Theorem About Completeness of Quantum Mechanical Motion Group

1977
7 pages
Published in:
  • Rept.Math.Phys. 11 (1977) 331-337

Citations per year

19791984198919941997102
Abstract: (Elsevier)
The imaginary Hamiltonians iH of the Schrödinger quantum mechanics generate a certain Lie algebra which is shown to contain the algebra of all skew-symmetric polynomials in the momentum and the position operators. The skew-adjoint closures of these polynomials, in turn, are shown to be dense in the strong resolvent sense in the set of all skew-adjoint operators. As a consequence, the smallest strong closure group containing all evolution operators for the Shrödinger particle is the whole unitary group.
  • QUANTUM MECHANICS: NONRELATIVISTIC
  • QUANTUM MECHANICS: OPERATOR ALGEBRA
  • ALGEBRA: LIE
  • GROUP THEORY
  • FUNCTIONAL ANALYSIS: linear space
  • [1]
    • P.R. Chernoff
      • J.Funct.Anal. 2 (1968) 238
  • [2]
    • J.A. Goldstein
      • Math.Ann. 186 (1970) 299
  • [3]
    • R. Goodman
      • Trans.Am.Math.Soc. 143 (1969) 55
  • [4]
    • R. Goodman
      • J.Funct.Anal. 3 (1969) 246
  • [5]

    General eigenfunction expansions and unitary representations of topological groups

    • K. Maurin
  • [7]

    , Topics in dynamics, Vol. 1

    • E. Nelson
  • [8]
    • E. Nelson
      ,
    • W.F. Stinespring
      • Am.J.Math. 81 (1959) 547
  • [9]

    Leçons sur les representations des groupes

    • L. Pukanszky
  • [10]

    , Methods of modern mathematical physics, Vol. 1

    • M. Reed
      ,
    • B. Simon
  • [11]
    • H.F. Trotter
      • Proc.Am.Math.Soc. 10 (1959) 545
  • [13]

    Functional, Analysis

    • K. Yosida