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'Ne give a pedestrian introduction to recent advances in string tiH'Ol')'. We di8cuss T- and 

$-duality and introduce D-branes. The close relation between D-bnuics and gauge t.h�ories 
is explained. Finally, recent applications such as the microscopic understanding of black hole• 
th<•rmodynamics and the realization of the holographic principle are developed. 

469 



Table 1: The five perturbatively consistent super string theories. The first one contains both open and closed strings 
while the latter four were formulated in terms of closed strings only. The low-energy sector consists each time of a 
gravitational sector sometimes combined with an additional Yang-Mills sector. Each of these is supersymmetric and N 
denotes the number of supersymmetries. Note that one supersymmetry in ten dimensions contains 16 fermionic charges 
(compare this to four dimensions where one supersymmetry has only 4 fermionic charges) .  The type HE and HO string 

theories are better known as heterotic string theories. 

name low energy description 
type I N = 1 supergravity + N = 1 S0(32) super Yang-Mills 

type IIA N = 2 non-chiral supergravity 
type IIB N = 2 chiral supergravity 
type HE N = 1 supergravity + N = 1  Es x E8 super-Yang-Mills 
type HO N = 1 supergravity + N = 1 S0(32) super Yang-Mills 

1 Introduction 

Three of the four fundamental interactions are very well understood. Indeed, the Standard Model 
provides us with a qualitatively and quantitatively excellent description of their behaviour at long and 
short distances. However, the from dayly experience most familiar interaction, gravity, stays out of 
the picture. Its structure at long distances is well described by general relativity but its behaviour 
at short distances is unknown. The main reason for this is that novel properties of gravity due to 
quantum mechanical effects are generally expected to appear at energy scales more than fifteen orders 
of magnitude higher than what is experimentally attainable at the moment. 

Despite the lack of experimental input, there is one, and only one, framework known which provides 
us with a quantum mechanically consistent description of gravity: string theory. Instead of viewing an 
elementary particle as a point like object, one takes it to be a tiny string. The low energy behaviour 
of the theory is such that it corresponds to a supersymmetric version of Einstein's general relativity, 
called supergravity, coupled to (non-)abelian supersymmetric gauge theories. In this way, string theory 
supplies us with a serious candidate for a unified description of all fundamental interactions. 

Before 1995 however, string theory could hardly be called a theory. It existed in the form of five 
seemingly different sets of Feynman rules allowing for the calculation of string scattering amplitudes. 
As string theory naturally lives in ten dimensions, a compactification down to four dimension was 
called for as well. Though severe consistency conditions were derived which guaranteed a classically 
stable compactification, many models were found to satisfy these requirements. So a candidate theory 
of everything existed in five different flavours each of which allowed for numerous compactifications 
down to four dimensions. If one realizes that the details of four dimensional physics depend largely 
on the precise structure of the compactification, we had what one could call l 'embarras du choix and 
it is not unexpected that the phenomenological use of string theory remained rather limited. 

In 1995, the situation changed abruptly. For the first time, certain non-perturbative aspects of 
string theory could be probed. The solitonic excitations of string theory were discovered a , the so­
called D-branes and they allowed for the formulation of various dualities relating seemingly different 
string theories. In this way a unified picture of string theory emerged: the five known string theories 
were special limits of a single underlying theory which goes under the name of M-theory. 

In the present paper, I will review the essential ideas which emerged since 1995 in string theory 
and discuss some of the main results and applications. Because of the very introductory nature of this 
paper, I will mostly limit the references to review papers. References to the original papers can be 
found in them. The interested reader is referred to two excellent, but technical books 1 , and two more 
popular introductions 2 .  

" Solitons are finite energy solutions to the classical equations of  motion whose masses typically go as g- 2 or g - 1  where 
g is the coupling constant. So in the perturbative regime, where g is necessarily small, they are very massive and as a 
result very "invisible" . E.g. think about monopoles in gauge theories. 
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2 Dualities 

2. 1 Introduction 

Duality relates various theories with sometimes very different appearances. The weakly coupled regime 
of one theory is then identified with the strongly coupled regime of the other theory and vice-versa. 
When doing this identification, the elementary excitations of one theory are identified with the solitonic 
states of the other one and vice-versa. 

A prototype example of this occurs in two dimensions, where it turns out that the Sine-Gordon 
model is equivalent to the massive Thirring model 3 . The former has a single scalar field ¢, and is 
described by the action 

( 1) 

Expanding the potential, one recognizes m as the mass of the scalar field and g as the coupling 
constant. Besides the fundamental scalar excitations, this model has solitonic solutions as well. They 
interpolate between different vacua and have a mass given by Sm/ g. The solitons are very heavy in 
the perturbative regime (when g is very small) of the theory. The massive Thirring model describes 
a Dirac fermion with mass m' and interacting through a four-fermion interaction. It is defined by the 
action 

Under the duality transformation, one identifies_ 

g 1 
� '  1 + 1T 

(2) 

(3) 

in other words the strong coupling regime of one theory is related to the weak coupling regime of 
the other. Under this identification the solitons of the Sine-Gordon theory are identified with the 
fundamental Dirac fermions in the Thirring models, while the fundamental scalar is identified with a 
fermion-anti-fermion bound state. 

In the next, I will introduce two essential stringy dualities. 

2.2 From T-duality to D-branes 

We consider a scalar field theory in d dimensions and compactify one of the spatial dimensions on a 
circle of radius R. Consider now e.g. the massless Klein-Gordon equation, 0¢ = 0. We expand the 
scalar field in terms of a complete set of functions on the circle, 

¢(x) = L ¢m(z)e�, (4) 
mEZ 

where z denotes the dependence on the non-compact coordinates and y = y + 21!" R is the coordinate 
parametrizing the circle. Inserting this in the Klein-Gordon equation, we obtain 

't/m E Z , (5) 

where the d'Alambertian acts now on the non-compact coordinates only. Comparing this to the Klein­
Gordon equation for a scalar field with mass M, (D + M2)¢ = 0, we conclude that from the point of 
view of the non-compact directions, the system describes a countable set of scalar fields with a mass 
spectrum given by 

2 
M2 = '.!:!:.._ 

R2 ' 
m E Z. (6) 
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Figure 1: Closed strings can wind themselves non-trivially around a compact direction (left) ,  while open strings cannot 
(right) .  

When sending the radius to zero, we see from Eq. 6 that the states with m i=  0 (called Kaluza-Klein 
states) become very massive and eventually decouple from the system. In other words, putting the 
radius to zero, we end up with a theory in one dimension less. Once strings are present, the situation 
changes. Indeed, closed strings can wrap around the circle. A string wrapped n times around the 
circle is said to have winding number n. It is clear that a string wrapped a number of times around the 
circle cannot continously be deformed into a string which is not wrapped at all. It is also intuitively 
clear that the mass dependence of winding states should be different from the one given in Eq. 6 as the 
larger the radius gets, the more energy it will cost to wrap the string around the circle. The correct 
dependence can be shown to be, 

2 m2 n2R2 
M = 

R2 
+ � + oscillator contributions, m, n E Z, (7) 

where 1/(2-zra' )  is the string tension or the energy per unit length of the string (alternatively, you can 
view Vd as tlie typical string length) and the oscillator contributions take the excitations of the string 
into account. Sending the radius R to zero now shows a surprising behaviour. While the Kaluza-Klein 
states decouple, we see that a new continuum opens in the winding states! In fact it can be shown 
that this is a limiting case of an exact perturbative equivalence: the theory on a circle with radius 
R is completely equivalent to the theory on a circle with radius R = a'/ R, provided one interchanges 
the Kaluza-Klein states for the winding states and vice-versa. This is the simplest example of how 
T-duality acts b ! 

Note that the previous observations hold for closed strings. What about open strings? Open 
strings do not allow for non-trivial windings (cfr Fig. 1 ) .  Indeed, any open string configuration can 
continously be shrunk to a point. As a result, one would guess that the spectrum is of the Kaluza­
Klein type, Eq. 6 . . However, as demonstrated by Fig. 2, a theory containing only open strings is not 
unitary, it must necessarily contain closed strings as well. In this way, we arrive at a very unplausible 
situation: sending the radius to zero, the open string sector ends up in 8+1 dimensions, while the 
closed strings continue to live in 9+ 1 dimensions. 

Here Polchinski made a great leap forward! Looking at open versus closed strings, he realized that 
the difference is_ only two points, the end-points of the open string. This led Polchinski to formulate 
the correct behaviour of open string theory: sending the radius of the circle of compactification to 
zero, both open and closed strings will end up living in the 9+1 dimensional dual space, however 
the end-points of the open string are confined to live on a 8 dimensional hypersurface, called a D8-
brane, perpendicular to the direction along which we T-dualize! In other words, the open strings 
get Dirichlet boundary conditions in one dimension, hence the name D(irichlet)-branes. Dirichlet 
boundary conditions seem to violate energy-momentum conservation, therefore we are led to conclude 
that these hypersurfaces are dynamical themselves. 

This procedure can be repeated. Compactifying on a circle longitudinal to the 8-brane, we will end 
up, after T-duality, with a 7-brane (a 7-dimensional hypersurface) . On the other hand, compactifying 
on a circle transversal to the 8-brane, i .e . along the direction along which we originally dualized, we 
end up with the original theory. In fact the original theory can be viewed as containing a 9-brane. 
Indeed, the open strings are confined to move on a 9-dimensional hypersurface which is nothing but 
space itself. 

bThis simple example of T-duality can be generalized to higher dimensional compact spaces with more complicated 
topologies. 

472 



Figure 2: The one loop two open strings --+ two 01:1en strings amplitude can be continously deformed to the tree level 4 
open strings --+ 1 closed string amplitude. 

Continuing like this, we can generate Dp-branes which are D-branes having p spatial dimensions. 
E.g. a DO-brane is a point, a Dl-brane is string-like (a fundamental string differs from a Dl-brane 
however) ,  a D2-brane is a membrane, etc. These D-branes interact by open strings ending on them. 
Not all Dp-branes appear in a given string theory. E.g. in type IIA string theory p is even while in 
type IIB p is odd. From the previous, one also deduces the behaviour of a Dp-brane under T-duality. 
If the brane is wrapped around the circle, it becomes a D(p - 1 )-brane transversal to the dual circle in 
the T-dual theory. If the Dp-brane was transversal to the circle its T-dual is a D(p+ 1)-brane wrapped 
around the dual circle. 

Various properties of these D-branes can be explicitely calculated. One of those is the brane 
tension, defined as the energy of the Dp-brane per unit of volume. It is proportional to g-1 (a/)- (l+p)/2 

with g the string coupling constant. The solitonic nature of D-branes is clear from this formula: for 
small values of the string coupling constant, the D-branes are very heavy. 

When a Dp-branes evolves it sweeps out a (p+ 1)-dimensional volume in space-time which is called 
the world volume. The effective action for type II string theory in a background containing D-branes 
is of the form 

(8) 

where Sbulk is the ten-dimensional type II supergravity action, Sbrane is a p+ 1-dimenional field theory 
describing the brane dynamics and S1m1k-brane is again a p + I-dimensional field theory describing the 
interactions between the bulk and brane degrees of freedom. 

An easy way to identify the brane degrees of freedom uses supersymmetry. Though type II string 
theory has an N = 2 supersymmetry, inserting a Dp-brane, breaks this to N = 1 .  Indeed, once a 
D-brane is present, we have open strings as well and they have only an N = 1 supersymmetry. This 
spontanous breaking of half the supersymmetry generates 16 Goldstino's which gives 8 propagating 
fermionic degrees of freedom. Supersymmetry requires them to be matched by eight bosonic degrees 
of freedom. We can choose a gauge such that the p + 1 world volume coordinates are identified with 
p + 1 space-time coordinates (think about a point particle where you work in a gauge where its proper 
time is identified with the time coordinate) . Obvious candidates for the bosonic degrees of freedom 
are the 10 - (p + 1) transversal coordinates of the brane. In the p + I-dimensional brane theory they 
appear as 9 - p massless scalar fields. So, we miss p - 1 massless bosonic degrees of freedom. The little 
group in p + 1 dimensions is SO(p - 1 ) .  This implies that the missing bosonic coordinates precisely 
match up with a massless vector in p + 1 dimensions! This vector is the lowest mass state of a string 
beginning and ending on the brane. Summarizing, the degrees of freedom of a Dp-brane are effectively 
described by a p + 1 dimensional field theory containing 9 - p massless scalar fields which determine 
the transversal position of the brane and a U(l) gauge field which is due to the open strings ending 
on the brane. 
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Figure 3: D-branes interact by open strings ending on them. The mass of the strings is proportional to the shortest 

distance l between the two branes it connects. 

When more D-branes are present, the situation changes. The mass of an open string ending on two 
D-branes is proportional to the shortest distance between the two branes. If we consider a situation 
with two parallel D-branes, as in Fig. 3, we would expect a U(l) x U(l)  gauge theory. However if 
the distance between the branes reduces to zero, two additional massless states appear. It can be 
shown that they complete the U(l) x U(l) abelian gauge multiplet to a non-abelian U(2) multiplet! 
The same reasoning can be repeated for n D-branes. Well separated they correspond to a (U(l))n 
gauge theory while when they coincide we get a U(n) gauge theory. This provides a very geometric 
realization of the Higgs mechanism! 

Note that one can also study configurations involving multiple Dp-branes with different values 
of p, branes at angles, intersecting branes, bound states of branes and strings, .. . These situations 
provide geometric settings for various properties of gauge theories. 

2.3 S-duality 

S-duality is the name given to a duality between a strongly coupled theory and a weakly coupled theory. 
It is well known that the Maxwell equations in the absence of sources are invariant under the exchange 
E -+  B and B -+  -E. Turning on sources, this invariance can be kept provided one introduces besides 
electrically charged sources, magnetically charged sources as well. Under the duality transformation 
the electric and magnetic fields are interchanged and electric and magnetic sources as well. Dirac 
showed that the product of electric and magnetic charges is quantized. This implies that the fine 
structure constant in the dual theory is now inversely proportional to the fine structure constant of 
the original theory. In other words this relates a weakly coupled to a strongly coupled theory. 

Does this happen in reality? The answer is yes, but sufficient supersymmetry should be present! 
The presence of supersymmetry makes the radiative corrections controllable. In fact it was argued 
that strongly coupled type I string theory is S-dual to the weakly coupled heterotic 80(32) string 
theory. Type IIB string theory turns out to be self-dual under S-duality. Note that S-duality acts 
highly non-trivial on the states of the theory. E.g. under S-duality in type IIB string theory, the 
fundamental string gets mapped to the D l-brane and vice-versa. 

What about the strong coupling limit of type IIA string theory and the heterotic Es x Es string 
theory? 
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Figure 4: The 5 perturbatively defined stri!'g theories and eleven dimensional supergravity are all related by various 
duality transformations. Here T and S denote T- and S-duality resp. ,  S1 and I stand for compactification on a circle or 
a line segment resp. and !1 stands for an orientifold construction. The latter, because of its more technical nature, has 

been omitted from the discussion in the text. 

2.4 Prom ten to eleven dimensions ? 

The DO-branes in type ten-dimensional IIA string theory show a remarkable behaviour: they allow for 
marginal bound (read: zero-force) bound states. I.e. a bound state of n DO-branes has a mass given 
by n MDo , where MDo is the mass of a DO-brane, explicitely 

n 
MnDO = � ·  

gv a' (9) 

Assume now that we have an underlying eleven-dimensional theory. Compactifying one space-like 
dimension on a circle with radius Rn gives a Kaluza-Klein like spectrum of the form 

M = � with n E z. Rn 

Comparing Eq. 9 to Eq. 10 ,  one is tempted to make the identification 

Rn = gH. 

( 10) 

( 1 1 )  

As  the radius of  the eleventh dimension goes as g, with g the string coupling constant, the eleventh 
dimension remains hidden in the string perturbative regime. While the coupling constant grows, an 
extra dimension opens up. The resulting effective low energy theory is nothing but eleven dimensional 
supergravity. Eleven dimensions is the highest number of dimensions which allows for a consistent 
supersymmetric field theory and the resulting theory is unique. 

Thiifbold step can be justified! All objects in type IIA string theory originate in eleven dimen­
sional supergravity. Eleven dimensional supergravity contains besides gravitons, 2- and 5-dimensional 
solitonic states (called M2- and M5-branes resp.) as well. Upon compactifying eleven dimensional 
supergravity on a circle, an M2-brane longitudinal to the circle is identified with the fundamental 
string in type IIA supergravity. If the M2-brane is transversal to the circle, it becomes the D2-brane 
in IIA string theory. This can be continued not only in a qualitative fashion but in a quantitative 
manner as well. 

A similar construction can be made for the heterotic E8 x E8 theory: it corresponds to eleven 
dimensional supergravity compactified on a line segment whose length is again proportional to the 
string coupling constant. 
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2. 5 The big picture 

The strong coupling behaviour of all five string theories is now known. F\rrthermore, it can be shown 
that type IIA and type IIB string theory are T-dual to each other c . A similar remark can be made 
for the two heterotic string theories. In Fig. 4, we summarize the present situation. All five ten­
dimensional string theories and eleven dimensional supergravity are in some way dual to each other. 
Note that the web of dualities is much richer than this picture indicates. Indeed, there are many more 
duality transformations between various string involving diverse compactifications. 

From this the picture emerged of an underlying theory, called M-theory. Though its structure 
is largely unknown, we know that it does not contain any dimensionless parameters. It has many 
massless scalar fields, called moduli, whose vacuum expectation values (vev's) appear in the low 
energy effective theory as dimensionless parameters. When certain of these vev's are very small, a 
perturbative formulation in terms of a string theory exists. These perturbative formulations are related 
to each other through duality transformations. 

3 Applications 

3. 1 Extra dimensions and world-on-a-brane 

Recently it was realized that the compact dimensions in string theory do not necessarily have to be 
very small 4 . In addition, regarding our universe as a D3-brane in ten dimensional spact-time where 
the gauge interactions are confined to the brane while gravity lives in the bulk as well, could answer 
questions such as why gravity is so weak compared to the gauge interactions and why the cosmological 
constant is so extremely small. I will not dwell on these very interesting developments as they are 
extensively covered by the contributions of K. Benakli, E. Dudas and T. Han in this volume. 

3. 2 Black hole physics 

The most successful results of string theory have been obtained in the study of black holes 5 . General 
relativity predicts that the line element changes to 

2 ( 2GM) 2 ( 2GM) -l 
2 2 2 ds = 1 - -

r
- dt - 1 - -

r
- dr - r dO , (12)  

in the presence of an isotropic static source of mass M and centered at r = 0 .  Newton's constant 
is denoted by G and this expression is only valid outside the source. The special value rh = 2GM 
corresponds to the event horizon. For most objects, rh lies deep inside the source itself ( e.g. for the 
sun rh � 2 .95 km) and there Eq. 12 is not valid anymore. A source whose radius is inferior to rh is 
called a black hole. Any object coming from outside and crossing the horizon is trapped inside forever, 
hence its name. 

Hawking6 discovered that black holes are not really black. Quantizing a field theory in background 
containing a black hole, he found that to an external observer the hole is radiating as a black body 
with temperature 

1 
TH =  81rkGM " (13)  

The mechanism behind this can be understood as follows. A virtual particle-anti-particle pair popping 
up in the neighborhood of the horizon can have such a dynamics that one of the two crosses the 
horizon. The other one, being forced by energy conservation to become a real particle will do so by 
absorbing and carrying away part of the gravitational energy of the black hole. Using the second law 
of thermodynamics, we can associate an entropy to a black hole 7 

(14) 

'T-duality modifies the chirality of  the fermions as well. 

476 



where An is the area of the horizon and lp is the Planck length lp = ,/G!i/c3 � 1.6 10-33 cm. This 
expression is known as the Bekenstein-Hawking formula and it has a universal behaviour: the entropy 
of any black hole is one quarter of the area of the horizon in Planck units. Several questions arise 
here: 

• As anything crossing the horizon disappears forever leaving only thermal radiation behind, the 
S-matrix of a system containing a black hole seems not unitary anymore. This is known as the 
information paradox. 

• Entropy is a measure for the degeneracy of microstates in some underlying microscopic descrip­
tion of the system. 1'he entropy of a black hole is very large, so can we find a microscopic 
physical system exhibiting such a wealth of microstates? 

• Eq. 1 3  clearly shows that the more mass is radiated away from the black hole, the hotter it 
becomes. So, what is the endpoint of black hole evaporation? 

A simple class of black holes where some of these problems can be tackled are the so-called 
extremal black holes. Consider a source which is also electrically charged with charge Q. Solving the 
Maxwell-Einstein equations gives the line element 

2 ( 2GM Q2
) 2 ( 2GM Q2

) -1 2 2 2 ds = 1 - -- + - dt - 1 - -- + - dr -- r dO , r r2 r r2 

which generalizes Eq. 12 .  The event horizon is now 

(15) 

(16) 

A source with a radius smaller than rn is a Reissner-Nordstrom black hole which has temperature 
and entropy given by 

,/(GM)2 - Q2 
27rk(GM + J(GM)2 - Q2 )2 ' 

�(GM + J(GM)2 - Q2 )2 = �Anz;2. ( 17) 

For a given value of Q we now take M --+  Q/G and we find that the temperature vanishes. In other 
words, the black hole behaves as if it was an elementary particle. Such a black hole is called extremal: 
its mass is tuned such that the gravitational collapse is precisely compensated by the electrostatic 
repulsion. 

Extremal black holes are easily described in terms of string theory 8 . One of the simplest config­
urations consists of type IIB string theory with 5 dimensions compactified on a 5-dimensional torus 
and a collection of D5- and Dl-branes wrapped a number of times around the torus. This is a stable 
configuration in type IIB string theory. One can calculate the number of excitations of this con­
figuration (they are described by open strings ending on the branes and wrapping in various ways 
around the torus) and hence the entropy. Subsequently one takes the supergravity theory describing 
the low-energy dynamics of this configuration and one calculates the line-element, the event horizon, 
the temperature and finally the entropy. Comparing both results in the limit where both descriptions 
are valid, one finds exact agreement! Since then many other black hole configurations were studied 
and the analyis was successfully extended to arbitrary (read non-extremal) black holes 9. 

F9r near extremal black holes, the information paradox was solved as well 10 . Studying a con­
figuration slightly away from extremality, it was found that Hawking radiation arises through the 
annihilation of two open strings, each ending on a D-brane, thereby forming an open string which 
remains on the brane and emitting a closed string. The radiation turns out to be exactly thermal with 
both the temperature and the radiation rate in perfect agreement with the Hawking like calculation! 
Almost by construction, the procedure is unitary and so the information must reside on the D-branes. 
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3.3 The holographic principle 

No physical system filling a certain volume can have an entropy larger than a black hole 11 .  Very 
roughly, this can be understood by imagining a system filling a volume and having an entropy larger 
than that of a black hole. Throwing particles into it , it eventually reaches its critical mass and 
becomes a black hole, thereby lowering, by assumption, its entropy. This is excluded by the first law 
of thermodynamics. From this point of view, it is highly surprising that the entropy of a black hole 
goes as the area of the horizon and not as its volume. Crudely speaking, if one has a certain volume, 
the maximal amount of information we can store into it is a little more than one bit per unit of Planck 
area. This led 't Hooft and later Susskind to formulate the so-called holographic principle: any theory 
containing gravity should somehow be equivalent to a theory without gravity living on its boundary. 

Maldacena 12 found an explicit realization of this using string theory. He started from type IIB 
string theory in an AdSs x S5 background d containing a stack of n D3-branes and conjectured that this 
is equivalent to an N = 4, U(n) supersymmetric gauge theory. This conjecture has been well tested 
in the classical limit at the string theory side, which is nothing but the corresponding supergravity 
theory. At the gauge theory side this corresponds to the limit n -+ oo, g2n -+ oo with the latter the 
't Hooft coupling constant. In other words on the one hand we have a classical theory of gravity, on 
the other a gauge theory in its deep non-perturbative regime, and both are dual to each other! Some 
partial results outside this limit have been obtained as well together with several other examples of 
the holographic principle. This sheds a completely new light on both gravity and gauge theories and 
fulfills, albeit in an unexpected way, the dream to formulate gauge interactions in terms of a string 
theory. 

4 Conclusions 

String theory is the only known consistent quantum theory for gravity. Not only does it describe 
gravity but the other gauge interactions as well. The past few years have seen enormous progress. 
The microscopic understanding, not only qualitatively but quantitatively as well, of black hole thermo­
dynamics impressively demonstrates that though the final theory might look very different from what 
we are doing now, string theory does contain important grains of truth. Furthermore, a fascinating 
interplay between gauge theories and gravity emerged, teaching us not only about gravity but giving 
us an alternative and powerful way to investigate properties of gauge theories. 

The question which will immediately come to mind of the present audience is: What are the phe­
nomenological implications of string theory? In honesty, I have to admit that besides some qualitative 
issues there are no firm quantitative predictions which can be tested at present or near future acceler­
ators yet. Though we have gained a deep understanding of certain non-perturbative aspects of string 
theory, we still have no way to address its fine structure. Right now, we have an enormous collection 
of classically stable vacua around which we can do perturbation theory. Some of these vacua are 
related through duality transformations. We still lack a background independent description of string 
theory. This would enable us to study quantum effects which would presumably lift the huge vacuum 
degeneracy, thereby breaking supersymmetry and introducing small masses and perhaps explain us 
why our world is as it is. Being an optimist, I think . this means that a thrilling trip still lies ahead of 
us! 
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