Index Theory and Supersymmetry of 5D Horizons
Mar 4, 2013
24 pages
Published in:
- JHEP 06 (2014) 020
- Published: 2014
e-Print:
- 1303.0853 [hep-th]
Report number:
- DMUS--MP--13-06
View in:
Citations per year
Abstract: (arXiv)
We prove that the near-horizon geometries of minimal gauged five-dimensional supergravity preserve at least half of the supersymmetry. If the near-horizon geometries preserve a larger fraction, then they are locally isometric to . Our proof is based on Lichnerowicz type theorems for two horizon Dirac operators constructed from the supercovariant connection restricted to the horizon sections, and on an application of the index theorem. An application is that all half-supersymmetric five-dimensional horizons admit an symmetry subalgebra.Note:
- Section 7, on the sl(2,R) symmetry, has been added. 23 pages, latex, uses jheppub.sty
- Black Holes in String Theory
- Supergravity Models
- dimension: 5
- operator: Dirac
- horizon
- supersymmetry
- anti-de Sitter
- index theorem
- supergravity
References(30)
Figures(0)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [10]
- [10]
- [11]
- [11]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]