Time evolution of entanglement entropy from a pulse
Apr, 2012Citations per year
Abstract: (Springer)
We calculate the time evolution of the entanglement entropy in a 1+1 CFT with a holographic dual when there is a localized left-moving packet of energy density. We find the gravity result agrees with a field theory result derived from the transformation properties of Rényi entropy. We are able to reproduce behavior which qualitatively agrees with CFT results of entanglement entropy of a system subjected to a local quench. In doing so we construct a finite diffeomorphism which tales three-dimensional anti-de Sitter space in the Poincaré patch to a general solution, generalizing the diffeomorphism that takes the Poincaré patch a BTZ black hole. We briefly discuss the calculation of correlation functions in these backgrounds and give results at large operator dimension.Note:
- 18 pages, 6 figures
- entropy: entanglement
- field theory: conformal
- space: anti-de Sitter
- duality: holography
- dimension: 3
- shock waves
- symmetry: conformal
- time dependence
References(19)
Figures(10)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]