, . D, p) + D(L, po),
where D(L po) is the upper diameter bound provided in Theorem A.1. N ow, 852

852 j(P)\OM; so vol(BSZ ) < Co(y, p). Since we saw above that vol(Q \Q2; (,o))
V(L po, 0U) — 0, we get

IA ||

lim vol(22;) = lim (vol(22;(p)) + vol(2; \ 2;j(p))) = vol(B(p)).
Jj—o0 Jj—o0

Since liminf; .00 A; = 1 and §J~ > Ajb by Theorem A.1, and by Remark 3.1 the ball

BY(p) is totally convex, we can apply Theorem 4.1 to conclude that the second limit
holds. Putting both limits together we get the conclusion,

lim d7 (2 (p), 4, 112, (D, (B Gpo), den B> (o)1) = 0.

If the M are the graphs over entire functions, then there is no need to enlarge the
manifolds. The result follows immediately from Theorem 3.8 and Theorem 4.1. If the
sequence M ; contains subsequences of both entire and non-entire manifolds the result
follows from the previous cases. O
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Next we will rewrite Theorem 1.4 and give its proof. However, before we do this,
let us first establish the following lemmas.

Lemmad4.3 Let Q; = (X;,d;, T}) be a sequence of n-dimensional integral current

spaces, j € NU {00}, so that Q i) Oco. Suppose that y; € Xjand Y; C X; are
compact sets, j € N, such that

G
o (Y;,d)) —H> (Y, d) for some (non-empty) compact metric space (Y, d)
o (Y;,dj, T;LY;) are n-dimensional integral current spaces that converge to the
integral current space N = (Y, d, S), for some S € I,,(Y)

o there exists r > 0 such that BXi (yj, r) is contained in Y for all large j.

Then for any complete metric space Z and isometric embeddings ¢; : X j — Z that

satisfy
f
Qj - QOO5
Z,pj
we can ensure that there exist a subsequence y;j, and y, € X oo such that
f
(ija y]k) — (QOCH yOO)
Z,9j,
Proof By Theorem 2.20 we have

GH F
Yi,dj) — (Y,d) and (Y;,d;, TiLY;) —> (¥,d,S),
(¥; j)W’]//j( (Yj,dj, T, j)W’w./_( )

where W is a complete and separable metric space and v; are isometric embeddings.
Since ¥~ (Y) is a compact subset of a complete space, W, and

v (Y)) % Voo (V).

there exists a subsequence of v;(y;) that converges to ¥ (y) for some y € Y.
Therefore

f
((Yj,dj, TjLY}), yj) e ((Y,d,S),y).
W

By the third bulleted hypothesis we can apply Theorem 2.24 to get a point ys € X oo
and a subsequence such that

Qi Vi) === (Qoor Yoo).
Z,9j,
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The next lemma compares djs and dgzrp) on relevant regions of M for large p. This
is important as it will allow us to use Theorem 1.3 in the proof of Theorem 1.4.

Lemma4.4 Let (M, g) € G.(po, y, D) andfix R > 1+ (4+m sinh(po+1))/1 + y2.
Then

intr _ M R
(1) dg(mH})—dMO”B (p, R) forall p € ¥(pp) and R < 3,
1ntr — —
(2) din0 o =dyon Apo — 1, p0+ .
Proof To show d;‘;?pﬁ A= dy on the desired subsets we need to show that for two

points x, y € BM(p, R) (resp. x, y € A(po—1, po+1)) any curve of length dp (x, y)
from x to y in M will remain in Q(po + R). This is satisfied if any curve of length
bounded by diam((BM (p, R), dy)) < 2R (resp. diam((A(po — 1, po + 1), dwy)))
starting at point x € BM(p, R) (resp. x € A(pp — 1, po + 1)) remains in Q2 (og + R).

We first consider the case x € BM(p, R). Let ¢ be a curve in M starting at x of
g-length L < 2R. We may extend c to a curve ¢ in M starting at p € X (pp) of length
L < 3R. Since M is a graph over H", the b-length of the projection of ¢ onto H"
is similarly bounded by 3R and this projection starts at d B (pg). So by the triangle

inequality the projection must remain in B(pg + 3R) C B%(po + R). Hence ¢ itself
remains in 2 (pg + R).

The case x € A(po — 1, po + 1) goes similarly: First note that diam((A(pg —
1, po + 1), dyy)) is bounded from above by 4,/1 + y2 + 7 sinh(pg + 1)4/1 + y2 (this
follows as always by considering curves along the graph of f between any two points
in A(po — 1, po + 1) which first move radially outward, then follow X (p9 + 1) and
then move radially inward). Then we see, analogously to the above, that any curve in
M starting at x of g-length L < 4,/1 + 2 + 7 sinh(pg + 1)/1 + y2 must remain in

Q((oo + 1) + 41+ y2 + 7 sinh(pg + 1)y/1 + y2) C Q0o + R). O

Now we are ready to rewrite Theorem 1.4 and give its proof. The proof consists
in applying Theorem 1.3 and the results of Sects.2.3.3 and 3.3 in combination with
Lemma 4.4.

Theorem 4.5 Let M; € G,(po,y, D) be a sequence of asymptotically hyperbolic
graph manifolds with lim;_, .o m(M;) = O and p; € X;(po) be a sequence of points.
Then for almost every R > 0 we have

jli)rr;o dr((BMi(pj, R), dum;, [([BMi(p;, R)ID), (BP(R), dw, [[B*(R)]])) =0
and vol(BMi(p;, R)) — vol(B?(R)).

In the following we abuse notation and do not change indexes when passing to
subsequences.
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Proof of Theorem 1.4 Let R > 1+ (447 sinh(pg+1))+/1 4 y2. Then by Theorem 1.3
and Theorem 2.18 we know that

Q) = (Rj(po+ R).dg' g 112500 + R

ziw? (B(po + R). din. [[B(po + R)1.

for some metric space Z and isometric embeddings ¢;. Assume with no loss of gen-
erality that po > 2,50 pg — 1 > po/2, and A;(po — 1, po + 1) C Q;(po + R) since
R > 1. Thus we can apply Corollary 3.10 to get that

. _ intr . _
(Aj(p0 = 1. oo+ D.dpt 2 114 (po = 1. po + DI
converges in intrinsic flat sense to some integral current space
(Bb(po + 1)\ B"(p0 — 1), doo, Tx)

and (A;(po — 1, po + 1), a3 ) converges to (B® (oo + D\B”(py — 1), doo) in
Qj(po+R)

the Gromov-Hausdorff distance. Now, notice that since dj ;< dine

Q;(po+R)’
have BS%0+R) (p. 1) € BMi(p;, 1) € Aj(po — 1, po + 1). So by Lemma 4.3 we
obtain a subsequence of p; € X;(po) such that

we always

F . = —_— =
Q5. 5= (B oo+ B). e (1B (oo + D). pc) . (@1)
P
By Lemma 3.11 and Theorem 2.25, we get that
dxr (oo, dB®(po + R)) > lim sup 2™ (pj.Zj(po+ R)) = R.

e, Qa0+ R)

So B?(peo, R) C BY(po + R) holds for almost every R € (0, R) and using the
notation from Example 2.12

S(Poos R) =(B?(poo, R), dun, [[B (poc, R)1D)
=(B"(R), dyn, [[B*(R)1),

where in the last equality we use the fact that for manifolds N; with integral current
spaces (N;, dy;, [[N;]]), we have (N1, dy,, [[N1]]) = (N2, dn,, [[N2]]) if and only
if there exists an orientation preserving isometry between the N;’s. Furthermore, by
applying Example 2.12 and Lemma 4.4 item (1), we get that for almost every R €

©, %)
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S(pj. R) = (BQ./(/’0+R)(pJ-, R), dg‘;r(pﬁk), [[B P tR) (. R)]])

=(BMi(pj, R), du;, [[1BMi (pj, R)I).

Now by (4.1), Lemma 2.22 and Remark 2.23, we get that for almost every R > 0
and a subsequence of p;,

F
S(pjs R) ——> S(poo, R),
Z,gaj

and M(Sgpj, R)) — M(S(poo, R)). Thus, for a subsequence of p; and almost every
R € (0, %) it holds

(B (p;, R), . [[B™ (p;, R)IN) > (B(R), dsan, [[BP(R)1])

and vol(BMi(p;, R)) — vol(B”(R)).

To finalize the proof, take a sequence of positive real numbers R; — oo, R| >
1+ (4 + 7 sinh(pg + 1))4/1 + y2, and by a diagonalization argument, proceeding as
above, get a further subsequence of the p; such that for almost all R > 0 we have
BMi(p;, R) N Bb(R) and vol(BMi(p;, R)) — vol(B”(R)). Thus, we can apply
Theorem 2.27 to conclude the proof. O
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Appendix A. Capping and construction of suitable diffeomorphisms

Let M" be an asymptotically hyperbolic manifold and let ¥: M — H"*! be an
isometric embedding such that W (M) = graph(f) for some f: H"\U — R, with
non-empty minimal boundary dU . Recall that this implies, among other things, that f
is constant at the boundary — for simplicity assume that f|3y = 0. As before, we set
Q(p) = ¥ (B?(p) x R) for p > 0. We also identify Q(p) with ¥ (Q2(p)) c H"*!
and equip it with the induced metric from H"*!. Our goal is to “cap-off” Q(p) to
obtain a differentiable manifold £ with a C° Riemannian metric and to constructa C'
diffeomorphism P - Bb(,o) — Q so that the conditions on the Riemannian metrics
of Theorem 4.1 (cf. [5, 14]) are satisfied. More precisely, we are interested in proving
the following theorem. The proof consists in a direct adaptation of the argument in
[14] to our setting.

Theorem A.1 Let M € G, (po, y, D) be an asymptotically hyperbolic graph with non-
empty boundary and W : M — H"! a smooth Riemannian isometric embedding as
in Definition 1.2. For any p > po, L > 0, there exists a differentiable manifold

Q=Q()UAU x (=L,0)]U T c H"t!

which we endow with the induced Riemannian metric from (H"*!, b) g, such that
g is a C° metric, W (p) is a Riemannian isometric embedding into Q and for any

x € (0, 1) there exists a C' diffeomorphism o Bh(,o) — Q with the properties
that

g(®X(u), DL (u)) = Ab(u,u), Vu € TBP(p).

Further, we have upper bounds 5(L, po) and V(L, 00, vol(aU)) for diam(fﬁ\Q(,o),
dg) and vol(Q\Q2(p)), respectively, given by

D(L, po) := diam( \ Q(p), dg{fw)) <2cosh(2)L + 4 + cosh(2) + po

and

V(L. po, vol(3U)) := (L cosh(£) + Lo + 2cosh(%)) vol(3U))

and, for L > D—i—% sglh(po) /1 + y2, the space (2(p), digl;zrp)) embeds in a distance

preserving way into Q.

The remainder of the appendix will be dedicated to working in detail through all
the steps necessary in the construction from [14] in our hyperbolic setting.

A.1. Normal exponential map, defining Uand f.

Consider the normal exponential map of 9U C H". By compactness of U, there exists
an €, > 0 and an open neighborhood N, of dU such that E : (—€,, €4) x U —

@ Springer



Intrinsic flat stability of the positive mass theorem for... Page350f45 132

Ne,, (t, x) — exp, (¢ v(x)) is a diffeomorphism and by shrinking €, we may assume
that FE is still a diffeomorphism on 7 x dU for some open subset I with [—e,, €,] C I.

With the previous notation, we are able to define a map ¢ from (—L, €,) x dU to
H"! with image in @ C H"*! by setting ¢ (7, x) := (E(, x), f(E(t,x))) ift > 0
and ¢(t,x) = (E(0,x),) if t < 0. Note that ¢ is not a C! map (but piecewise
smooth), so we will replace ¢ by a C! map ®* in order to construct ®* appearing in
Theorem A.1. This will be done by introducing an appropriate scaling. The scaling
will crucially rely on fo = %f(E(t, x)) — oo ast — 0T. This will show that the
image of ®”* is indeed a C! submanifold of H"

Now we want to construct a cap U which will be given as the graph of a capping
function f, : U — [—1,0], smooth on U and satisfying f.|sy = 0 and V5 f, =
j—tfc(E(t, x)) — oo ast — 07, i.e. as one approaches dU, so that we will be able
to attach it to the cylinder and will be able to make the resulting manifold C! in the
same way as we will be doing for f above. We construct this capping now:

We start by defining f,. on E((—ey, 0] x dU) C U C H" by setting

Je(E(t, x)) == x (1)

where x : (—€x, 0] = [—1, 0] is smooth on (—e€,, 0), strictly monotonically increas-
ing on (—=%,0], x(0) = 0, Xl(—e, _&; = —1and x'(t) = ooast — 07.On
©T 7

U\E ((—é€, 0] x 8U) we simply set f, = —1.

By shrinking €, if necessary, we further assume that for all s € (—1, 0] we have
H'™ U (fe 0 E)~1(s)) = VOlwx_l(s) (0U) < 2voly,(dU) = 2|0U|p, where {w,} is the
family of Riemannian metrics on d U induced by the normal exponential map (see (A.1)
below). Recall that dU is star-shaped and this implies that dU has a single connected
component which is C!-diffeomorphic to S"~! via the graph 6 +— (pyy(0),0) €
(0, 00) x §"~! = H"\{0}. Thus, we may further shrink ¢, to additionally ensure that
the level sets are star-shaped as well: Since, by assumption, pyy : S"~! — (0, 00)
is a C! function whose graph coincides with U, the spherical coordinate vector
field 9, can never be tangential to dU and (d,, v), > O near dU and one can use
the monotonicity of r +— p(E(t,0)) and an implicit function theorem argument to
obtain a unique differentiable family of differentiable maps py : S*~' — (0, 00),
d e [—%*, 0], satisfying {(pg(0),0) € H" : 6 € S""'} = E({d} x dU). This
construction is very similar to the process we will encounter in defining the scaling &
in Lemma A.2 hence we will skip the details here.

A.2 Construction of 6’1

We already introduced the normal exponential map of dU, which gives a diffeomor-
phism E : (—€4, €4) x OU — N, onto an open neighborhood N, of 0U in H"
for €, > 0 as before. Pulling back the metric and using "t" to denote the coordinate
on (—ey, €,), standard properties of the normal exponential map give that the metric
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splits as
E*b = dt* + w; (A.1)

where w; = w;;(t, x)dx'dx/ (for coordinates (x') on dU) is a family of Riemannian
metrics on dU. Let f = foFE : (0,e,) x 0U — L2(p) and fc = feoE :
(—€4,0) x 3U — H"T! be the expressions of f and f. in the geodesic normal
coordinates.

Fix 2 € (0,1).Lete = (X, f,0U, L, fo) € (0,1), ¢ < €, satisfy ¢ < g for g
from the Lemmas A.3 and A .4, 2;’“ > 1and

i (st i
min Z"’(D"$>«/X>A (A.2)

inf —
(t,5)€(—8,8) X (—6,6) xedU, aeRn—1 |ii|,=1 2oi.j @ij -0)I'w =

where || - || denotes the Euclidean norm on R”~!. Note that this is possible because
the function in the infimum above is continuous and equal to one on the diagonal.
We will define a C'! diffeomorphism ®* from (—e, €) x U to an open subset of 2
containing dU x (—L, 0) such that <I>)‘|(2_8 o= @d, 1), <I>A|( T ad, fo. — L)
3 )
and g(®%(u), ®*(u)) = A (E*b)(u, u) holds for all u € T((—e, &) x dU)).

Once we have defined ®* we will set

N (p. fo(p)—L)  peU\E(—¢¢) xdU)
P (p) = DHE(p) peE((—e &) xdU)
(p, f(p) pe(p)\ E((—e,¢) xU)

giving us the desired c! diffeomorphism from B?(p) — Q satisfying g(ai‘ (u), 51 (u))
> A b(u, u) everywhere because it is either a graph (where g > b automatically since
V > 1) or given by ®* o E~! which will be constructed to do so.

A.2.1. Definition of @4 on (0, £) x AU

To make ®* continuously differentiable across the gluing surface between Q (p) and
the cylinder, we re-scale the ¢ parameter. This is accomplished by the function « from
Lemma A.3: Set

O (1, x) := (E(a(t, x), x), f(a(t,x),x) € Qp) C H'  for (1, x) € (0,¢) x dU.

By the properties of « this smoothly matches (id, f ) near t = ¢. We now show that
g(®X(u), @ (u)) > A (E*b)(u, u) holds for all u € T((0, &) x V).

For bookkeeping let us denote local coordinates on (0, &) x dU by ¢ and (x"). These
induce canonical coordinates on the graph {(E(z, x), f(t,x)) e H'"H : (r,x) €
0,e) x 0U} C Image((b’\) C Q(p) — H"*!, which we — by a slight abuse of
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notation — agair_l denote by ¢ and (x?), and on E((0, &) x dU) x R C H"*+!, which we
denote by ¢, (x'), s.
In the coordinates we are using,

CD)‘(t,x) = (a(t, x), x, f(a(t,x),x)) €(0,e) xdU xR (A.3)
and we have:

L@ l(1.0) = ) (r.0) Hl ity + B It v0) @ x) Bslo(r.x)
DL, () = B0 (1,00t lan s vy + il sy
+ [@ Nl @ern @)l + @ Dl dsloren-

Since the metric g on < is induced by b, we have

(DL (r.x) Pr B lix))) =b(@5 B lx)). P l1.1)))
=(30)*|(x) + V(r(a(t, x), x))?
@ )@ @)l
g(@2(3)), @2(3)) =dhar d + V[0, f i + 8 ] 0, f Dyt
g(@%(3), D1(3))) =(3i0)(Bj@) + wij + V2[3, f diew + 8; ][0, f 90 + 8, f],

where we suppressed the arguments for the second and third formula (as a rule of
thumb: f and its derivatives will have argument (« (¢, x), x), @ and its derivatives (¢, x)
and w and V = cosh are evaluated at pry. (P*(1, x)) = (a(t, x), x) and r(a(t, x), x)
respectively) and used the form of b=b+V()2ds?t = di* +w, + V(r)kds? =
dr® + w;j(t, x)dx'dxJ + V(r)?ds? in our chosen coordinates.

We introduce the following notation

BI(t,x) = o (a(t, %), X)[3 Hlwit.or0 @Dy + @ Dl@eon], (A
Al(t,x) = o (a(t, x), x)(B)(1, ). (A.5)

With this the above expressions can be rewritten as

g(@(@,), @2(3) = (3% + V20, /)? (d,2)?
S(DX(3y), DX(3)) = B win A* + Vi BX 8, f
g% @), D2(9))) = wjr A*wig A + wij + V? wjx B*wi¢ BY.
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Now let u = ad;|(x) + ' dil¢x) = ad|.x) + it € Ti.x)((0, ) x dU) be arbitrary
and compute (ignoring basepoints/arguments for now for readability)
g(@L(w), % (u)) = a’g(®L(d,), L)) + 2au’ g(}(3,), PL(3))
+u'u g(D(3;), DL(d)))
_ 2 2 2v/2 M2 2 ~
=a“ ()" +a“ V(0 ) () + 2a(u, A), 0y
+2aV* i, B)od, f 0
+ (i, A)py + Oa(r.x).0) (i 0) + Vi, B),. (A.6)

By Lemma A.3 we know that either

@) @e)* =1 and [BU Doy = yraammrl— YA o
@) =1 and A, )o@ < 1= V2.

In the first case we estimate

g(% ), @A) > (ado + (i1, A)w)? +a> V2, f)? (B)?

+2aV2(it, B)dy f 810 + 0a(r.x).x) i, D)

> a?V2(3 )? (3)* = VI Blo.x).0 2ald 118 |ilw@.x).x)
+ O (t,x).x) (i, it)

2v/2 N2 2

> a’V23(3, /) 0)*(1 = |Blo@i.o.x)
+ Oty (@ 1) (1= V2| Blo@.x).x)

> a*VA + O(a(t,x).x) (U, VA > a’h + Ot x)x) Uy i)VA

where we used the Cauchy-Schwarz inequality and that V2> > 1. Now by (A.2) we have
Ot x),x) U, U) > \/Xw(,,x) (u, u) (note that this is scaling invariant so it is sufficient
to consider u with Euclidean norm equal one) and we obtain the desired

(L (u), PLw)) = M@ + o (i, ) = Mb(u, u). (A7)
In the second case we proceed similarly and estimate

g(®%(u), P2(w)) = a*(@a)> + (aVd, f dra + V (i, B)wy)?
+2a(i, A)y ;0 + Wt x),x) U, 1)
> a*(9,0)* — |Alw(a(r.x).x) (2 19r0] i o@,x,x0) + Oa(x).x (. i)
> a%(3,0)°(1 = |Alwa(r.0).1) + O@.x) ) D (1= [ Alp@i.r.x)
> @’V + O @ D)V = Ab(u, )

again using the Cauchy-Schwarz inequality and (A.2).
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A.2.2. Definition of ®% on (— £, 0) x oU
We set
Mt x) = (E0,x), 2£1) = (0,x, 1) for (1, x) € (—5,0) x 3U. (A.8)

Let us check that ®* : (—%, g) —> Q defined by (A.3) and (A.8) (and continuously
extended across ¢ = 0 where both functions become (0, x, 0)) is C': On (0, &) x 94U
from (A.3) we see

@ @M (t, %) = @l 1.x), 0, 0 fl@t.00.0) Hla.)) = (0,0, %) ast — 0F

@ DM (1, x) = Bl 0)» €is 01 fliwen)0 i@l v) + 0 Fliwin o) — (0, e, 0)

ast — 0T

by LemmaA.3.0n (—%, 0)xdU clearly (3, ®*)(z, x) = (0,0, %)and(f)@*)(r, x) =
(0, ¢;, 0), so ®* is indeed C! across ¢ = 0.

Next we check that g(®*(u), ®*(u)) > A(E*b)(u,u) for u = ad, + u'd; €
Tir,0)(—5,01x AU for (1, x) € (=%, 0] x dU: Using ®*(3;,) = 2L 3, and @%(3;) = ¥;
we get

g(PL(w), % (u) = w;; (0, x)u'u! +a’>v*(2)?
> (0, V)u'u! +a* > ME*b)(u, u) (A.9)

where we used that % > 1 and (A.2) by assumption on €.

A.2.3. Definition of ®* on (—&, —£) x 6U

This will be completely analogous to the first part, but using fc — L instead of f and
the function «, : (—e&, —%) — (—¢, 0) from Lemma A.4 instead of «. We set

M1, x) == (E(e(t, x), x), feloe(t, x),x) — L)
= (@ (1, %), x, felae(t,x),x) — L) (A.10)

for (¢, x) € (—e¢, —%) x dU . Similarly to the computations for ®* on (0, &) x dU and
(—=5.0) x dU we see that this has the desired properties.

A.3. Defining the rescalings a, a.

We first show that we can guarantee suitable behavior near 0.

LemmaA.2 Fix C € (0,00), ¢ € (0, €,). There exists 0 < &y(C, c, f) < % and
a smooth, strictly increasing in t, map a: (0,80) x 0U — (0, %) such that for all
x € oU
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(1) f@(t, x),x)=Ctfort e 0,8)and
(2) lir(l)'l a(t,x)=0
t—0t

Proof Consider the map F(t, x) := %f(t, x). This is a smooth map from (0, €,) to
(0, 0o) which extends continuously to 0 as one approaches {0} x dU. By the asymp-
totic assumption on fo we have limg_, - (B,f)(s, x) = oo for all x € dU, so we
may choose ¢(C, c, f x)=¢ex) < % small enough such that s — F (s, x) is strictly
monotonically increasing on (0, &(x)]. Note that we may choose ¢(x) depending con-
tinuously on x. Let §o(C, c, f) = minyeyy F(e(x), x) and set &(x) := F1(8p, x) <
e(x) < 5. Thens + F(s, x) maps (0, £(x)) bijectively onto (0, 8p), so forany t < 8o
there exists a unique solution (¢, x) € [0, £(x)) to the equation éf(& (t,x),x)=t.
Clearly @: (0, 8p) x 0U — (0, %) satisfies tgr& a(t,x) = 0 forall x € dU an

is strictly increasing in ¢. It remains to argue that (¢, x) — &(¢, x) is smooth. For
this we note that & will agree with maps obtained from the local implicit function
theorem near any (ty, xo) € (0, &9) x aU: Since G(«, t,x) = F(, x) — t satis-
fies G(ao, 10, x0) = 0 and 3G |(wp.19.x0) > O for ap := a(to, x0) € (0, 5) there
exists locally around (%, x9) a smooth map (¢, x) — «(z, x) to a neighborhood of
ag € (0, 8(xo)) with G(a(t, x), t, x) = 0. So by the noted uniqueness of the solution
a(t,x) to Cf((x(t Xx),x) = t, @ = « on this neighborhood and smoothness of &
follows. O

We now obtain « by interpolating between & near r = 0 and the identity neart = €.

LemmaA.3 Fix L > 0and 0 < A < 1. There exists eo(L, A, 0U, f) > 0 such that
for any 0 < & < gg there exists a leunction a:(0,e) x U — (0, ¢) (depending
on f, €, L and A) such that

(1) forany x € dU, t — «(t, x) is strictly increasing,
(2) f(ot(t,x),x) = 2TLtfort near 0,

(3) a(t,x) = 0ast — 0T and

(4) a(t,x) =t for (t,x) € (£, &) x dU.

Note that (2) implies the following formulas for the derivatives neart = (0

@ Nl @)@y =2E (A.11)
(3zf)|(a(z,x),x) (0ia) | (1,x) + (0 f)l(a(z,x),x) =0. (A.12)

In particular (9,;a)(t, x), (9;a)(t,x) — 0 ast — OF. Further, for any (¢t,x) €
(0, &) x AU we can guarantee either

o 3 fliat.0 @@l = 1and B, Do < joaamme (L — V) or
° 8z‘Ol|(t,)c) > 1 and |A(t, x)|a)(ot(t,x),x) <1- \/X

where B(t, x), A(t, x) are as in (A.4) resp. (A.5).
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Proof Choose &o(L, A, dU, f) < min(ey, 2L) such that f satisfies 8,f > 1 on
(0, g9) x 0U and

ij -
(5, ) G (B, i Dl oy <! Va (A.13)

for any (s, t, x) € (0, &9) x (0, &9) x dU. Fix any 0 < ¢ < g9. Then, by Lemma A.2
there exists a SO(ZTL, gandaa : (0,8)) x U — (0, %) which is smooth, satisfies (2)
and is strictly increasing in .

For any & € (0, min(J, %)) small enough such that (9,¢)(t, x) = 2TL(E)tf(d(t, x),
X))~ Y < 1forall (¢, x) € (0, &) x U we set

a(t, x) on (0,&] x oU
alt,x)=1{% jag") (t—&) +a(, x) on [&,§]x U
t on [%,8) x dU,

where the middle segment is a simple linear interpolation. This is piecewise C' and
smooth in x for any fixed ¢ with (¢, x) — (d;«)(¢, x) continuous. Further, the slope
of the linear segments is > 1 by construction since @ (&, x) < &. Assumption (A.13)
ensures |A(t, X)|o(@,x)x) < 1 — VA for all (t,x) € (0,e) x aU. (We will skip
the detailed computations here, let us however remark that we get that |A(z, x)|,, 1S
given by the left hand side of (A.13) for ¢ € (0, &), while on the first linear segment
|A(t, x)|, is essentially given by (A.13);—¢ - § iﬁ , and on the second linear segment
A(t,x) = 0.) On (0, §] on the other hand B(t, x) = 0 (note that B is continuous on
(0, &)) and 8,f|(a(, x.x) 0r) |1, x) = T > 1. So this « satisfies all our requirements
except only being piecewise C!. To make it C! we only need to modify it in arbitrarily
small neighborhoods of the corners at {£} x dU and {%} x dU (and join the modified
bits to the original & using a partition of unity). At both corners the C! versions of «
can be created via convolution in ¢ while fixing x. At the second corner this clearly
preserves d;a > 1 and |A(f, X)|w(a(r,x),x) < 1 — V/A. For the second corner note that
f , o, V are smooth near {£} x dU and 9; commutes with the smoothing of « in 7, so
we canuse B = 0on {£} x 0U to keep V2|Blo arbitrarily small, in particular smaller
than 1 — /2, by making the neighborhood of {£} x dU on which we modify small
enough. Secondly, since we have o; f > 1on (0, ¢) and o, > 1 for ¢ > & it follows
that 8;f|(a(l,x)‘x) (0;)|(r,x) > 1 on (0,€) and (£, &), so we may use smoothness of
f near {£} x dU and boundedness of d;« to ensure that also the smoothed « satisfies
8,f|(a(t,x),x) (0;a)|¢t,x) > 1 provided we make the neighborhood of {£} x 0U on
which we modify small enough. O

LemmaA.4 Fix L > 0,0 < & < 1 and the capping function fc constructed in Section
A.l. There exists eg(L, 1, U, f.) > 0 such that for any ()A< & < & there exists a C!
function o, : (—e, —%) X QU — (—e¢,0) (depending on f., ¢, L and )\.) such that

(1) forany x € 90U, t — a.(t, x) is strictly increasing,
(2) felae(t,x),x) = QTL (t + %) fort near —5,

(3) ac(t,x) > Oast — _% :
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(4) ac(t,x) =t for (t,x) € (—e, —3£) x U

Note that (2) implies the following formulas for the derivatives near t = —%
O flwett0.0 @r@)lem = 2 (A.14)
@ fl@ett,0.0 Giad)liv + @i f)l e, = 0. (A.15)

In particular (9;a.)(t, x), (i) (t,x) — Oast — —%_. Further, for any (t, x) €
(—e, —%) x dU we can guarantee either

o O el @)y = 1 and |Be, (1, Dlo@ o < yoaunmr —

Vi) or

° 8tOlc|(t,)c) > 1 and |Aac(tax)|w(ac(t,x),x) <1- \/X

where By, (t, x), Aq (2, x) are as in (A.4) resp. (A.5), but with « replaced by o, and
f replaced by fc

Proof The function fc* C(t,x) > — ﬁ.(—t, x) has the same behavior near t = 0
as f (in particular fc* (0,x) = 0 and its gradient behaves appropriately as t —
0h), so by Lemma A.3 there exists a go(L, A, U, fc*) such that for any 0 < ¢ <
go(L, A, 0U, fc*) there exists a suitable « : (0, &) x dU — (0, ¢) corresponding to
fc*. We set o (¢, x) = —a (=2t — §,x) for (¢, x) € (—&, —5) x dU and the claims
follow. m]

A.4.Volume and diameter estimates

We start by estimating Vol(ﬁ\Q (p)). First,
Vol(ﬁ \ Q(p)) = vol(graph(f,)) + vol(aU x (—L,0)).

We obtain the following estimate using the coarea formula as in Lemma 3.4,

vol(graph(f¢)) = / m dvoly,
U

0
< vol(U)+cosh(p—;)f H () de
-1

< (15 + 2 cosh(Q)vol(3V),

where we have also used the isoperimetric inequality given in Proposition 3.2 and that
by construction the level sets of f satisfy H ! (fc_1 (s)) <2vol(aU) fors € (—1,0].
To estimate vol(dU x (—L, 0)) we use that g = b|yy + V (r)? ds* on the cylinder, so
vol(dU x (—L,0)) < Lvol(dU) cosh(p2—°) and the desired estimate for vol(KNZ\Q ()
follows.
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To estimate diam(§~2 \ 2(p)) note that

diam(Q \ Q(p))) <diam(graph(f.)) +2  sup  dcy(p, dU)
pedU x(—L,0)

<diam(graph(f)) + 2 cosh(2) L

as the metric on the cylinder part is b|yy + V2ds? and, again, V is bounded above
by cosh(p2—°) on U. To estimate the diameter of graph( f.), we go back to the explicit
construction of fc in normal exponential coordinates (see Section A.1). Fix x € 0U.
Set p = (E(0,x),0) e H''!, g := (E(—%, x), —1) € graph(f.) C H"*!. Then the
curve y : t +— (E(t,x), x(t)) fort € [—%*, 0] connects ¢ to p and has length

0
Ly) = f o T+ VO EC )20 s
-2

0

5/ . + cosh(3) x'(1))dt
-5

=% +cosh(2) < % + cosh(2).

So

max e ) ((E(0, ), 0), E(=%.0U) x {~1}) = § + cosh(%).
xXe
Thus, using star-shapedness of E (—%*, aU), we readily see that

diam(graph( f,)) 5% + cosh(2})
+ diam{(r,0) e H" : 0 e " 1,0 < r < p_&(0) < 2y

<% + cosh(2) + po

establishing the desired diameter bound.

Finally, to show that for L > D;I— %sinh(po) 714+ y2, (Q(p), dg‘go)) embeds
in a distance preserving way into (2, dg) take any two points in p,g € Q(p) and
a piecewise Lipschitz curve ¢ : [0, 1] — Q joining p to g. Assume the curve exits
Q(p) at c(sg) € AU and reenters 2 (p) at c(s1) € AU, if it does not enter graph( f;)
for any s € [sg, 1], i.e., it remains in the cylinder, then replacing the segment c|(y, ;]
by a curve contained in dU C €2(p) connecting pp = c(sp) to p1 = c(sy) will
clearly yield a shorter curve. If, on the other hand, ¢ enters graph(f.) at any s €
[s0, s1], then L(yl[so,51]) > 2cosh(ppin)L > 2 L. We will now construct a curve
connecting c(sp) to c(s1) that is entirely contained in €2 (o) which will have length at
most 2D + sinh(pg) w+/1 + y2 (with D from Definition 1.2), i.e., it will be shorter
than the original curveif L > D+ % sinh(pg) /1 + y2 (cf. the proof of the diameter
estimates for £2;(p) in Theorem 3.8): First, follow the graph of f radially outward
from c(sp) (resp. c(s1)) until hitting 32 (pp) in a point pg (resp. p1). Then by Definition
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1.2 the length of each of these segments is bounded by the depth D. Second, connect
po and p; along an arc in 9Q(po). Since V2| V? f|> < y? in the region r > £ by
Definition 1.2 the length of this arc is bounded by sinh(pg) 7+/1 + y2.
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