Citations per year
Abstract: (arXiv)
We present two types of models for hybrid compact stars composed of a quark core and a hadronic mantle with an abrupt first order phase transition at the interface which are in accordance with the latest astrophysical measurements of two 2 M_sun pulsars. While the first is a schematic one, the second one is based on a QCD motivated nonlocal PNJL model with density-dependent vector coupling strength. Both models support the possibility of so called twin compact stars which have the same mass but different radius and internal structure at high mass (~2 M_sun), provided they exhibit a large jump \Delta \epsilon in the energy density of the first order phase transition fulfilling \Delta \epsilon/\epsilon_crit > 0.6. We conclude that the measurement of high-mass twin stars would support the existence of a first order phase transition in symmetric matter at zero temperature entailing the existence of a critical end point in the QCD phase diagram.Note:
- 7 pages, 2 figures, 1 table, prepared for the Proceedings of the 8th International Workshop on "Critical Point and Onset of Deconfinement",March 11 to 15, 2013, Napa, California, USA
- star: compact
- quantum chromodynamics: critical phenomena
- coupling constant: vector
- energy: density
- temperature
- Jona-Lasinio-Nambu model: Polyakov loop
- density dependence
- nonlocal
- star: hybrid
- pulsar
References(31)
Figures(4)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]