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Abstract

The mysterious dark energy remains one of the greatest puzzles of modern sci-
ence. Current detections for it are mostly indirect. The spacetime effects of
dark energy can be locally described by the SdS,, metric. Understanding these
local effects exactly is an essential step toward the direct probe of dark energy.
From first principles, we prove that dark energy can exert a repulsive dark force
on astrophysical scales, different from the Newtonian attraction of both vis-
ible and dark matter. One way of measuring local effects of dark energy is
through the gravitational deflection of light. We geometrize the bending of light
in any curved static spacetime. First of all, we define a generalized deflection
angle, referred to as the Gaussian deflection angle, in a mathematically strict
and conceptually clean way. Basing on the Gauss—Bonnet theorem, we then
prove that the Gaussian deflection angle is equivalent to the surface integral of
the Gaussian curvature over a chosen lensing patch. As an application of the
geometrization, we study the problem of whether dark energy affects the bend-
ing of light and provide a strict solution to this problem in the SdS,, spacetime.
According to this solution, we propose a method to overcome the difficulty of
measuring local dark energy effects. Exactly speaking, we find that the lensing
effect of dark energy can be enhanced by 14 orders of magnitude when prop-
erly choosing the lensing patch in certain cases. It means that we can probe the
existence and nature of dark energy directly in our Solar System. This points to
an exciting direction to help unraveling the great mystery of dark energy.
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1. Introduction

Dark energy composes about 69% of the total energy density of the present Universe. It is
almost 15 times larger than all the visible matter we see in our Universe. But so far the existing
evidences of dark energy are mostly indirect [1]. The mystery of dark energy poses a great
challenge to modern science. Since the cosmological constant A was introduced by Einstein
into his field equation of general relativity (GR), it has long been viewed as representing dark
energy. Up to now, various models of dark energy (such as scalar fields) have been proposed
to interpret the current astronomy observations [2].

NASA has already proposed a developed mission on the gravity observation and dark energy
detection explorer in the Solar System (GODDESS) by flying a constellation of long-baseline
atom-interferometer gravity gradiometers and measuring the trace of the force field gradient
tensor in the Solar System [3]. It will possibly be able to isolate the new force field signal
from overwhelmingly stronger gravity effects and achieve a direct detection of dark energy as
a scalar field [3].

Perhaps, dark energy has already been detected through non-gravitational effects [4]. The
coupling of dark energy to photons leads to its production in the strong magnetic field of
the solar tachocline via a mechanism analogous to the Primakoff process for axions. This
allows for detectable signals on Earth. In fact, the electron recoil excess recently reported by
the XENONIT [5] (deep underground at the INFN laboratory, Italy) collaboration has been
explained by chameleon-screened dark energy, indicating the first direct detection of dark
energy [4]. Future detectors such as XENONnNT [6], PandaX-4T [7], and LUX-ZEPLIN [8]
are on the way.

Early in 2017, He and Zhang proposed to probe dark energy directly through gravitational
effects [9]. In general, dark energy is characterized by an equation-of-state parameter w, which
may evolve with the cosmological redshift z, namely w = w (z) [2]. Different models of dark
energy can be described by the parameter w when it takes the corresponding model values, such
as the cosmological constant model (w = —1), the quintessence model (—1 < w < —% ), and
the phantom model (w < —1) [2, 9]. However, w can be treated as a constant on astrophysical
scales, like our Solar System [9]. Based on this, it was proved model- and state-independently
in He and Zhang (2017) that the local repulsion from dark energy can be described well by the
SdS,, metric [9],

M A 3w+1
as? = — {1—2— —2(L) ] dr
r r
. 1
|:1 _ 2 % _ Z(L)3'IA,7+1:|

r

dr?+ % (d6 + sin® 0 d¢?) , (1.1)

where the mass parameter M is determined by both visible and dark matter of the gravita-
tional system, r, is a model-parameter characterizing the size of the present Universe, and
(t,r, 0, ¢) are the spherical (spacetime) coordinates. Here we adopt the geometrized unit system
(G = ¢ = 1). At large r, the SdS,, spacetime can be conformally and isometrically embedded
into the Friedmann—Robertson—Walker spacetime [9]. Besides, the scale factor r,, can be given
in each dark energy model when comparing with the cosmological data; it takes the value
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I, = 4/6/A for the cosmological constant model only and not for general dark energy models
[9]. By definition, the pressure p;, the energy density p;, and the equation-of-state parameter w
are connected by

w = Z”"/Zp"‘;’ (1.2)

where i represents the ith contribution described by a different dark energy model [2]. Note
that there is only one w-term responsible for all these dark energy contributions in the SdS,,
metric. When w = —1, the metric (1.1) reduces to the well-known Schwarzschild—de Sitter
(SdS) one.

For the SdS case, various kinds of studies on A have been carried out previously. In the
early 1980s, Islam [10] showed that the light orbital equation is independent of A in the SdS
spacetime. Since then it was generally believed that dark energy plays no role on the bending
of light. By 2007, Rindler and Ishak had concluded that A contributes to the deflection of light
after considering the measurements done by observers [11]. However, the conclusion has led to
a debate of more than ten years [12—19]. The difficulty of understanding the influence of dark
energy on light bending is due to the fact that the SdS spacetime is not flat at spatial infinity.
To overcome this difficulty, the Gauss—Bonnet theorem have been applied to a special case of
the static spacetime of spherical symmetry in the literature [20-23]. However, the difficulty
has still not been resolved completely in the SdS spacetime; some concepts and definitions
remain to be clarified [23]. Ten years later in 2017, He and Zhang [9] extended the debate to
the general SdS,, spacetime.

In this work, we attempt to geometrize the bending of light using the Gauss—Bonnet theorem
and propose a method to overcome the difficulty of measuring local dark energy effects. In
order to illustrate our basic ideas in a clear way, we just focus on the ideal SdS,, case in which
a point-like mass is surrounded by dark energy with a generic state parameter w < —%. In
fact, when w > —%, the metric (1.1) is still a solution to the Einstein equation, which can be
verified straightforwardly by following the derivations presented in He and Zhang (2017) [9].
So the SdS,, metric is also applicable to the case of w > — % However, in this case, the metric
becomes asymptotically flat, and thus it is quite trivial to understand the role of the w-term in
the bending of light.

This work is organized as follows. In section 2, we introduce the projection tensors. In
section 3, we analyze the dark energy effect on massive particles, and demonstrate that it acts
as a kind of gravitational force in the SdS,, spacetime. In section 4, by presenting new tech-
niques, we perform the geometrization for the bending of light, and extend the concept of light
deflection to any curved static spacetime. In section 5, we give a strict solution to the problem
of the influence of dark energy on light bending in the SdS,, spacetime, and propose a method
to overcome the difficulty of measuring the local dark energy effect. We conclude in section 6.
In appendices A, B, C, D and E, we present additional results and explanations of our theories
that clarify and support the results in the main text.

2. Projection tensors

For any observer, let U¢ be their four-velocity with U‘U, = —1, where a marks the abstract
index notation. For convenience, we will use the notation through this work, which was widely
used in Wald’s book [24]. Let Ay, = g, + U,U, and 7o, = —U, U}, where g, is the metric
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tensor used to describe the entire spacetime. Then, we have
hab hb c = hacs hab 7rbc =0, Tab 7Tbg = Tac-

Indeed, A, and 7, are space-like and time-like projection tensors, respectively. And we have
W, U =0, hh,U’=0, w°,U"=U", 7,U"=U,.

For a given four-vector V¢, let V, “ and V “ be the components which are parallel and
perpendicular to U“, respectively. Then we obtain

VJ_a — hab Vh, V” a — 7rab Vh, (2 1)

Vie= hab Vba VH a = Tab Vb, '
where V,, is the corresponding dual vector. Usually, one has V,, = g, V’. Clearly, h“ » Projects
the four-vector onto the local space of the observer. It is noteworthy that %, is actually the met-
ric tensor of some subspace of the entire spacetime. Denote = as this subspace, and parametrize
it by a set of coordinates z*, i = 0, 1, 2, 4. The tensors g, and &, can be expressed in general
as

8ab = &uv (d7"), (d2")p, 2.2)
Tap = T (d2"), (d27),, (2.3)
hab = Ry (dz"), (dz"),, 2.4)

respectively, where 7, = —U,U, and h;,, = 8w+ U,U,. Thus, hy, can be induced directly
from g,;,, namely h,, = gu»|=. Accordingly, it can be described well in the same coordinate
system as g,,. In a similar way, V“ and V, can be written as

Ve=vro,, Vo=V, (dz")g, 2.5

with 8/’ = (6/ Bz/”)a. Note that, for Ay, all its Lorentz indices are contracted. So the sub-
space described by Ay, is actually a physical space in which measurements can be made by the
observer. Let V' = h*, V", and V|, = h,,,V". Then we have

V=V Vig= Vi (dd, (2.6)

Clearly, any four-vector V“ can be projected into the local space of the observer. For the pro-
jected V|, “by h%, and V|, by hgp, they are both three-vectors with Lorentz indices contracted.
From the viewpoint of physics, they are both physical quantities and can be measured by the
observer. So those quantities derived directly from them, such as the intersection angle given
by equation (A.4) of appendix A, are all independent of the choice of coordinates and thus
physically measurable, especially in our notations and conventions.

3. The Newtonian analogy

In GR, the Einstein equation determining the motion of matter allows a Newtonian inter-
pretation, and thus a degree of intuitive understanding, which is often unavailable from the
formalism alone. Let us consider the Newtonian motion of a massive test-particle in the grav-
itational field including both contributions of the mass source and dark energy. In Newtonian
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gravity, the test-particle experiences an acceleration in a gravitational field, and thus can be used
to help us obtain the exact form of the attractive Newtonian force of the mass source (includ-
ing both visible and dark matter). The force induced by dark energy can be interpreted in a
quite similar way to the attractive Newtonian force. In principle, we can obtain the exact form
of the total gravitational force including both the Newtonian attraction and the dark energy
contribution from GR, starting from the metric tensor.

To begin with, we define the Newtonian limit by three requirements: the gravitational field
is weak, and it is static as well as the particles are moving very slowly compared to the speed of
light [25]. Next, let us see how to introduce the total gravitational force including contributions
from both the mass source and dark energy. Firstly, its form should be intrinsically determined
by the metric tensor g,,. Secondly, it should allow to reproduce the conventional results of
Newtonian gravity in the Newtonian limit. Thirdly, it should not include any information about
the motion of the observer or the test-particle so that the total gravitational force is intrinsic to
the spacetime itself. When taking all these requirements into consideration, we will find that
only as an instantaneous observer who is static relative to the gravitational field, one can feel
the gravitational field directly and thus obtain the exact form of the total gravitational force
correctly in the Newtonian limit.

In theories of stationary spacetime, for any observer, their four-acceleration is usually
nonzero and given by AY = UV, U, where V,, is the covariant derivative operator associ-
ated with the metric tensor g, [24]. Let V* be the four-velocity of a test-particle moving
on a geodesic and passing through the local space of the observer, then the observed three-
acceleration by this observer would be a = —A® 4 ﬁ (VPA,) V | 4. Setting V¢ = U?, we
have @* = —A%. In this case, the three-acceleration a® is measured in the rest frame of the
test-particle, usually named as the proper acceleration [26]. However, the proper acceleration
is still observer dependent. If the instantaneous observer is static relative to the gravitational
field, the measured proper acceleration a“ by this observer is just the gravitational three-force
g on per unit mass of the particle, especially in the Newtonian limit [24—26]. The specific g-
form obtained directly from this proper acceleration will be referred to as the proper form of
the gravitational force. Clearly, the measured proper acceleration a“ by the observer is uniquely
determined by the metric tensor, and, therefore, so is the proper form of the gravitational
three-force g.

In the case of some small physical separation, §°, between the test-particle and observer,
we have the three-acceleration, a* = —(1 + 6”V,) A* + R*,, UPU°3?, where R, is the
Riemann tensor of (1, 3)-type. Thus, the separation in this case will lead to some additional
o-terms. However, in GR, the measurements have to be made by the instantaneous observer at
the point of the test-particle or a sufficiently small region around the test-particle. So 4 is very
small in an actual measurement, and thus these J-terms can be ignored directly. Alternatively,
the proper acceleration can be obtained by making j-corrections to the measured acceleration
by the observer located at a small separation of §“ to the test-particle.

As shown in equation (1.1), the SdS, metric is static. So there exists a time-like
Killing vector K= (0/dt)". Let x =+/—K,K“. Here the range that we are interested in is
1-24 —2(’%)3w+1 >0. Then, x=+/—go = \/1 —2M —2(%)3w+1. By definition, we have
A% =V In x [24]. Correspondingly, A, = V, In y = (d In x), = -~— 250 (dr),, where

vV =800
(d In x), is the total differential of Iny. We therefore obtain the proper form of the
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three-acceleration of the massive test-particle as follows,

G4 = _Aa — _gahAh - _ (g/u/ aﬂa ayb) |: 1 8v —800 (dr)b]

vV—8w Or
g Ov—=8w ( 0 )a

- V—8w Or or

1 TM 5y \3w+1 9\

- - —+(3w+1)(—) g
r|r r or
1 1 M o \JwH

== — [+(3w—|—1)(r) }e;’, 3.1)
R r

where e = \/% (%)ﬂ is the unit vector along the radial direction. In our notations, we have

g =g 9,9, and (dz"), 9,” = d,”, which have been used in the first and second lines,
respectively. From equation (3.1), we see that besides the attractive Newtonian force, there exits
a dark force (generated by dark energy) on the massive test-particle. Evidently, the dark force
and the Newtonian force are on equal footing. The observational data requires 3w +2 < 0
at 60 level [27]. Thus, the w-term leads to a repulsive dark force. For the special case of the
cosmological constant A, we have 7, = 1/6/A. In this case, we can rewrite equation (3.1) by
setting w = —1 in a more familiar form

o 1 (M A2>A
g§=— ——=r |,

r1—2M oA\ 3
M

with |F| = 1. Under the weak field approximation, one gets § ~ — (- —27) 7, which agrees
with the dark force shown by Ho and Hsu in [28]. Now we successfully obtain the proper form
of the total gravitational force via equation (3.1), independently of specific dark energy models.

As seen from the static observer with respect to the gravitational field, the strength of the
three-force g on the test-particle, also known as the gravitational field strength, equals the
magnitude of the three-acceleration (3.1), namely g = |g| = |a“|. Exactly, the gravitational
field strength g can be written as

g =\/&”—%=\/E\Tﬁa
N R

vV—8w  Or
[ (050
(—800) &rr or
1 1

T \/1_2M_2(L)3w+1

where we have used (dr), (2 )" = 1 in the third line. When taking r, — 0o, one has

M 7 \3w+1
—+ (3w+1)(—)

o
r

, (3.2)

M 1

g~ — ———,
r J1—oi
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which is just the Rindler’s form of the field strength shown by equation (11.15) in [26] for
the special case of the Schwarzschild spacetime. In this case, we see that, for large r, the field
strength recovers the Newtonian inverse-square law in the Newtonian limit, namely g ~ ’)”—2
It is important to mention that the SdS,, metric is true not only for the cosmological constant
but also for other possible forms of dark energy (such as a single effective scalar field). In
general, there is no explicit cosmological constant A involved in the SdS,, metric; that is, the
parameter r, can not be expressed in terms of A for general dark energy models. Addition-
ally, we do not have the explicit r, value for each dark energy model at present. Hence, the
Newtonian analogue cannot be achieved directly from arbitrary state parameter w. One has to
first set it to w = —1, i.e. the cosmological constant case. Thereafter one should set A = 0 (to
achieve r, = 00), and finally for r > M, one recovers the Newtonian analogy. Anyway, we
have shown that the three-force g (or, equivalently, a*) given by equation (3.1) satisfies all the
requirements mentioned earlier, and we therefore successfully obtain the proper form of the
total gravitational force including dark energy.

The dark force acts on astrophysical scales (such as the Solar-System) that can be tens of
orders of magnitudes lower than the cosmological scale. Requiring g = 0 or g = 0, we derive
the critical radius r.; without any further approximations,

1
M \w
cri — To s 3.3
’ r<l3w+1|ro> )

where the repulsive dark force can balance the attractive Newtonian force. This coincides with
Ho and Hsu (2015) for the cosmological constant model [28] and with He and Zhang (2017) for
general dark energy models [9]. However, the post-Newtonian approximation adopted in He
and Zhang (2017) begins to break down when r ~ r;. Here the formula (3.1) remains valid in
the outer region with r 2 r;. So we have extended the formula for the total gravitational force
to the far-away region. Now it is reasonable to say that the repulsive dark force will dominate
over the Newtonian attraction in the outer region.

One major goal of the GODDESS mission is to detect any possible deviation from the
inverse square law behavior (mentioned above) [3]. It can be expected that the dark force,
also referred to as ‘the fifth force’ by the GODDESS team [3], will lead to the deviation. It
means that the GODDESS mission will have a chance of successful detection of dark energy
[3]. The measured force (or field) strength by GODDESS depends on its distance to the mass
source. The relative changes in the force (or field) strength has huge impact to GODDESS on
differentiating the dark force from the purely Newtonian force [3]. So the exact form of the
total gravitational force (3.1) or the gravitational field strength (3.2) can help the GODDESS
team to optimize schemes and develop strategies for the detection of dark energy. For example,
the critical radius r¢; (3.3) derived from equation (3.1) or (3.2) can tell us how far the explorer
should be from the Sun, the Earth or other planets, which is important to the choice of mission
trajectories.

4. Geometrization of light bending

In any static spacetime, there always exists a local space =, perpendicular to the four-velocity
U“ of the static observer at each point p. The local space =, is actually determined by a local
metric tensor, denoted as h,,|= e which is independent of the choice of local coordinates, and, as
seen from the local observer at point p, it represents a physical space. We can paste these local
spaces {Z,} at different points {p} together to get a three-dimensional manifold =, namely

== },J =,. In current theories of gravity, the entire spacetime is uniquely determined by one
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Figure 1. Parallel transport. The vector field V¢ =V“ ()\) denotes the parallel transport
of V¢ (0) along the positively oriented path S— 4—p5 — O— 1 — S at point A, with a
polar angle ¢ (\) from the x-axis.

metric tensor g,,. Consequently, all the metric tensors {/|=, } at different points {p} can be
written in a unified form. Denote it by h,,. Clearly, i, is the induced metric tensor from g,
namely h,, = g,,|z (see section 2 for details). For the static observer, as the global extension
of hap|=,, hap is uniquely given by g,,,. In GR, the metric tensor g, can be parametrized by a
set of global coordinates, like {2/}, as shown by equation (2.2). Therefore, we can describe the
metric tensor /,, on the hypersurface = in the same global coordinates, exactly as demonstrated
by equation (2.4) (see section 2 for details).

Ateach point p, consider a locally embedded surface >, C =, representing a slice of Z,. In
analogy to what we have done for =, we can paste these local surfaces {¥,} at different points
{p} together and obtain a two-dimensional manifold ¥ = ) . In differential geometry, Z is
a (three-dimensional) global space. As see from the observer at each point p, 3 is a global
surface embedded into the global space =, with each X, determined by the newly induced
tensor fzab\gp = (havlz,)s, = hab\gp. Indeed, there always exists such a global surface in any
curved static spacetime. For instance, in the SdS,, spacetime, we can construct such a surface
by setting 6 = 7, without loss of generality (see section 5 for details). For any surface ¥, we
denote ita;, to be its metric tensor. Generally, we have ita;, = hgp|s:, which is observer dependent.
In math lingo, (%, izab) is a two-dimensional Riemannian manifold. Now it can be viewed as a
physical surface on which measurements may take place.

For each static observer, the metric tensor fzab, as the global extension of izab|zp, is not

uniquely determined by /. Actually, the tensor izab\g » is dependent on the choice of the local
slice X,(CZ=,). Besides, we can always get the static observer at each point p to choose a
desired slice X, by certain rules, and then paste these local slices {X,,} together to construct a
global surface 3. To carry it out, we can define a global surface ¥ in advance. Then, we could
have the local observer at each point p choose a neighborhood of p on the surface > and define
it as the local slice ¥,,. Clearly, the choice of X, is flexible, depending on how to define or
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choose the global surface Y. In mathematics, ilah|§]p is closely related with X,. Thus, it also
shows a dependence on the choice or the definition of . As the global extension of ilab‘gp,

the metric tensor A, can not be uniquely determined by %,,; more exactly, it also depends
on the choice of the global surface X. Taking into account all these factors, we come to the
conclusion that the physical surface (3, izah) can be chosen at our convenience, which lays a
solid foundation for the geometrization of light bending.

Now we choose a global surface Y. As figure 1 illustrates, there is a simple, closed,
positively oriented piecewise regular curve on ., and it is composed of two oriented paths
Ly=8—s4—+5—0and L= 0O, — S.Lety:I=[0,]] — X be a map of a closed inter-
val I to the closed curve, with v (\g) = O and v (0) = v () = S, where ) is the arc length at
point O, and [ is the total arc length of the closed curve. Here - has already been parametrized
by arc length \. Now choose a Cartesian coordinate system Oxy with origin at O = (0, 0). For
any vector V* (0), let V¢ = V¢ () be the parallel transport of V¢ (0) along the oriented curve -,
with ¢ = ¢ (\) being the angle from the x-axis to V¢ at point A. Thus, we obtain ¢ = ¢ (\g) at
A = Nand ¢ = ¢ (]) at \ = [. Along the same track as L, the oriented path L = S— s — O'is
traced in the opposite direction. Denote V¢ = V() as the parallel transport of V¢ (0) along L
at A = [— X and ¢ = () as the corresponding intersection angle between V¢ and the x-axis.
In this notation, we have ¢ = @ (Xg) at Ag = [— Ao. Similarly, the parallelly transported V* (/)
along L and the corresponding intersection angle are denoted by V¢ = V() and ¢, = @.()\)
at point A, respectively. In particular, ¢, =@. (X) at Ay = [—Xo. According to the theorem
of uniqueness of parallel transport, we have V¢(Ag) = V¥ (Xo) and @, (Xo) = ¢ (\g), which
are an immediate consequence of the theorem of existence and uniqueness of differential
equations [29, 30]. When any two vectors are parallelly transported together along the same
track and in the same direction, their intersection angle keeps to be unchanged [26]. Thus,
@: (M) — @ (M) = @ () — ¢ (0). Then we have ¢ (o) — @ (Xo) = ¢ () — ¢ (0). It is note-
worthy that these results are all independent of the choice of V¢ (0). Following the same steps
as above, we can derive ¢ () — @ (A) = ¢ () — ¢ (0) for any point \. Hence, we finally find
the following relationship,

2(A) =) =6 (M) — o), 4.1)

which holds well for any v-like curve. Basing on this newly discovered relationship, we can
extend the concept of light deflection to any curved static spacetime.

To do this, we need to perform the geometrization of light bending in advance. First of all,
we define a generalized deflection angle exactly as

ay = @ (M) — ¢ (M), 4.2)

which is applicable to any curved static spacetime. Hereafter, we refer to this angle as the
Gaussian deflection angle. Then, denote by K the Gaussian curvature. By the Gauss—Bonnet
theorem, we have (see appendix E for details)

o) — p(0) = / /D Kdo, 43)
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where do is the element of area and D (C X) denotes the simple, connected region bounded by
the closed curve . Combining with the above derivations, the Gaussian deflection angle can
be further derived as follows,

an =9 () ~¢ =~ [[ Kao (4.4)
D

which is independent of specific spacetime models. It clearly indicates that the nature of light
bending is the curvature of spacetime. Besides, the left-hand side of the equation is invariant
under coordinate transformations, and so is the right-hand side. Now we have geometrized the
deflection of light successfully, and extended the definition of the deflection angle to the most
general static spacetime.

The mathematics involved in equation (4.4) is fairly simple. Denote dD as the closed bound-
ary of the region D, namely v = dD. Choose D to be a geodesic polygon (that is, polygon
whose sides are arcs of geodesics). Hereafter, D is referred to as the lensing patch, on which
the measurement can be made by local observers. In the case of gravitational lensing, light
follows null geodesics. Thus, the geodesic curvature of 9D is zero, namely, k, = 0 [29, 30].
Let 6; be the ith external angle of 0D, which is actually a measurable intersection angle (see
appendix A for details) by the static observer at the ith vertex v (\;). Here ); is the arc length
at the ith vertex. Then, according to the Gauss—Bonnet theorem, we also have (see appendix E
for details)

ay = ZG, — 2. (45)

i

Generally speaking, it asserts that the Gaussian deflection angle is equal to the excess over
27 of the sum of the external angles of the geodesic polygon. Take a geodesic triangle for
example. Denote the ith interior angle as v);. When dealing with the geodesic triangle, we have
ay =T — Z?le,-. If the triangle is on a flat surface, we have o, = 0. Also, on a sphere-like
surface, ay; < 0 [29]. Similarly, on a pseudosphere-like surface, cy; > 0 [29]. Obviously, the
formula (4.5) provides a remarkable relation between the geodesic polygon and the deflection
of light.

The Gaussian deflection angle oy, (4.2) is actually a generalized deflection angle. In some
special cases, it can reduce to the usual deflection angle. To show this, we need to choose a
spacetime region where the metric is flat (or conformally flat). A typical example of this is
the region of spatial infinity in the Schwarzschild spacetime. Hereafter, we name this kind
of region as the laboratory area. Its properties are presented detailedly in appendix A; in the
laboratory area, the light ray travels along a physically straight line, and we can not probe its
bending effect. As illustrated in figure 1, let Ly be a simple, oriented piecewise regular curve in
the laboratory area. It contains three segments of straight lines: SA, AB, and BO, satisfying
SAL(9/0x)", AB L (9/9y), and BO L (0/0x). These segments can be parts of light
trajectories. If so, the intersection angle between any two segments is actually an measurable
angle (see appendix E for details). Due to the flatness or the conformal flatness of the laboratory
area, one has ¢ ()\g) = ¢ (0) when taking the parallel transport of V¢ (0) along the path L.
Then, apy = @ (5\0) — ¢ (0), which agrees with the definition of the usual deflection angle.
Thus, the Gaussian deflection angle oy, recovers the usual deflection angle. We therefore via
equations (4.2) and (4.4) give a reasonable and natural generalization of the usual deflection
angle.

Turn now to the application of the Gaussian deflection angle to measuring the local space-
time effect on the bending of light. To obtain the Gaussian deflection angle, one needs to
measure the external angle 6, or the interior angle v; at each vertex  (\;) of D. These external

10



Class. Quantum Grav. 39 (2022) 015003 Z Zhang

(or interior) angles are actually the intersection angles between any two light trajectories (as
null geodesics), and each angle can be directly measured by the static observer at each ver-
tex. In reality, measurements may be performed by moving observers passing by each vertex.
In this case, the measured values by the moving observer for ; or 1); need to be made rela-
tivistic corrections. In fact, the finally measured 6; or v; by the static observer at each vertex
7 (\;) can be obtained by using the general relativistic aberration relationships [19]. Anyway,
we can always obtain the Gaussian deflection angle from these locally measurable intersec-
tion angles {6;} or {t;} via the formula (4.5). In addition, the Gaussian deflection angle, as a
global quantity, is fully determined by the integral of the Gaussian curvature K over the lensing
patch D, namely the total curvature (see appendix E for details). Thus, using the Gauss—Bonnet
theorem, we establish a relation between the global properties of the lensing patch D, like the
total curvature, and the local properties of the curve 9D composed of null geodesics, such as
0, or v; at each vertex. By definition, K quantifies properties intrinsic to the spacetime surface
>.. Therefore, from this perspective, the Gaussian deflection angle can be used as a potentially
interesting probe of the intrinsic properties of spacetime.

5. Local SdS,, spacetime effect on the bending of light

Come back to the case of the SdS,, spacetime. When M = 0, the SdS,, metric is conformally
flat [9]. In this case, the light ray travels along a physically straight line, which is the same as
the Minkowski vacuum case (cf appendix A). It means that in this case, we can not probe the
local spacetime effect of dark energy on the bending of light. However, for the case of M # 0,
it becomes rather difficult to deal with the SdS,, metric in a similar way. In fact, it is almost
impossible to demonstrate what role dark energy plays in the bending of light based on the
traditional theories' only (see appendices C and D for details). In this section, we attempt to
understand the role of dark energy in light bending by introducing the concepts and techniques
presented in the previous section. As already mentioned earlier, in the SdS,, spacetime, there
always exists a subspace = locally perpendicular to the four-velocity U“ of the static observer
at each point. The subspace = can be globally described by the induced metric tensor,

B 1
122 —2(3)

hap (A, (dr)y, + r(d6),(d0), + r* sin® 6 (d) (),

We then take ¢ = 7, without lossing generality, and therefore obtain the following metric
tensor,

P 1
hab - 1 — 2)M _ 2(%)3w+1 (dr)a(dr)b + r2(d¢)a(d¢)h

Thus the subspace = reduces to the (7, ¢)-plane determined by hay. We therefore construct a
physical surface X, which is characterized by the following metric,

1
122 2

ds? = Edu® + 2F dudv + Gdv? = dr* +r*d¢’.

'In traditional theories for light deflection, the usual deflection angle plays a central role, and various approaches
have been proposed accordingly to probe the bending of light. Hereafter, this kind of approaches are referred to as the
traditional approaches.
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This metric is orthogonally parametrized by (u, v) =(r, @) (see appendix E for details). In this
case,

1
- 1_2% _2(”7))311%&-1’

F=0,G=1r. (5.1

With these, we further derive the Gaussian curvature by using equation (E.5), exactly as

follows,
9 3w+
K= <\/1—2— —2(r) ) (5.2)

As shown in appendix E, the total curvature K, can be written as

= [f o=t f, (- ).

Combining this with equations (4.4) and (5.1), the Gaussian deflection angle can be finally

reexpressed as
1 M - \3w+1
- —f \/1—2— —2(L) do, (5.3)
2 Jop r r

where ¢ = ¢ (r) is uniquely determined by the boundary curve dD. Note that the formula
(5.3) is derived without any of further assumptions or approximations. Obviously, the Gaus-
sian deflection angle «, takes a model-independent form, with various dark energy models
described by different w values [2]. From the formula (5.3), we can further conclude that dark
energy does contribute the bending of light via the w-dependent term. So it is possible to extract
the information about (w, 7,) by making precise measurements via equation (5.3) for the bend-
ing of light. Clearly, this will have many applications. For instance, as expected from the model
predictions of the cosmological constant as the dark energy candidate, we have w = —1 and
A = 6/72, which can be tested directly through measuring the bending of light on astrophysical
scales, independently of current cosmological observations.

The boundary curve 9D involved in the formula (5.3) can be chosen at our convenience,
which is one of the significant advantages of the Gaussian deflection angle over the usual
deflection angle?. For certain choices, we can estimate the contribution of dark energy to the
Gaussian deflection angle in an analytic way. Now, consider a closed, positively oriented curve
0D such that it consists of four segments of light trajectories: S.A, AB, BO, and OS, as illus-
trated in figure 2. Their impact parameters are: b = 0, by + dy, 0 and by — g, respectively.
According to the light orbit equation (LOE) (B.1) (see He and Zhang (2017) [9] for details),
these segments can be described by

% =0 (SA,

1 dr 1 1 Mt
(m) A

2 This arises from the fact that the Gaussian deflection angle (4.2) can be rewritten as a surface integral (4.4) and thus
it actually has one more degree of freedom in the definition than the usual deflection angle.
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Figure 2. An example of the lensing patch. It is enclosed by a specific boundary curve,
which comprises four segments of null geodesics: SA, AB, BO, and OS, with impact
parameters b = 0, by + &y, 0, and by — ¢, respectively.

do —
o 0 (BO),

1 drY 1 1 M B\
(i) = 22| @)

respectively. Among these segments, the ones with b = 0 are actually parts of radial null
geodesics, respectively To calculate the Gaussian deflection angle, we need to perform a trans-
formation, dp — ( ) !'dr. With this transformation, by substituting the four LOEs into the
formula (5.3) and 1ntegrat1ng it along the oriented curve JD as well as making some neces-
sary approximations, one can further provide an order-of-magnitude estimate for the Gaussian
deflection angle.

To do this, we first set R4 < R and Rs < Rp, exactly as portrayed in figure 2, where
Rp denotes the radius at which the point P is located. Then we use A to characterize half the
absolute size of the change in the distance to the mass center M from the photon traveling along
a given path, such as ABorOS. By setting §p < by, and A < by, we have r =~ b for the closed
curve D. Thus the parameter b, can be used to characterize the distance of the lensing patch D
to the mass center M. Now we consider the gravitational potential to be fairly weak, fl < land

) 3w+1
(’%)MJr1 < 1. More precisely, we further set A ~ &—ZRA\/ 1240 —2(,%0) ~ Re_Ra

2

P Ro—R 3w+1 Ro—R P
for the path AB, and A = Koz \ [1— 240 (&) ~ ozks for the path OS. Let the
0 0
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two paths, AB and OS, have nearly the same A. As a result, the lensing patch D may be
a long, narrow belt. However, its length can be much smaller than by in our scheme for the

3w+1
direct probe of dark energy. Then we assume (b”—;)) < ,’)"’—0. Under these assumptions and

approximations, we can estimate the Gaussian deflection angle for the case of w ~ —1 as
follows,

1 \/1_ 2% _2(,%)3w+1
ay = —% dr
2 Jop (ST’))

A A
~ 0+ botdo +0— by

2 2
M bt M by
\/hM0+( %0) \/h0—50+( 1{:0)
A by 1bo [bo\> 1 8
SO IR B IO et |
0+ 2M<r0> 2 b
A by 1 by [bo\> 1 &

bo VM
AN (&) [b 1bo by’
(=) (2 )= 1==2(2) . (5.4)
bo bo M 2M\ i,
where [ - - - ], represents the line integral (5.3) along a part of the boundary curve dD. Let us
think about this line by line. The first line comes directly from equation (5.3). In the second line,
the four LOEs have been substituted into g; , respectively. As expected, this line allows simply
setting M = 0 and finding that the Gaussian deflection angle is zero to a first approximation.
The third line uses the two approximate formulae of A (mentioned above) for the two paths,
AB and OS, respectively. The fourth line has been derived by using ¢ < by and (b”—'o)%”rl <

l%' The last line gives an approximate formula quite roughly, but this will suffice for an order-
of-magnitude estimate. In the last line, the Gaussian deflection angle takes a simple form,
providing a straightforward way to understand the role of dark energy in the bending of light.

For comparison, we also calculate the usual deflection angle by using some techniques
developed for the Gaussian deflection angle (see appendix D for details). For the special case

of the cosmological constant (w = —1), the usual deflection angle can be approximated as
aM b\’| 4M  2MA
ay~ — |1+ — =—+ —0, (5.5)
b Ty b 3

where the A term is consistent with the result presented in the literature [15—19]. When setting
A = 0, we find that the usual deflection angle recovers the conventional result of light bending,
ay = %M. We can derive the dark energy correction Aqy, to the usual deflection angle,

A b\
alMM ~ (7) . (5.6)

Accordingly, we find that effects of A on the bending of light are quite small for a real astro-
physical system. For example, let b equal the size of our Solar System, like » = 0.1r.. Then
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we have Aa—iy ~ 107" from equation (5.6). Similar to Sereno (2019) [15, 16], we can conclude
from the point of view of the traditional (gravitational lensing) theories that effects due to A
are too small to be detected, although the A term does contributes to the usual deflection angle.

From the formula (5.4), we also get the dark energy correction to the Gaussian deflection
angle,

Bay 1k <@>2 5.7)

1
2
rephrasing that we can further enhance the local effect of dark energy via the proper choice of
the boundary curve 9D.

In our Solar System, we have M ~ 1.0M., where M is the mass of the Sun. Set
by = 0.1ry; and 69 ~ A ~ 1.0 AU (astronomical unit). In this case, it can be verified that
all the assumptions and approximations hold well throughout the derivations of the formula

(5.4). Then, § ("7") ~ 2.2 x 10", It clearly indicates that the influence of dark energy on
light bending can be enhanced by 14 orders of magnitude. Notice that in our scheme, the
impact parameter is fixed to a design value, and it is not an observable. From equations (5.4)
and (5.7), we further obtain c;y; ~ 0.63” and A{y—jl’” ~ 2.5 x 107, It means that we can directly
probe the existence of dark energy and measure the equation-of-state parameter w on a much
shorter length scale than the Solar-System’s at the distance of ~0.1r; from the Sun once a
spatial resolution of ~ 10~ arcseconds can be reached by the current lensing experiments. In
fact, this spatial resolution has been achieved by GRAVITY [31], which is often used to detect
the gravitational microlensing events.

The Universe is presently dominated by not only dark energy, but also the pressure-less
(baryonic and dark) matter. However, when considering the fact that the Sun contains more
than 99% of the mass of the Solar System, as well as the SdS,, metric holds well for a point-
like mass M or for regions outside a spherically symmetric mass-distribution [9], it can be
found that our estimate remains valid, especially as an order-of-magnitude estimate. So we
can safely draw the conclusion that the current lensing experiments are already sensitive to
probing dark energy via the method presented above.

Nevertheless, these lensing experiments are all designed based on the traditional approaches
where it is the usual deflection angle that plays a central role rather than the Gaussian deflec-
tion angle (4.4). Within the framework of traditional theories, the local dark energy effect is
too weak to be detected only by using traditional approaches (as we discussed just below
equation (5.6) or shown by Sereno (2019) [15, 16] for the A effects, for example); in other
words, we have no chance to amplify the local effect of dark energy via the choice of the path
of integration 0D in analogy to what we have done for the Gaussian deflection angle (5.3).
This explains why despite intense effort no experiment on the bending of light shows any devi-
ation from traditional theories, till today. Anyway, we have successfully proposed a method to
overcome the difficulty of measuring local dark energy effects.

Clearly, it is about ~ (bvo) times larger than that to the usual deflection angle. It is worth

6. Conclusions

Recently, the XENONIT reported a non-gravitational signature of dark energy [4]. If it is
confirmed by future experiments, we have to face the scenario in which dark energy couples
to photons directly. Taking dark energy as a scalar field for example, its quanta interact with
photons, as assumed in [4]. If so, these quanta may be produced by the magnetized objects like
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the Sun and then propagate outward to the observer, forming local fluctuations in the pressure
and energy density of dark energy while still keeping w nearly constant on astrophysical scales
so as not to contradict with the existing observational data. These fluctuations may manifest
as tiny noises or perturbations when measuring the local dark energy effect via the bending of
light. On the other hand, in principle this scenario can only be dealt with in quantum gravity.
As was done in [32, 33], new scalar fields were introduced into the standard model of particle
physics, and their quanta interact with photons at the quantum level. It turns out that the final
result of quantum gravity agrees with the classical GR result to a first-order approximation [33].
However, when returning back to the study of dark energy, it might become rather different to
calculate the deflection angle, and the computations need to be accomplished strictly using
modern field theory techniques, which is far beyond the scope of our work.

In this work, we focus on the classical GR, and showed that the bending of light can serve as
an important tool for the direct probe of dark energy on the Solar System scales. By using the
famous Gauss—Bonnet theorem, we geometrized light deflection, and demonstrated explicitly
that in any curved static spacetime the Gaussian deflection angle is equivalent to the total
curvature. For the general case of the SdS,, spacetime, we concluded that dark energy does
affect the deflection of light. Measuring such effect can directly probe the existence and nature
of dark energy.

In section 2, we introduced the projection tensor ~¢, and the induced metric tensor /. Both
of them are observer dependent. Generally, 4?, projects any four-vector onto the observer’s
local space that is described by the metric tensor A,;,. In physics, the projection of the four-
vector by h“, is physically measurable. For example, the proper three-acceleration a“ mea-
sured by the static observer can be regarded as the projection of the four-acceleration Ae,
More exactly, we have a“ = —h* bA” (= —A%), with 7 b A? =0.1t is independent of the choice
of coordinates, since all the Lorentz indices are contracted. This is indeed the reason why
the gravitational three-force g can be directly measured by the static observer in the SdS,,
spacetime.

In section 3, we derived the proper form for the dark force induced by dark energy, in
analogy to what we have done for the traditional Newtonian gravity. Then we further showed
that the dark force is repulsive and its strength grows with r. This is in contrast to the attractive
Newtonian force caused by both visible and dark matter. We also derived the critical radius
Teri> at which the dark force balances the Newtonian attraction. r¢; plays an important role in
helping us to design experiments and develop strategies for the direct probe of dark energy
through gravitational effects. Taking the gravitational lensing effect for example, the lensing
patch D cannot be too far away from the region r ~ r;, otherwise it will become very difficult
for the direct probe of dark energy. Another example is about the GODDESS mission, which
has been proposed by NASA to detect the dark force (also referred to as the fifth force). Using
the explicit form of the dark force or its strength, we can maximally optimize detection schemes
and quantitatively develop measurement strategies for the GODDESS mission.

Section 4 was built on the Gauss—Bonnet theorem. We first defined the Gaussian deflec-
tion angle by adopting new techniques, like taking parallel transport. Using the Gauss—Bonnet
theorem, we then proved strictly that the Gaussian deflection angle is identical to the integral
of the Gaussian curvature over the lensing patch D, which is applicable in any curved static
spacetime. We therefore geometrized the bending of light after a sequence of strict mathemati-
cal derivations. We also showed that the Gaussian deflection angle is intrinsically a generalized
deflection angle; in some special cases, the Gaussian deflection angle reduces to the usual
deflection angle. From the Gauss—Bonnet theorem, we also derived a relationship between the
Gaussian deflection angle and the measured external (or interior) angles by the static observers
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at every vertex of the closed boundary curve dD. From this relationship, the Gaussian deflec-
tion angle can be obtained directly. Note that all these results are independent of the choice of
coordinates, forming a strict mathematical basis for the theories of direct probe of dark energy
through the bending of light.

In section 5, we demonstrated that the light ray is deflected as it travels in the SdS,,
spacetime, and gained a clear understanding of the role of dark energy in the bending of
light. For the Gaussian deflection angle, we did explicit calculations in the general SdS,, case
(cf appendix E), and presented its analytical form in equation (5.3) strictly; the deflection angle
takes a general form, where the equation-of-state parameter w can describe different forms of
dark energy when it takes their corresponding values. Thus we model-independently concluded
that dark energy does affect the deflection of light. We also showed in equation (5.3) that the
dark energy contribution is fully determined by the two generic parameters (w, r,). Therefore,
it is possible to obtain (w, r,) from measuring the Gaussian deflection angle. With extracted
information about the two parameters, we could further discriminate between different dark
energy models and thus identify the right model for describing dark energy.

In addition, we proposed a method to overcome the difficulty of measuring the local effect
of dark energy on the bending of light. Under the weak field approximation, we calculated
the direct contribution of dark energy to the Gaussian deflection angle, trying to maximize the
effect of dark energy by choosing the lensing patch D. We also estimated the usual deflection
angle by using the techniques developed in section 4 (see appendices A, B, C, and D for details).
By comparisons, we concluded that the direct contribution of dark energy to light deflection
can be enhanced by 14 orders of magnitude if we choose the boundary curve 0D properly.
When applying this enhancement to detect dark energy in our Solar System, we found that the
direct contribution of dark energy is already sensitive to the current lensing measurements.

Finally, we conclude that in general, it is important to make precise measurements on the
bending of light via the Gaussian deflection angle (4.4), and this will allow us to probe the exis-
tence of dark energy directly and discriminate different dark energy models with w = —1 ver-
sus w # —1. By the theories established in this work, it can be expected that the direct probe of
dark energy can been achieved at much shorter scales than our solar-system’s in the near future.
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Appendix A. Laboratory area

The SdS,, metric with M = 0 is conformally flat [9]. For the general case of M # 0, in the
region with r > rg;, the Newtonian attraction of matter can be ignored to a great extent, and
the gravitational force is dominated by the local repulsion from dark energy (see section 3
for details). When neglecting the Newtonian term completely, we can rewrite the SdS,, met-
ric under coordinate transformations as dS? = Q*(F)(—d72 + di? + 2d6? + 7 sin® 6 d¢?)
(cf appendix C). In this ideal case, dark energy has no measurable effect on the usual light
deflection [9]. Hereafter, we name this kind of region as the laboratory area. Without losing
generality, we confine the motion to the (7, ¢)-plane of ¢ = 7. Then the metric reduces to

ds? = D*(F)(—d7> + dF? + 7 d¢?). (A.1)

In any given coordinates n*, the energy—momentum four-vector of a light ray can be defined

by K¢ = —dn” ( 9_) , where \ is an affine parameter. According to the metric (A.1), we obtain

d\ Ot
two Killing vectors £ = (9/07) and (* = (9/0¢)°. This means that the metric (A.1) respects
the symmetries of time translation and space rotation. Therefore, the energy E = —§“K, and
the angular momentum L = (“K, are conserved, respectively. So we have

do

E=? 3_7): = Constant, L=7Q? - Constant,

where Q2 = Q (7). Here, E and L are both physical quantities. Combining with the null condition
d7? = d7? 4 7 d¢?, we obtain

1dr\> 1 1
(Fa6) =5 (A2

with b = L/E. Like E and L, the impact parameter b is also a physical quantity. Furthermore,
we rederive equation (A.2) as follows,
b
F= (A.3)
sin (¢— o)

where ¢ denotes the polar angle measured in a counterclockwise direction from a given x-axis
(as the polar axis). Besides, observe from equation (A.3) that it describes a straight line, and
¢, 1s the intersection angle between this line and the x-axis. It tells us that the light ray travels
along a straight line in any conformally flat space.

A.1. Intersection angle

Denote A* and B* as four-momenta of two intersecting light rays passing through the point of
a static observer, respectively. For the observer, the measurable intersection angle Z(A, B)y
between the two vectors is given by

AL B °

Cos Z(A,B)M = m

(A4)

From equation (A.1), we obtain the velocity U* of the static observer and its dual vector U,,
exactly as follows,

Ut =U'(9/or)" = ! (0/00)°, U, = U (), = —Q(d),.

2|
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Then we have h,,=Q [(d7),(dF), + 7 (d$),(d¢),]. Using equations (2.1), (2.2), (2.5) and

and Ay, =0 [A7(dP), + PA(de),] .

(2.6), we get
A= AT(@)0 + AYD/0¢)",

From equation (A.1), we can also obtain the tetred {e{} as follows,
C= L@ et = @O ef= @00F. (A
e = 7), e =g Y, % =2q , .
e, =—Qd7),  €,=QdR, € =FQ(dP). (A.6)

In the tetred, we can rewrite A |“ and A |, as
A= (QAT) ef + (FQA%)e) and Ay, = (QAp) €, + (FQAy) €,

respectively. Itis similar for the case of B | “ and B | ,. Then we have the measurable intersection

angle between the two vectors A“ and B“,
A?B? 72A¢‘)Bd)
cos LA, By = ———B> AT . (A7)
VATAT + F2A?A®/B'B" + F>B¢B?
By setting {2 = 1, we obtain a tetred {E ;’} from equations (A.5) and (A.6), for the (7,7, ¢)-
space, exactly as follows,
A a 1 a
Ef=@/0on',  Ej=_(9/09)", (A.8)
(A.9)

Ef = (9/07)",

E,=—d7s  E,= (e  E,=7(dd),
which is also the tetrad of a Minkowski spacetime. To further understand the coordinate angle
in the metric, we need to define the Euclidean intersection angle explicitly. Now we reexpress

and A,=(A)E, + (FAs) E%.

a

A “and A, in the tetred {E ;} as
A= (A)Ef + (FA%) Ef,
Similarly, one can get the exact form of B “ or B ,. Accordingly, the Euclidean intersection

(A.10)

angle Z(A, B)g can be expressed by
A"B" + F*A’B?

\/A?A7 + ?ZAq’)Aq‘)\/B7B7 + 72B¢ B® ’

cos Z(A,B)g =

Comparing equation (A.7) with equation (A.10), we have
(A.11)

cos Z(A, B)g = cos Z(A, B)y.

So the Euclidean intersection angle equals the measurable intersection angle in any confor-

mally flat spacetime.
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A.2. Coordinate angle

It can be proved that in a conformally flat spacetime, the coordinate angle ¢ in the metric
(A.1) is a Euclidean intersection angle, and thus a measurable intersection angle. To show
this, define two radial vectors A* and B%, with A® and B? being zero: A ¢ = (QAT) el and
B “=(QB)ef.Letx =7 cos ¢pandy = F sin ¢. Then we can reexpress the tatred {e;, ey
in the (x, y)-coordinates as

a a 3 a a 3 a a
e; =cos pel +sin gef, and egf=—sin ¢ e +cos ey,

with ed =% (9/0x)" and e =& (9/0y)". Let A align with the x-axis and B be the radial
vector with a polar angle of ¢ from the x-axis. Similar to the derivation of equation (A.11), we
have cos Z(A, B)g = cos(¢) = cos Z(A, B)y. Thus the coordinate angle ¢ in the SdS,, metric is
identical to the measurable intersection angle between the two radial vectors A* and B¢; that is,
¢ = Z(A, B)y. Note that the angles ¢; and ¢, mentioned earlier are of the same kind; they are
both measurable intersection angles. It means that in the conformally flat spacetime, the light
ray travels along a physically straight line, and one can not probe its bending effect only by
using the traditional approaches (see appendix D for details about the traditional approaches).

Appendix B. Symmetric light orbit
In the SdS,, spacetime, the LOE is given by [9]
1drY 1 1 M 7o \3w+
)= = - — 1_2__2(;’) . B.1
(r2 d¢> b? r2 { r r ] @1

In figure 3, we illustrate a trajectory of light. N denotes the point of closest approach of the

trajectory, with (r, ¢) = (r, ¢.). At this point, we have g—; Vo 0; that is,

1 1 M " 3w+l

The light orbit intersects with the circle of radius r at two points, namely P and Q. The
Euclidean intersection angles Sgp and [ ¢ are respectively given by

| [ (%),

Since P and Q lie at the same radius, we have (r %)p =—(r%) o from the LOE (B.1). Thus,
one has

tan Sgp

Bep = —PEo- (B.4)
In fact, for any r, we can obtain the same result. In special, at the point of closest approach
where P meets Q, we have Sgp = —fg.o = —m/2. Itis now clear that |3 p| = |Sg.o| for any

two points, P and Q, at the same radius. Combiningtﬁse results, we finally conclude that the
light orbit is symmetric relative to the straight line ON in the SdS,, spacetime.
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Figure 3. Light bending. The black line L = S—  — O represents the path of a light
ray in the (r, ¢)-plane, which is deflected by the gravitational field of matter and dark
energy. The yellow area within the critical radius » = r¢; illustrates the region where
the gravitational force is dominated by the Newtonian attraction. In this area, the circle
of radius r intersects with the light path L at points P and Q. Specifically, N is the
point of closest approach of the path L, and g p (ﬁE’Q) is the Euclidean intersection
angle between the radial direction and the three-momentum of the ray at point P (Q).
Outside the dashed circle, it is the outer region with r >> r;. The two points S and O are
both located in this region. The vector K& with ¢ = ¢; represents the four-momentum
of the incident ray at point S, and K& with ¢ = ¢; that of the outgoing ray at point O.

Appendix C. Coordinate transformations

Under the coordinate transformations r = Q7 and g—; = %, we can rewrite the
1 -2(Le
o

SdS,, metric (1.1) as follows,

_ Y, | r 3wl /] 3w—+1 QZ
ds? = — 1-2() S o2 () ] i e 4T
I Q)7 (Q) 7 {1 —2(%) v+ (L) '+]

7

jile} 2
[ M (1 = + ?)?m,r—i-l 1\ 3w+1 sz
12 (4) L 20" ]

+ Q%F (d6*+ sin*0 d¢?) ,

+

where the exact form of €2 = €2 (7) is given in He and Zhang (2017) [9]

1
_ [Bw+1] Bu+1]
- 1. (I’/l}')) 2
Q@F) = —| = sin®(2 arctan——>"——
() [2 ( V2 )1

(;‘/ré)‘3w+1‘
 PBw+1]

\\|-ﬁ

~1, for7/ <l (C.1)
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In the outer region with r > ry, r is a monotonically increasing function of 7, since
dr 3w (L)?)'IU—‘,-I
dr 3w+1

~]— £ > 0. Accordingly, we have 7 ~ r from equation (C.1). In this region,
the Newtonian term can be ignored so that the SdS,, metric (1.1) reduces to be conformally
flat [9], as shown by equation (A.1). Therefore the light ray travels approximately along a
physically straight line. Roughly, we can regard the outer region as a laboratory area.

Appendix D. Calculations for the usual deflection angle

Generally speaking, the traditional approaches for calculating the usual deflection angle are
based on integrating the LOE [19] rather than what we have done for the Gaussian deflection
angle. For comparison, we would like to calculate the usual deflection angle by using the new
techniques presented in this work. In gravitational lensing, the observer and source are usually
located in the outer region with r >> r., which can be approximately thought of as a laboratory
area. Hereafter, we ideally assume that the SdS,, metric reduces to be conformally flat in the
outer region so that the contribution from this region to the deflection of light can be ignored.
With a conformal transformation, the reduced metric can be written as dS> = Qz(?)(—d%2 +
d7? + 7 d¢?). In addition, the light ray needs to pass through the matter-dominated region, that
is, b < rgi. Otherwise, if b >> rey, the light ray will travel along a physically straight line, just
as the one traveling in the Minkowski spacetime; we can not detect the bending of light, and
are therefore unable to exact the information about the influence of dark energy on the bending
of light.

As illustrated in figure 3, we locate the source at point (7s, ¢s) and the observer at
point (7o, ¢o), with r¢; <K 7o, Fs < r,. Here we use ¢g and ¢ to denote the polar angles
of the source and observer, respectively. Since the source and observer are both far away
from the mass center M sitting at origin O, the path of the incident ray from the source and
that of the outgoing ray arriving at the position of the observer can be described well by two
straight lines in the outer region, respectively (see appendix A for details). By the symmetry
of the light orbit with respect to the straight line OA (see appendix B for details), the inci-
dent and outgoing rays should have the same impact parameter b. Thus, the two lines can be
described by

b o
"7 cos(d— i) and " cos(6— gn)’ ©-1)

with ¢; and ¢; being the their polar angles from the positive x-axis, respectively. We define
the two angles ¢; and ¢; concretely, as in depicted figure 3. In particular, we have ¢; >~ ¢g
and ¢r > ¢ in the outer region r > rgi 2 b. Denote K¢ as the four-momentum vector of

~

the incident light ray and K as that of the outgoing one. They are both radial vectors so
that their angular components K and K3, are both zero: K,% = (Q KZ) e* with ¢ = 1;, and
K, = (K., ef with ¢ = 1b;. Here, 1); and 1; are correspondingly the polar angles of these
two vectors, respectively. In physics, they are just the incident and outgoing angles, respec-
tively. Combining the definitions of ¢; and ¢y, we have ©; = ¢, + 7 and ¥y = ¢y, as shown
in figure 3. In fact, both v; and ¢; are physically measurable angles; exactly, they are both
measured from the x-axis that is actually the reference null geodesic with b = 0.

In figure 3, the light ray travels along the path L = S— p— y— ¢ — O passing through the
matter-dominated region with r < r.. Recalling the parametrization for the v curve shown in
section 4, we take the parallel transport of V¢ (0) = K. along the path L, and then get the
corresponding vector V¢(Ag) = K& with @ (Ag) = ¢ at point O. On the other hand, we per-
form the parallel transport of V¢ (0) = K along L, in the outer area where r ~ 7 >> 1 (see
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appendix C for details), and obtain V“ (o) = K5 with ¢ (A\g) = ¢ (0) at point O. Clearly,
we have ¢ (0) = ¢); (= ¢; + 7). We therefore obtain the usual deflection angle oy, between
the incident and outgoing rays: ay = @ (o) — ¢ (0) = ¢¢ — ¢ — 7, which is also physically
measurable. With u = 1/r, integrating the LOE (B.1) yields the following formula,

" du
OéMﬁd)O—d)S—ﬂ': Z/ .
p=38,0"% \/1/b2 _ Lt2 4 2Mu3 + 2r{3}w+1u3(“,+1)

(D.2)

where u,—s = 1/rs, up=0 = 1/rp, and u, = 1/r,. Here, rs and rp are the radii of the source
and observer in the original coordinates (7, ¢), respectively. For the special case of the cosmo-
logical constant (w = —1), by taking up —0" and us —0T, we have ay ~ 2[1 + (%)2].
When setting A = 0, we recover the conventional result of light bending, ay, ~ %M. For
w # —1, itis difficult to approximate the formula (D.2) analytically in a simple form. Anyway,
after considering the measurements made by the static observer and adopting new techniques,
we provide a conceptually clean and independent resolution by using a traditional approach to
the issue of light deflection in the SdS,, spacetime.

However, the approach used here is not based on a strict mathematical basis. For instance, we
can not take r — o0, since otherwise it will go beyond the outer horizon r ~ r,. Thus, compared
with the w-term, the Newtonian term in the SdS,, metric can not be neglected completely.
Hence, the conformal-flatness of the outer region with r > r,; is not as exact as we assumed.
Besides, even though the effect of dark energy on the bending of light can be locally neglected
in the outer region, it may be amplified significantly after the travel of the light ray over a
long distance. So we have to rethink the traditional approaches. There is still no any strict way
to deal with the outer region. It is the non-conformal flatness of the outer region that has led
a long-term debate on the topic [12-23]. In fact, it is almost impossible to define the usual
deflection angle strictly in the SdS,, spacetime. Now, by comparisons, it can be clear that, via
equations (4.4) and (4.5), we provide a new way to solve the problem on whether dark energy
affects the bending of light, which completely avoids the non-conformal-flatness problem that
we have to encounter in the traditional approaches.

Appendix E. The Gauss—Bonnet theorem and its application

For any global surface or two-dimensional Riemannian manifold 3, it can be described locally
by the metric [29, 30]

ds® = g;;dz'dz/
= Edu® + 2F dudv + Gdv?, (E.1)

where X is parametrized by the local coordinates (zi, zj) = (u,v). Denote do as the element
of area over X, and K as the Gaussian Curvature. In general, do = VEG — F? dudv [29, 30].
In GR, the surface X can be globally described by a metric; in fact, the entire spacetime is
uniquely determined by one metric. By the definition of the Gaussian Curvature K, it can be
expressed as [26, 30]

RM’UM’U

K=" (E.2)
8uu 8vv — uv uv
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where Ry, denotes a specific component of the Riemann tensor of rank 4.

Denoted by D (C X)) the simple, connected region bounded by the closed curve . Assume
that ~y is positively oriented, parametrized by arc length s, and let 6; and y (s;) be, respectively,
the ith external angle and the ith vertex of . Then [29, 30]

Si+1
E / kgds—l—//KdU-l- E 0; = 2m, (E.3)
i i D i

where k; = k, (s) is the geodesic curvature of the regular arcs of ~. This is the famous
Gauss—Bonnet theorem in global differential geometry. It establishes a connection between
local and global properties of curves and surfaces. Following this theorem, we can derive the
following formula

A<p:<p(l)—<p(0)=//DKdo, (E.4)

which is independent of the choice of coordinates [29, 30].
In fact, the metric (E.1) can be chosen to be orthogonal by coordinate transformations [29].
Then F = 0. K therefore can be simply expressed as

1 VE), (/G
-sin(($5): (%)

where f,(f,) denotes the partial derivative of f with respect to u(v). It follows that the total
curvature Ky, can be described by the following form,

Ku= [[ Kao
A()(2)

1 _(E), (/G).
- 2%}}3( TG du + N/ dv), (E.6)

where JD is the boundary of D. The first line is simply the definition of the total curvature.
The second line comes directly from equation (E.5). The last line uses Green’s theorem.
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