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The stochastic dynamics of the scalar field responsible for inflation is  considered in con­
nection with the statistical properties of classical curvature perturbations which are generated 
by quantum fluctuations in that field. The combined effect of non-linearities in the scalar 
field and of perturbations in the metric makes curvature perturbations on large scales strongly 
non-Gaussian. The controversial issue of whether perturbations in our observable patch of 
the inflated universe are also non-Gaussian is discussed in terms of conditional probabilities. 
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INTRODUCTION 

Density fluctuations generated during inflation (see, e.g., the review by A. Linde in 

these Proceedings) are usually considered to be Gaussian, as a general consequence of the 
required flatness of the potential for the infiaton, the scalar field which drives the accelerated 
universe expansion. Recently, however, it has been shown that both isocurvature l)-<) and 

curvature perturbations 5)-9) can be characterized by non-Gaussian statistics. Due to the 
back-reaction of field fluctuations on the background geometry, phase correlations appear 

during the stochastic evolution of horizon-size infiaton modes, thus providing non-Gaussian 

initial conditions for the linear evolution of adiabatic perturbations. In fact, it has been 
shown a) that, for a wide class of potentials leading either to Linde's chaotic inflation JO), 
or to power-law inflation ll),i2), fluctuations in the scalar field are non-Gaussian distributed 

around the classical trajectory: at the end of inflation the distribution for the gravitational 
potential fluctuations can be highly non-Gaussian 9). This is an important conclusion for 
theoretical cosmology since it opens the possibility of unexplored models for the formation 
of cosmic structures which, abandoning the random-phase paradigm, preserve the simplicity 
of the gravitational instability picture. Generally speaking one is faced with a new class of 

models which imply more structure on large scales than the standard cold dark matter model. 
Models of this type are presently under investigation in connection with their clustering 
properties on large scales 13). 

The mechanism for the generation of non-Gaussian adiabatic perturbations, which is 
discussed here is characterized by the absence of intrinsic lengths on cosmologically relevant 
scales, it therefore implies a scale-invariant fluctuation field (see, e.g., l4),l5l) .  Such a scale­

invariance property is properly expressed by a simple scaling (up to negligible logarithmic 
corrections) of the peculiar gravitational potential <I>( x) in Fourier space at every time during 
matter dominance 

where np is the primordial spectral index. For np = 1, Eq.(1 ) represents a generalization 

of the Zel'dovich criterion of scale-invariance to non-Gaussian fluctuations. This immedi­
ately translates into a statement on the time evolution of the N-point correlation functions 
�(Nl(x1 , . . •  ,xN; t) for mass fluctuations, consistently defined in terms of the Zel'dovich ap­
proximation 16), up to the time of first shell-crossing 

(2) 

provided that µ = [b(t)/b(t0)]2/(n,+3J, with b the growing mode of linear perturbations, 
proportional to t213 in the matter dominated era and in a fiat universe. This last property, 
however, only applies over suitably large scales where the curvature of the primordial spectrum 
introduced during the linear evolution of perturbations inside the horizon is unimportant. 

Although the potential <I> is simply related to the linear density fluctuation �12 through the 
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Poisson equation 

fi(3l4>(x, t) = -41rGa2(t)Se(x, t), (3) 

with a(t) the scale-factor, we prefer to define the mass density through the Zel'dovich approx­

imation; this allows to extend the treatment to the mildly non-linear evolution and to take 

into account the constraint e(x) � 0. Simple toy-model examples of scale-invariant statistics 

are: the model proposed by 17J , where the density fluctuation field is the convolution of two 

independent scale-free Gaussian processes; a model where the density field is the square of 

a Gaussian random process [as recently found by Bardeen (unpublished) in the analysis of 

a two-scalar field model for inflation] . As we shall see in the following, the non-Gaussian 

scale-invariant density fluctuations obtained from inflation are all of multiplicative type (see 

also 7l); this is an important property since a number of interesting phenomena are likely 

to occur in this case. Among these there is an interesting phenomenon called intermittency 
(see, e.g., 18l), which is clearly exhibited for instance by log-normal random fields; roughly 

speaking, intermittency consists in the occurrence, in realizations of the random field, of spo­

radic high spots where most of the intensity is stored, separated by large regions of reduced 

intensity. 

A quite different mechanism for producing non-Gaussian and non-scale-invariant per­

turbations during inflation rests on the use of multiple (interacting) scalar fields during in­

flation as considered in refs. 4),7); the stochastic method has been recently extended to the 

multiple scalar field case (see, e.g., 19J,20l). In this case one can easily obtain non-Gaussian 

and/or non-scale-invariant perturbations both of adiabatic and isocurvature type (see, e.g., 

the contribution by S.  Mollerach to these Proceedings) . 

STOCHASTIC INFLATION 

It has been shown by many authors that the dynamics of the inflaton on scales larger 

than the comoving Hubble radius rH(t) � 1/a(t) is accurately described by a stochastic 

approach (see, e.g., 21J,22l). One defines a coar•e-grained variable 'l'x(t) which is the average 

of the quantum scalar field over a volume of size � r1:(t). In the spirit of the chaotic inflation 

scenario initial conditions are introduced by assuming that there are initial domains of size 

� r'k( t.) characterized by a nearly homogeneous value 'I'• for the scalar field. Provided 

that 'I'• is large enough, a few Hubble times suffice to depress both the kinetic energy and 

the spatial gradients compared to the potential energy V( 'I'). The resulting coarse-grained 

dynamics is friction dominated and can be described by a Langevin-type equation 

. _ _ _ 1_ 8V('l'x) H312('f'x) ( )  'l'x - 3H('l'x) 8'f'x + 211" T/x t ' (4) 
where H('l'x) � y1V('l'x)/3u2 and u = 1/...;s;G. In this approach x labels the coarse-grained 

variable in different cells. In writing Eq.(4) one implicitly assumes a perturbed Friedmann 

line-element in an appropriate synchronous gauge (see, e.g. ,  23)) 

ds2 � dt2 - a2(x, t)dl2 , (5) 
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with a local scale-factor 

a(x, t) � a(x, t.) expi' 
H(cpx)dt' . 

'* 
(6) 

Non-diagonal scalar perturbations of the metric, which are also initially present in this gauge, 

are quickly depressed, on scales larger than the horizon, by the inflationary expansion . The 
first term on the r.h.s. of Eq.( 4) plays the role of a classical convective force, while the 

second one represents the diffusion process induced by fine-grained quantum fluctuations. 
The dependence of H on 'f' makes the stochastic process a multiplicative one. The noise 

'T/x(t), which has zero mean, is accurately approximated by a stationary Gaussian process 
with auto-correlation function 

(77x(t)77x' (t' ) ) = n jo ( lx - x' l/rH (t)) o(t - t') ,  (7) 

where io is the zero order spherical Bessel function. Because of the white-noi8e character 
of 77, with respect to its time dependence, cp(t) is Markovian. The quantity P(cp, t) dcp = 
(o (cp - 'f'['T/x(t)l) )� dcp, yielding the (one-particle) probability that, in a randomly chosen 
point x, 'f'x takes a value in the interval cp,cp  + d cp, evolves according to a Fokker-Planck 
equation (in the Einstein-Smoluchowski limit) 

(8) 

Once the inflaton potential V( 'f') has been specified, one looks for a time-dependent solution 
with the initial condition P( cp, t.) = o( cp - cp.)  corresponding to a homogeneous configuration 
cp,, with potential energy V. � 3o-2 H'}. (one needs H./o- � 87r/y'3, in order not to exceed the 

Planck energy). 
It should be recalled that the solution of Eq.(8) with a delta-like initial condition is 

actually a conditional probability (also called tran8ition probability in this context): it gives 
the probability that our stochastic process takes the value 'f' at time t (in a randomly selected 
position) given that the result of a measurement was 'f'• at time t. (Smoluchowski called 

it probability after effect8 ). Because of the Markovian character of the process the sharp 
condition at t. cancels any memory of the evolution preceding t.; also, for suitably short 
time intervals after t. the form of the probability is strongly dominated by the constraint, 
while for times long enough the initial distribution is essentially forgotten. 

The Langevin equation ( 4), together with the 77 correlation function Eq.(7), actually 

contains much more information than the (one-particle) probability P, for it takes into ac­

count the space-correlation properties of the distribution, that is, it allows to obtain the 

whole probability density functional. The probability density functional evolves according to 
a suitable functional Fokker-Planck equation [such a complete treatment has been sketched, 

for instance, by Rey 24) , although he completely disregarded the role of metric perturbations] . 
Another effect which should be taken into account when dealing with the space-distribution 
of the coarse-grained field is connected with the different weights to be assigned to different 
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cells due to fluctuations in the coarse-graining volume. This problem is dealt with by many 

authors by multiplying the probability by the volume factor a3 (x, t), obtained from Eq.(6). 

This correction is at the origin of the so-called eternally existing self-reproducing inflationary 
universe (see, e.g., 23l •25l) ;  for our purposes neglecting such a correction is a minor approx­

imation since this is expected to mainly affect the global properties of the universe and the 

evolution of the probability distribution at early times, when the local fluctuations of the 

Hubble constant can be very large. 

It has been shown 6) that the dynamics described by Eq.(8) [or Eq.(4)] presents universal 

properties for a large class of models leading either to chaotic or to power-law inflation. These 

can be summarized as follows. At early times the diffusion term in Eq.(8) causes the initial 

delta function to spread around its maximum which starts moving, due to the convective 

term. Convection, at this stage, can be approximated by a constant positive force (namely 

- V' /3H evaluated at 'I'•), later on, however, force gradients start to be felt: Brownian 
particles which are closer to the minimum of the potential suffer smaller attraction compared 

to more distant ones; at the same time the diffusion coefficient becomes smaller and smaller 

as the minimum is approached and can be safely neglected. This causes a shrinking of the 

distribution at late times characterizing the so called scaling regime (see, e.g., 26l): at the 

scaling time tsc the system undergoes a transition from a diffusion dominated regime (due to 

quantum fluctuations) to a convection dominated regime (due to classical non-linearities), 

or from a disordered phase to a macroscopically ordered phase. In this picture inflation is 

described as the non-equilibrium decay of the system from the unstable state 'I'• to the 

minimum of the potential, with the whole coarse-grained field distribution undergoing slow­

rolling down. The peaking of the probability at the onset of the scaling regime was noticed by 

a number of authors 2•J ,27J ,2•l .  During the scaling regime the distribution is strongly peaked 

around the classical homogeneous configuration <pc1(t) [(the solution of Eq.(4) when 'T/ is set 

to zero, or when Ii __,  O] , with fluctuations giving rise to classical curvature perturbations. In 

this scaling limit the solution tends to a self-similar time-independent function W of a single 

scaling variable e: P(<p , t) d<p � W(e) de. Such a scaling variable can be chosen so that it is, 

with very good accuracy (or even exactly), Gaussian with zero mean and two-point function 

1 11/rH(t�;n) 
(ex(t)ex• (t' )) = -2 2 

dkk2(Po /k3 )jo (k Jx - x'J) , 
7r 1/rH(t.) (9) 

where tmin = min(t, t') .  Only wavelengths that left the horizon during the interval t* 7 tmin 
contribute to the integral in Eq.(9). The e power-spectrum has a flicker-noise form P(k) = 
Pok-3 •  The amplitude P0 (which may possibly contain a residual logarithmic k-dependence) 

as well as the non-linear transformation between 'I' and e depend upon the precise form of 

the inflaton potential. 

INFLATIONARY MODELS 

We shall restrict our discussion to two simple models: chaotic inflation driven by a 

quartic inflaton potential lO) and power-law inflation based on an exponential potential, as 
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first proposed in ref. 12) Chaotic inflation can be driven by a quartic potential V( 'I') = 
(>./4)cp4• The classical solution of the 'I' dynamics in the slow-rolling down phase is described 

by '1'c1(t) = 'I'• exp(-2./>J3 uflt), where flt = t - t •. If the expansion is dominated by the 

classical homogeneous mode, the scale-factor is given by 

a(t) = a. exp{ (H./4u)(3/>.)1l2 [l - exp(-4.j>J3 uflt)] } . (10) 

Inflation is expected to end when the kinetic energy equals the potential energy, i.e. when 
'I' ,= ±2V'2u. The exponential potential V('I') = V. exp[->.('I' - 'l'•)/u], leads to power-law 

inflation 
2 2/:A' a(t) = a. [1 + >. H.Llt/2] , (11) 

for any >. < V'2. Unless the potential is suitably modified to allow for reheating to occur, 

inflation lasts forever, the ratio of kinetic and potential energy being constant along the 

classical trajectory '1'c1(t) = 'I'• +  (2u/>.) ln(l + >.2 H.Llt/2). 
For the quartic potential one can solve exactly the Langevin equation and find, for 

bcpx(t) = 'l'x(t) - '1'c1(t) ['1'c1(t) generally differs from ('l'(t)) by a small, time-dependent, 

space-homogeneous quantity which does not affect observable quantities] 

( 12H2 ) 1/4 bcpx(t) = ± O" >.u2* exp[-2.j>J3 uflt] [ 11 + (x(t) l -1/2 - 1] , (12) 

where the solution with the plus (minus) sign must be taken if 'I'• is positive (negative). 
In this case P0 � 1i(>./3)112(H./u)[l - 4(>./3)112(u/H.) ln(k/a.H.)] .  For the exponential 

potential appropriate use of the scaling approzimation yields, for large times 

bcpx(t) = )..l4;*t [ 1 1 + (x(t) l2/3 - 1] (13) 

and Po = (91i/16)[>.2 /(2 - >.2)](H./u)2 • The random-phase approximation in this context 

would amount to expand the r.h.s. of Eqs.(12) and (13) to first order in (; however ( can 

have a large r.m.s. value, depending on the value of H., so that such an approximation would 
fail in the general case. In the exponential potential model, for instance, 

( ) 1/2 _ Ii 3H. 112 2 (rma(t) - -2 - ln (1 + >. H.flt/2), 
211" 4u (14) 

whicli, for times after the onset of the scaling regime Llt,0 � 2( ..je- l)>.-2 H;1 , can be larger 

than unity. This fact is at the origin of the non-Gaussian behaviour of bcp discussed by 
Matarrese, Ortolan and Lucchin 6). For the quartic potential model, for times much larger 
than Llt,0 � (3/>.)112(1 /8u) ln 3, due the the large value of (rma(t), one can approximately 
write 'l'x(t) ex l(x(t) l -112• Positive moments of cp, being related to negative moments of 

a semi-Gaussian distribution (i.e., the distribution for 1( 1) ,  are infinite (as for the Cauchy 
distribution), except for the first one, ('!')· One finds that the probability of crossing a level v 
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times a suitable effective dispersion (S'P�ff)112 is far from the Gaussian expectation already 

for small v. This result holds, in the scaling regime, for suitably large values of H./u, 
independently of the value of ). and of time [in disagreement with Hodges 2•), who incorrectly 

used a random-phase approximation to estimate these crossing probabilities] ,  as follows from 

the scale-invariance property 

P(ip, t) � µP(µ<p, t - J3/4>.u2 lnµ). (15) 

For the exponential potential one finds at large times 'Px(t) oc l ex(t) l2/3 and 

(16) 

with erm• given in Eq.(14) . In the scaling regime the N-th connected moments normalized 

to the power N /2 of the variance relax to constant non-zero values: clear evidence for non­

Gaussian scale-invariant behaviour of the statistics. These dimensionless ratios do not depend 

neither on the value of >., nor on time (scale), nor on the initial condition through H •. The 

role of H., however, is more subtle: it must be large enough so that the system has well 

entered the scaling regime when the cosmologically interesting scales leave the inflationary 

horizon. It is clear that a low value of H. (just enough to solve the horizon p:.::oblem), as that 

quoted by Kofman et al. 7), keeps the system in the diffusive regime, where the fluctuations 

are practically Gaussian, and implies that our universe is exactly homogeneous on scales 

larger than the Hubble radius. This property is much stronger than what required by the 

isotropy of the cosinic inicrowave background, which only demands (for reasonable fluctuation 

spectra) that the r .m.s. density fluctuation on the scale of the present horizon is less than 

about 10-5 •  Fluctuations on super-horizon scales only determine the local value of average 
quantities. 

CURVATURE FLUCTUATIONS 

For scale-free inflaton potentials such as those presented in the previous section these 

results can be expressed in an a simple form as follows: the scaling approximation amounts 

to replacing the Langevin equation (4) by the following effective equation 

<f>x(t) = Fc1(t) 'Px(t) + C 'P�(t) T/x(t) , ( 17) 

where Fc1(t) is some function of time, c is a constant and the power f3 depends upon the 

inflaton potential. This equation is exactly solved by 

'Px(t) = <pc1(t)l l + ex(t) l l / ( l-.B> , 

where 'Pc1(t) is deterinined by Fc1(t) through 

( ) it dt'Fc1(t') 'Pel t = 'P• exp 
'· 

(18)  

( 19) 
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[except for the exponential potential case, where the situation is more involved as shown by 

Eq.(13), Eq.(19) is actually the definition of Fc1(t)] and 

(x(t) = (1 - (3) C 1' dt''f'�l-l (t') 'l/x(t'). 
'· 

(20) 

In this simplified treatment the quartic potential, for which this approach is exact, 

corresponds to (3 = 3; more in general, inflaton potentials of the type V oc 'f'2n are described 

by equation (17) with (3 = 3n/2 and the exponential potential, at late times, corresponds to 

(3 = -1/2. Note that for (3 = 1 the solution of this equation yields a log-normal process, 

while if (3 goes to zero in the equation (in the absence of boundary conditions) one gets a 

Gaussian process with C'f'x(t)/'f'c1(t) = (x(t). Also the model considered by Bardeen which 

is derived for two interacting scalar fields is formally described by this equation for (3 = 1 /2. 

Therefore Eq.(17) describes a whole set of models, parametrised by (3, which goes from the 

Gaussian case (3 = 0 to the extreme case of multiplicative stochastic process (3 = 1 , leading 

to the intermittency phenomenon: the log-normal process. 

The coarse-grained field fluctuation C'f'x(t) contains all wavelengths larger than the 

horiwn size at the time t. In order to obtain the peculiar gravitational potential <P(x) it 

is necessary to Fourier transform C'f' at each time t keeping only that mode k � 1/rH(t) 
that crosses the Hubble radius then. We can obtain the Fourier modes of the gravitational 

potential fluctuation field which reentered the horizon during the matter dominated era, by 

using their approximate constancy (the different behaviour of fluctuations which entered the 

horizon during radiation dominance is properly accounted for by the transfer function). One 

has 

<P(k) � _ 3T(k) Hc1(t1 ) 0 (k t ) 
5 <Pc1(t1 ) 

'f' 
' 1 ' 

(21) 

where t1 is the time when the wave-number k left the horizon during inflation and T(k) is the 

transfer function appropriate for the type of scenario one is considering. One will therefore 

find 

for the quartic potential and 

(23) 

for the exponential potential, at times much larger than the scaling time. It is clear that the 

non-.linear transformation from the Gaussian variable ( to C'f' implies that all Fourier modes 

of ( contribute to <P(k). As we have shown before, in the scaling regime one can approximately 

write [ 1 1  + (x(t ) I"'  - 1] � l(x(t) I"' in the r.h.s. of Eqs.(22) and (23) where a =  1/(1 - (3) is 

respectively -1/2 and 2/3. Note that this is the opposite of the random-phase approximation, 

valid in the initial diffusion dominated regime, where one writes [ 1 1  + (x(t ) I"'  - 1] � a  (x(t). 
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Of course, if one had linearized from the beginning the evolution equation for ficp, the coarse­

grained fluctuations would come out proportional to t and then Gaussian (non-Gaussian 

fluctuations can be obtained in the linear approximation by interacting multiple scalar fields, 

as in ref. •l : the linear approximation for ficp, therefore, does not adequately follow the 

dynamics during the convective regime. The non-linear transformation t -+ <!>(x) implies 

that fluctuations of t on all scales, even of super-horizon size (where, due to the k-3 tail 

of the spectrum, t largely fluctuates) affect the present statistics of sub-horizon density 

perturbations which will then be non-Gaussian. The statistics of the peculiar gravitational 

potential so obtained can thus be used for building up the initial particle distribution in space 

and velocity through the Zel'dovich algorithm; this can then be used for evolving an N-body 

code 13l . Note that the <!> power-spectrum Pq, (k) is simply related to that for the underlying 

Gaussian process t. In particular for the exponential potential model 

(24) 

with k* = a.H • .  The logarithmic correction to the power-law spectral shape is the only 

effect of the t1 dependence of �x(t1 )  in the previous expressions; this is a general result which 

allows to treat t as being essentially time-independent in expressions such as (22) and (23). 

We can therefore conclude that inflationary models of the type considered here give curvature 

perturbations approximately described by the following form for the gravitational potential 

perturbation smoothed over the scale R 

<l>R (x) = J d3yfR(y - x) l�(Y)I"' + canst, (25) 

where �(x) is now simplified to a Gaussian process with power-spectrum P(k) = P0k-3 , for 

k* :S k :S kma., and P( k)  = 0 elsewhere, kmaz being a wave-number much larger than any 

mode of cosmological interest. The function fR has Fourier transform 

(26) 

where WR(k) is a suitable low-pass filter which cuts off scales much smaller than R. Equa­

tions (25) and (26) allow to perform simulations of the non-Gaussian models described here, 

following standard methods (see 13l ) .  It is important to note that the arbitrary additive 

constant in Eq.(25) has no observable effects. 

Some authors have remarked (see, e.g., 7l) that the probability distribution for Eicp 

derived from the Fokker-Planck equation (8) cannot be used directly to yield density fluctu­

ations for our observable patch of the inflated universe. As we have discussed here (see also 

3o),•)) the obtaining of the actual density fluctuation field actually requires a more complete 

treatment taking into account the spatial variation of the quantum noise. This can be done 

by resorting to a functional Fokker-Planck equation or by using the Langevin equation (4) 

together with the T/ correlation function (7), as discussed so far. These authors have also 
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argued that one should somehow consider a different type of initial condition for Eq. (8) ,  or 

a conditional probability that the coarse-grained field has a certain value 'P at time t, i .e. ,  

on the scale R leaving the horizon at that time, given that it a had a particular value 'Po 
at the time t0 , corresponding to the present horizon scale Ro . The time to would typically 

correspond to about 60 e-foldings before the end of inflation; this is practically equivalent to 

starting to evolve the probability at t0 from a delta function centered on a value 'Po << 'P* ·  

The underlying idea is that one should somehow constrain the density field to be homoge­

neous on the horizon scale, since we cannot perceive inhomogeneities on scales much larger 

than R0•  It is clear that this condition prevents the system from entering the scaling regime, 

because one has too little time. Fluctuations in the gravitational potential , however, still 

happen to be small, because the dispersion had little time to grow. In this case one can easily 

show that for most values of 'Po the fluctuations are essentially G aussian, with the exception 

of very high fluctuations, rare events which do not perceive the constraint . Also, for a few 

values of the constraint 'Po , the conditional probability is highly non-Gaussian and similar 

to the unconstrained one: these rare values of 'Po give in fact the dominant weight in the 

unconstrained probability, as a consequence of the intermittency property, referred above. 

We believe, however, that the constraint imposed by the value of the coarse-grained field 'Po 
is unphysical, because it ignores the arbitrary additive constant which enters the definition 

of the gravitational potential. Lucchin, Matarrese and Ortolan 9) therefore consider a differ­

ent quantity, which is not affected by this indeterminacy: the gradient of the gravitational 

potential '1l', on a given scale R, this being proportional to the peculiar velocity field. For 

simplicity we consider the quantity b. 'l! == ['1l'(x) - '1l'0(x)] · n, with \[10 the same quantity 

evaluated on the scale Ro . This quantity is proportional to the peculiar velocity, projected 

along the direction n, measured by an observer placed in x in the local rest frame set by 

the cosmic background radiation. Both the probability for 6. 'l! and the one for the same 

quantity conditioned by the value of 'l!0 == \[10 · n are highly non-Gaussian, for essentially all 

values of the constraint. These non-Gaussian distributions are characterized by power-law 

tails (instead of exponential ones, like in the G aussian case), namely 

(27) 

with "( = 1 + 1/(1 - a ) ,  which typically imply diverging moments .  [More details will be 

given in the paper by Lucchin, Matarrese and Ortolan 9) .] The physical consequence of this 

fact is  that high peculiar velocities on large scales are much more likely than for a Gaussian 

field with the same power-spectrum. This qualitative conclusion is confirmed by numerical 

simulations of initially non-Gaussian distributions for the gravitational potential 13 ) .  

CONCLUSIONS 

The stochastic approach allows to study the dynamics of inflation on scales larger than 

the Hubble radius. It accounts for the generation of large-scale classical fluctuations from 

quantum oscillations inside the horizon, the effect of non-linearities on the evolution of infla­

ton perturbations and the back-reaction of matter fluctuations on the background geometry. 
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If the spatial dependence of the fine-grained correlation function is kept, the whole spatial 

pattern of the scalar field fluctuations is known: from this the statistical distribution of the 

gravitational potential fluctuation field can be completely reconstructed. A generic feature 

of models leading to chaotic or to power-law inflation is the occurrence of a scaling regime 

where the coarse-grained distribution sharply peaks around the classical solution. In this 

regime the distribution is non-Gaussian and scale-invariant, due to the dominance of the 

inflaton non-linearities over the diffusion caused by quantum fluctuations. The deviation 

from the Gaussian behaviour does not depend on the strength >. of the non-linearity, on 

time (scale) , and on the initial condition, provided the latter permits the system to enter the 

scaling regime. Because the probability is peaked, its bulk properties may be described by 

a Gaussian centered on <pc1(t) with suitable dispersion, but this approximation would fail in 

estimating the likelihood of rare events for which the actual distribution is required. 

The scale-invariance of the inflaton is reproduced by the peculiar gravitational potential 

field, during its linear evolution. As a consequence, the N-point mass correlation functions 

will obey Eq.(2) , with a spectral index np determined by the inflationary parameters; in the 

exponential potential model, for instance, np = 1 - 2).2 /(2 - >.2 ) � 1 (up to negligible loga­

rithmic corrections) . The non-Gaussian scaling invariance and the multiplicative character 

of the primordial perturbation field will affect the properties of the universe on large scales, 

in particular the probability for the occurrence of rare events, such as high peculiar veloci­

ties, large empty regions, long filaments and great attractors. Moreover, one should expect 

interesting consequences for the statistics of the cosmic microwave background anisotropies. 
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