The 'Time of Occurrence' in Quantum Mechanics

Jan, 1981
48 pages
Published in:
  • Pramana 16 (1981) 173
Report number:
  • MUTP-80-8

Citations per year

1997200420112018202401234
Abstract: (Springer)
Apart from serving as a parameter in describing the evolution of a system, time appears also as an observable property of a system in experiments where one measures ‘the time of occurrence’ of an event associated with the system. However, while the observables normally encountered in quantum theory (and characterized by self-adjoint operators or projection-valued measures) correspond to instantaneous measurements, a time of occurrence measurement involves continuous observations being performed on the system to monitor when the event occurs. It is argued that a time of occurrence observable should be represented by a positive-operator-valued measure on the interval over which the experiment is carried out. It is shown that while the requirement of time-translation invariance and the spectral condition rule out the possibility of a self-adjoint time operator (Pauli’s theorem), they do allow for time of occurrence observables to be represented by suitable positive-operator-valued measures. It is also shown that the uncertainty in the time of occurrence of an event satisfies the time-energy uncertainty relation as a consequence of the time-translation invariance, only if the time of occurrence experiment is performed on the entire time axis.