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ABSTRACT

The stochastic dynamics of the scalar field responsible for inflation is considered in con-
nection with the statistical properties of classical curvature perturbations which are generated
by quantum fluctuations in that field. The combined effect of non-linearities in the scalar
field and of perturbations in the metric makes curvature perturbations on large scales strongly
non—Gaussian. The controversial issue of whether perturbations in our observable patch of
the inflated universe are also non-Gaussian is discussed in terms of conditional probabilities.
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INTRODUCTION

Density fluctuations generated during inflation (see, e.g., the review by A. Linde in
these Proceedings) are usually considered to be Gaussian, as a general consequence of the
required flatness of the potential for the inflaton, the scalar field which drives the accelerated
universe expansion. Recently, however, it has been shown that both isocurvature 1)~%) and
curvature perturbations ®)~% can be characterized by non-Gaussian statistics. Due to the
back-reaction of field fluctuations on the background geometry, phase correlations appear
during the stochastic evolution of horizon-size inflaton modes, thus providing non-Gaussian
initial conditions for the linear evolution of adiabatic perturbations. In fact, it has been
shown ®) that, for a wide class of potentials leading either to Linde’s chaotic inflation 19,
or to power-law inflation 11+?) | fluctuations in the scalar field are non-Gaussian distributed
around the classical trajectory: at the end of inflation the distribution for the gravitational
potential fluctuations can be highly non-Gaussian ®). This is an important conclusion for
theoretical cosmology since it opens the possibility of unexplored models for the formation
of cosmic structures which, abandoning the random-phase paradigm, preserve the simplicity
of the gravitational instability picture. Generally speaking one is faced with a new class of
models which imply more structure on large scales than the standard cold dark matter model.
Models of this type are presently under investigation in connection with their clustering
properties on large scales 13).

The mechanism for the generation of non-Gaussian adiabatic perturbations, which is
discussed here is characterized by the absence of intrinsic lengths on cosmologically relevant
scales, it therefore implies a scale-invariant fluctuation field (see, e.g., 19)1%)). Such a scale—
invariance property is properly expressed by a simple scaling (up to negligible logarithmic
corrections) of the peculiar gravitational potential ®(x) in Fourier space at every time during

matter dominance
(®(uks) ... ®(ukn))d (uk1)... & (uky) &~ pV D2 ((ky) ... ®(kn))dP k1. .. Pk (1)

where n, is the primordial spectral index. For n, = 1, Eq.(1) represents a generalization
of the Zel’dovich criterion of scale-invariance to non-Gaussian fluctuations. This immedi-
ately translates into a statement on the time evolution of the N—-point correlation functions
é(N)(xl,. ..,Xn5t) for mass fluctuations, consistently defined in terms of the Zel’dovich ap-

proximation '), up to the time of first shell-crossing
f(N)(xh'":xN;tD)mé(N)(/—"xla-'w;u'xN;t) (2)

provided that g = [b(t)/b(y)]?/("»*3), with b the growing mode of linear perturbations,
proportional to ¢2/3 in the matter dominated era and in a flat universe. This last property,
however, only applies over suitably large scales where the curvature of the primordial spectrum
introduced during the linear evolution of perturbations inside the horizon is unimportant.

Although the potential & is simply related to the linear density fluctuation §p through the
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Poisson equation

AP&(x, 1) = —4nCGa?(t)se(x, 1), (3)

with a(t) the scale-factor, we prefer to define the mass density through the Zel'dovich approx-
imation; this allows to extend the treatment to the mildly non-linear evolution and to take
into account the constraint g(x) > 0. Simple toy—model examples of scale-invariant statistics
are: the model proposed by !7), where the density fluctuation field is the convolution of two
independent scale—free Gaussian processes; a model where the density field is the square of
a Gaussian random process [as recently found by Bardeen (unpublished) in the analysis of
a two-scalar field model for inflation]. As we shall see in the following, the non-Gaussian
scale-invariant density fluctuations obtained from inflation are all of multiplicative type (see
also T)); this is an important property since a number of interesting phenomena are likely
to occur in this case. Among these there is an interesting phenomenon called intermittency
(see, e.g., '*)), which is clearly exhibited for instance by log-normal random fields; roughly
speaking, intermittency consists in the occurrence, in realizations of the random field, of spo-
radic high spots where most of the intensity is stored, separated by large regions of reduced
intensity.

A quite different mechanism for producing non—Gaussian and non-scale-invariant per-
turbations during inflation rests on the use of multiple (interacting) scalar fields during in-
flation as considered in refs. 4»7); the stochastic method has been recently extended to the
multiple scalar field case (see, e.g., 1*)29). In this case one can easily obtain non-Gaussian
and/or non-scale-invariant perturbations both of adiabatic and isocurvature type (see, e.g.,

the contribution by S. Mollerach to these Proceedings).

STOCHASTIC INFLATION
It has been shown by many authors that the dynamics of the inflaton on scales larger
than the comoving Hubble radius rg(t) ~ 1/a(t) is accurately described by a stochastic

21),22)). One defines a coarse-grained variable @x(t) which is the average

approach (see, e.g.,
of the quantum scalar field over a volume of size ~ r};(t). In the spirit of the chaotic inflation
scenario initial conditions are introduced by assuming that there are initial domains of size
~ 73(t,) characterized by a nearly homogeneous value ¢, for the scalar field. Provided
that ¢, is large enough, a few Hubble times suffice to depress both the kinetic energy and
the spatial gradients compared to the potential energy V(). The resulting coarse—grained
dynamics is friction dominated and can be described by a Langevin-type equation
1 8V(px) | H¥*(px
~sE e + T o, (4

where H(px) = 1/V(px)/30% and 0 = 1/v/8xG. In this approach x labels the coarse-grained

variable in different cells. In writing Eq.(4) one implicitly assumes a perturbed Friedmann

Px =

line-element in an appropriate synchronous gauge (see, e.g., 2%))

ds? ~ dt* — a?(x,t)dl?, (5)
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with a local scale—factor .
a(x,t) za(x,t,,)exp/ H(py)dt'. (6)
1y

Non-diagonal scalar perturbations of the metric, which are also initially present in this gauge,
are quickly depressed, on scales larger than the horizon, by the inflationary expansion. The
first term on the r.h.s. of Eq.4) plays the role of a classical convective force, while the
second one represents the diffusion process induced by fine-grained quantum fluctuations.
The dependence of H on ¢ makes the stochastic process a multiplicative one. The noise
fx(t), which has zero mean, is accurately approximated by a stationary Gaussian process

with auto—correlation function

(x(t)s(£)) = B o (Ix — x'|/raa(2)) (¢ —1"), (7

where jo is the zero order spherical Bessel function. Because of the white-noise character
of n, with respect to its time dependence, ¢(t) is Markovian. The quantity P(p,t) dp =
(6(<p — ¢[nx(t)]))n dp, yielding the (one-particle) probability that, in a randomly chosen
point X, @, takes a value in the interval ¢,p + d ¢, evolves according to a Fokker—Planck

equation (in the Einstein-Smoluchowski limit)

oP 8 [( 20 OV/? AoV B (o,
a—%[(w—w )7’ * 4 —aw%(v 7’)}' ®)

Once the inflaton potential V (¢) has been specified, one looks for a time-dependent solution
with the initial condition P (¢, t+) = 8( — ¢.) corresponding to a homogeneous configuration
. with potential energy V. ~ 30> H? (one needs H,/o < 87/v/3, in order not to exceed the
Planck energy).

It should be recalled that the solution of Eq.(8) with a delta-like initial condition is
actually a conditional probability (also called transition probability in this context): it gives
the probability that our stochastic process takes the value ¢ at time ¢ (in a randomly selected
position) given that the result of a measurement was ¢, at time ¢, (Smoluchowski called
it probability after effects). Because of the Markovian character of the process the sharp
condition at ¢, cancels any memory of the evolution preceding t,; also, for suitably short
time intervals after ¢, the form of the probability is strongly dominated by the constraint,
while for times long enough the initial distribution is essentially forgotten.

The Langevin equation (4), together with the 5 correlation function Eq.(7), actually
contains much more information than the (one-particle) probability P, for it takes into ac-
count the space—correlation properties of the distribution, that is, it allows to obtain the
whole probability density functional. The probability density functional evolves according to
a suitable functional Fokker—Planck equation [such a complete treatment has been sketched,
for instance, by Rey 24), although he completely disregarded the role of metric perturbations).
Another effect which should be taken into account when dealing with the space—distribution

of the coarse—grained field is connected with the different weights to be assigned to different
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cells due to fluctuations in the coarse-graining volume. This problem is dealt with by many
authors by multiplying the probability by the volume factor a®(x,t), obtained from Eq.(6).
This correction is at the origin ofthe so—called eternally ezisting self-reproducing inflationary
universe (see, e.g., 23)'75)); for our purposes neglecting such a correction is a minor approx-
imation since this is expected to mainly affect the global properties of the universe and the
evolution of the probability distribution at early times, when the local fluctuations of the
Hubble constant can be very large.

It has been shown ®) that the dynamics described by Eq.(8) [or Eq.(4)] presents universal
properties for a large class of models leading either to chaotic or to power-law inflation. These
can be summarized as follows. At early times the diffusion term in Eq.(8) causes the initial
delta function to spread around its maximum which starts moving, due to the convective
term. Convection, at this stage, can be approximated by a constant positive force (namely
—V'/3H evaluated at ¢,), later on, however, force gradients start to be felt: Brownian
particles which are closer to the minimum of the potential suffer smaller attraction compared
to more distant ones; at the same time the diffusion coefficient becomes smaller and smaller
as the minimum is approached and can be safely neglected. This causes a shrinking of the
distribution at late times characterizing the so called scaling regime (see, e.g., 2®)): at the
scaling time t,. the system undergoes a transition from a diffusion dominated regime (due to
quantum fluctuations) to a convection dominated regime (due to classical non-linearities),
or from a disordered phase to a macroscopically ordered phase. In this picture inflation is
described as the non-equilibrium decay of the system from the unstable state ¢, to the
minimum of the potential, with the whole coarse—grained field distribution undergoing slow—
rolling down. The peaking of the probability at the onset of the scaling regime was noticed by
a number of authors 24):27)28), During the scaling regime the distribution is strongly peaked
around the classical homogeneous configuration ¢.(t) [(the solution of Eq.(4) when 7 is set
to zero, or when & — 0], with fluctuations giving rise to classical curvature perturbations. In
this scaling limit the solution tends to a self-similar time-independent function W of a single
scaling variable & P(p,t) dp ~ W(€) dE. Such a scaling variable can be chosen so that it is,

with very good accuracy (or even exactly), Gaussian with zero mean and two—point function

1/TH(tmin)
(D (t) = — / AR (Po /K)o (Klx — x']), (9)

-2 [ra(ts)
where t,;, = min(t,t'). Only wavelengths that left the horizon during the interval tx + tmin
contribute to the integral in Eq.(9). The £ power—spectrum has a flicker-noise form P(k) =
Pok~3. The amplitude Py (which may possibly contain a residual logarithmic k—dependence)
as well as the non-linear transformation between ¢ and { depend upon the precise form of

the inflaton potential.

INFLATIONARY MODELS
We shall restrict our discussion to two simple models: chaotic inflation driven by a

quartic inflaton potential 1) and power-law inflation based on an exponential potential, as
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first proposed in ref. 12

. Chaotic inflation can be driven by a quartic potential V(p) =
(A/4)p*. The classical solution of the ¢ dynamics in the slow-rolling down phase is described
by v.i(t) = p.exp(—24/A/3 cAt), where At =t —t,. If the expansion is dominated by the

classical homogeneous mode, the scale-factor is given by
a(t) = a.exp{(H,/40)(3/X)/?[1 — exp(—4+/A/3 cA)]}. (10)

Inflation is expected to end when the kinetic energy equals the potential energy, i.e. when
@ = £2v/20. The exponential potential V(p) = V; exp[—A(¢p — ¢.)/c], leads to power-law
inflation
a(t) = a.[1+ N H.81/2 (11)
for any A < v/2. Unless the potential is suitably modified to allow for reheating to occur,
inflation lasts forever, the ratio of kinetic and potential energy being constant along the
classical trajectory p.i(t) = ¢, + (20/2) In(1 + N2 H At/2).
For the quartic potential one can solve exactly the Langevin equation and find, for
Sox(t) = px(t) — @ci(t) [pci(t) generally differs from (p(t)) by a small, time-dependent,

space—homogeneous quantity which does not affect observable quantities]

2\ 1/4
Spx(t) =+ o (%) exp[—2v/A/3 o AL)[|1 + €x(t) 7* — 1], (12)

where the solution with the plus (minus) sign must be taken if ¢, is positive (negative).
In this case Py ~ h(\/3)Y/*(H,/o)[1 — 4()/3)/*(c/H ) 1n(k/a.H,)]. For the exponential

potential appropriate use of the scaling approzimation yields, for large times

40

va 1+ &0 1] (13)

box(t) =
and Py = (9%/16)[A%/(2 — A?)](H./o)?. The random—phase approximation in this context
would amount to expand the r.h.s. of Eqs.(12) and (13) to first order in & however ¢ can
have a large r.m.s. value, depending on the value of H,, so that such an approsimation would

fail in the general case. In the exponential potential model, for instance,

5 )1/2%

Erma(t) = (W 1o In'2(1 + A2 H,At/2), (14)

which, for times after the onset of the scaling regime At,. ~ 2(y/e —1)A72H 1, can be larger
than unity. This fact is at the origin of the non—Gaussian behaviour of 8¢ discussed by
Matarrese, Ortolan and Lucchin ®). For the quartic potential model, for times much larger
than At,. = (3/1)/%(1/80)In3, due the the large value of £,m,(t), one can approximately
write wx(t) o [€x(t)]"'/%. Positive moments of o, being related to negative moments of
a semi-Gaussian distribution (i.e., the distribution for |{|), are infinite (as for the Cauchy

distribution), except for the first one, {¢). One finds that the probability of crossing a level v
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times a suitable effective dispersion (&p':’”)l/2 is far from the Gaussian expectation already
for small v. This result holds, in the scaling regime, for suitably large values of H,/o,
independently of the value of A and of time [in disagreement with Hodges ?*), who incorrectly
used a random-phase approximation to estimate these crossing probabilities], as follows from

the scale-invariance property

Plp,t) = pP(pp,t — +/3/4Xa% Inp). (15)

For the exponential potential one finds at large times ¢x(t) o |£x(2)?/® and

_ 1 N\/[23s\V
W~ (34 7 ) (Fgg) €0, (16)

with €., given in Eq.(14). In the scaling regime the N-th connected moments normalized

to the power N /2 of the variance relax to constant non—zero values: clear evidence for non-
Gaussian scale-invariant behaviour of the statistics. These dimensionless ratios do not depend
neither on the value of ), nor on time (scale), nor on the initial condition through H,. The
role of H,, however, is more subtle: it must be large enough so that the system has well
entered the scaling regime when the cosmologically interesting scales leave the inflationary
horizon. It is clear that alow value of H, (just enough to solve the horizon problem), as that
quoted by Kofman et al. ), keeps the system in the diffusive regime, where the fluctuations
are practically Gaussian, and implies that our universe is exactly homogeneous on scales
larger than the Hubble radius. This property is much stronger than what required by the
isotropy of the cosiic microwave background, which only demands (for reasonable fluctuation
spectra) that the r.m.s. density fluctuation on the scale of the present horizon is less than
about 107%. Fluctuations on super—horizon scales only determine the local value of average

quantities.

CURVATURE FLUCTUATIONS
For scale-free inflaton potentials such as those presented in the previous section these
results can be expressed in an a simple form as follows: the scaling approximation amounts

to replacing the Langevin equation (4) by the following effective equation

#x(t) = Fu(t) px(t) + ¢ 9R(1) nx(t), (17)

where F¢(t) is some function of time, c is a constant and the power 3 depends upon the

inflaton potential. This equation is exactly solved by
Px(t) = paa(t)1 + £x(2) /OB, (18)

where () is determined by F(t) through

t
Pei(t) = p.exp / dt'Fe(t') (19)
1.
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[except for the exponential potential case, where the situation is more involved as shown by
Eq.(13), Eq.(19) is actually the definition of F(t)] and

tl)=(1-8 / e PN E) malt). (20)

In this simplified treatment the quartic potential, for which this approach is exact,
corresponds to § = 3; more in general, inflaton potentials of the type V o ¢?™ are described
by equation (17) with 8 = 3n/2 and the exponential potential, at late times, corresponds to
B = —1/2. Note that for 8 = 1 the solution of this equation yields a log—normal process,
while if B goes to zero in the equation (in the absence of boundary conditions) one gets a
Gaussian process with §px(t)/@ci(t) = €x(t). Also the model considered by Bardeen which
is derived for two interacting scalar fields is formally described by this equation for 8 = 1/2.
Therefore Eq.(17) describes a whole set of models, parametrised by 3, which goes from the
Gaussian case 3 = 0 to the extreme case of multiplicative stochastic process § = 1, leading
to the intermittency phenomenon: the log-normal process.

The coarse—grained field fluctuation §px(t) contains all wavelengths larger than the
horizon size at the time ¢. In order to obtain the peculiar gravitational potential ®(x) it
is necessary to Fourier transform ¢ at each time t keeping only that mode k =~ 1/7ry(t)
that crosses the Hubble radius then. We can obtain the Fourier modes of the gravitational
potential fluctuation field which reentered the horizon during the matter dominated era, by
using their approximate constancy (the different behaviour of fluctuations which entered the

horizon during radiation dominance is properly accounted for by the transfer function). One

has
3T(E) Halts)
5 ¢cl(t1)

where t; is the time when the wave—number k left the horizon during inflation and T'(k) is the

o(k) ~ — p(k, 1), (21)

transfer function appropriate for the type of scenario one is considering. One will therefore
find

1/2
o(k) ~ #(w) exp(—4\/:\ﬁatl)‘/da:ce_ik'xﬂl+§x(t1)|‘1/271], (22)

for the quartic potential and

o(k) ~ 51;:;“ /d3 e MR |1+ &(t)** - 1], (23)

for the exponential potential, at times much larger than the scaling time. It is clear that the
non-linear transformation from the Gaussian variable ¢ to §p implies that all Fourier modes
of £ contribute to $(k). As we have shown before, in the scaling regime one can approximately
write [|1+ &x(t)|* — 1] ~ [éx(2)|* in the r.h.s. of Eqs.(22) and (23) where a = 1/(1 — ) is
respectively —1/2 and 2/3. Note that this is the opposite of the random-phase approximation,

valid in the initial diffusion dominated regime, where one writes [|1 +&x(t)* — 1] ~a £.(1).
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Of course, if one had linearized from the beginning the evolution equation for 8¢, the coarse—-
grained fluctuations would come out proportional to £ and then Gaussian (non—Gaussian
fluctuations can be obtained in the linear approximation by interacting multiple scalar fields,
as in ref. ¥: the linear approximation for i, therefore, does not adequately follow the
dynamics during the convective regime. The non-linear transformation £ — ®(x) implies
that fluctuations of £ on all scales, even of super-horizon size (where, due to the k=2 tail
of the spectrum, € largely fluctuates) affect the present statistics of sub-horizon density
perturbations which will then be non—Gaussian. The statistics of the peculiar gravitational
potential so obtained can thus be used for building up the initial particle distribution in space
and velocity through the Zel’dovich algorithm; this can then be used for evolving an N-body
code 3), Note that the ® power—spectrum Py (k) is simply related to that for the underlying

Gaussian process £. In particular for the exponential potential model
Py (k) ox (k/ky) /G0 =310 73k k), (24)

with kx = a.H.. The logarithmic correction to the power-law spectral shape is the only
effect of the t; dependence of £4(t,) in the previous expressions; this is a general result which
allows to treat ¢ as being essentially time—independent in expressions such as (22) and (23).
We can therefore conclude that inflationary models of the type considered here give curvature
perturbations approximately described by the following form for the gravitational potential

perturbation smoothed over the scale R

®p(x) = / @y faly ~ X)|E(y)|® + const, (25)

where £(x) is now simplified to a Gaussian process with power—spectrum P (k) = Pok~3, for
k, <k < kmaz, and P(k) = 0 elsewhere, k.., being a wave-number much larger than any

mode of cosmological interest. The function fg has Fourier transform
Fr(k) o Wa(k)T (k)k(m=1/2, (26)

where Wg(k) is a suitable low—pass filter which cuts off scales much smaller than R. Equa-
tions (25) and (26) allow to perform simulations of the non-Gaussian models described here,
following standard methods (see **)). It is important to note that the arbitrary additive
constant in Eq.(25) has no observable effects.

Some authors have remarked (see, e.g., 7)) that the probability distribution for &y
derived from the Fokker—Planck equation (8) cannot be used directly to yield density fluctu-
ations for our observable patch of the inflated universe. As we have discussed here (see also
30),9)) the obtaining of the actual density fluctuation field actually requires a more complete
treatment taking into account the spatial variation of the quantum noise. This can be done
by resorting to a functional Fokker-Planck equation or by using the Langevin equation (4)

together with the n correlation function (7), as discussed so far. These authors have also
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argued that one should somehow consider a different type of initial condition for Eq.(8), or
a conditional probability that the coarse—grained field has a certain value ¢ at time ¢, i.e.,
on the scale R leaving the horizon at that time, given that it a had a particular value g
at the time tg, corresponding to the present horizon scale Ry. The time t, would typically
correspond to about 60 e-foldings before the end of inflation; this is practically equivalent to
starting to evolve the probability at ¢y from a delta function centered on a value gy << p,.
The underlying idea is that one should somehow constrain the density field to be homoge-
neous on the horizon scale, since we cannot perceive inhomogeneities on scales much larger
than Rg. It is clear that this condition prevents the system from entering the scaling regime,
because one has too little time. Fluctuations in the gravitational potential, however, still
happen to be small, because the dispersion had little time to grow. In this case one can easily
show that for most values of ¢, the fluctuations are essentially Gaussian, with the exception
of very high fluctuations, rare events which do not perceive the constraint. Also, for a few
values of the constraint ¢g, the conditional probability is highly non—Gaussian and similar
to the unconstrained one: these rare values of ¢, give in fact the dominant weight in the
unconstrained probability, as a consequence of the intermittency property, referred above.
We believe, however, that the constraint imposed by the value of the coarse-grained field ¢,
is unphysical, because it ignores the arbitrary additive constant which enters the definition
of the gravitational potential. Lucchin, Matarrese and Ortolan ®) therefore consider a differ-
ent quantity, which is not affected by this indeterminacy: the gradient of the gravitational
potential ¥, on a given scale R, this being proportional to the peculiar velocity field. For
simplicity we consider the quantity A¥ = [¥(x) — ¥o(x)] - n, with ¥, the same quantity
evaluated on the scale Ry. This quantity is proportional to the peculiar velocity, projected
along the direction n, measured by an observer placed in x in the local rest frame set by
the cosmic background radiation. Both the probability for A¥ and the one for the same
quantity conditioned by the value of ¥y = ¥, - n are highly non-Gaussian, for essentially all
values of the constraint. These non—-Gaussian distributions are characterized by power-law

tails (instead of exponential ones, like in the Gaussian case), namely
P(AY) ~ |A¥|77, P(AY[To) ~ |AR|70F, (27)

with ¥ = 14+ 1/(1 — ), which typically imply diverging moments. [More details will be
given in the paper by Lucchin, Matarrese and Ortolan #).] The physical consequence of this
fact is that high peculiar velocities on large scales are much more likely than for a Gaussian
field with the same power—spectrum. This qualitative conclusion is confirmed by numerical

simulations of initially non-Gaussian distributions for the gravitational potential 13).

CONCLUSIONS

The stochastic approach allows to study the dynamics of inflation on scales larger than
the Hubble radius. It accounts for the generation of large-scale classical fluctuations from
quantum oscillations inside the horizon, the effect of non-linearities on the evolution of infla-

ton perturbations and the back-reaction of matter fluctuations on the background geometry.
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If the spatial dependence of the fine-grained correlation function is kept, the whole spatial
pattern of the scalar field fluctuations is known: from this the statistical distribution of the
gravitational potential fluctuation field can be completely reconstructed. A generic feature
of models leading to chaotic or to power-law inflation is the occurrence of a scaling regime
where the coarse—grained distribution sharply peaks around the classical solution. In this
regime the distribution is non-Gaussian and scale-invariant, due to the dominance of the
inflaton non-linearities over the diffusion caused by quantum fluctuations. The deviation
from the Gaussian behaviour does not depend on the strength A of the non-linearity, on
time (scale), and on the initial condition, provided the latter permits the system to enter the
scaling regime. Because the probability is peaked, its bulk properties may be described by
a Gaussian centered on ¢(t) with suitable dispersion, but this approximation would fail in
estimating the likelihood of rare events for which the actual distribution is required.

The scale-invariance of the inflaton is reproduced by the peculiar gravitational potential
field, during its linear evolution. As a consequence, the N-point mass correlation functions
will obey Eq.(2), with a spectral index n,, determined by the inflationary parameters; in the
exponential potential model, for instance, n, = 1 —2X2/(2 — A?) <1 (up to negligible loga-
rithmic corrections). The non-Gaussian scaling invariance and the multiplicative character
of the primordial perturbation field will affect the properties of the universe on large scales,
in particular the probability for the occurrence of rare events, such as high peculiar veloci-
ties, large empty regions, long filaments and great attractors. Moreover, one should expect

interesting consequences for the statistics of the cosmic microwave background anisotropies.
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