Near-infrared Variability among Young Stellar Objects in the Star Formation Region Cygnus OB7

Jun 10, 2013
19 pages
Published in:
  • Astrophys.J. 773 (2013) 145
  • Published: Aug 5, 2013
e-Print:

Citations per year

20152016201702
Abstract: (IOP)
We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1° × 1° region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J 17. We study detailed light curves and color trajectories of ~50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source ~100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.
Note:
  • 44 pages includes 5 tables and 16 figures. Some figures condensed for Astro/ph
  • accretion, accretion disks
  • infrared: stars
  • stars: formation
  • stars: pre-main sequence
  • stars: variables: general