Weak equivalence principle for self-gravitating bodies: A sieve for purely metric theories of gravity
- Phys.Rev.D 89 (2014) 8, 084053
- Published: Apr 10, 2014
- 1401.0030 [gr-qc]
Citations per year
We propose the almost-geodesic motion of self-gravitating test bodies as a possible selection rule among metric theories of gravity. Starting from a heuristic statement, the “gravitational weak equivalence principle,” we build a formal operative test able to probe the validity of the principle for any metric theory of gravity in an arbitrary number of spacetime dimensions. We show that, if the theory admits a well-posed variational formulation, this test singles out only the purely metric theories of gravity. This conclusion reproduces known results in the cases of general relativity (as well as with a cosmological constant term) and scalar-tensor theories, but extends also to debated or unknown scenarios, such as the
- 17 pages, no figures. Tiny modifications to match the published version
- 04.50.Kd
- 04.20.Cv
- space-time: dimension
- gravitation: model
- gravitation: f(R)
- Lanczos-Lovelock
- equivalence principle
- cosmological constant
- general relativity
- selection rule
- [1]
- [2]
- [3]
- [3]
- [4]
- [4]
- [5]
- [5]
- [6]
- [7]
- [8]
- [8]
- [9]
- [10]
- [11]
- [12]
- [12]
- [13]
- [14]
- [14]
- [15]
- [15]
- [16]
- [17]
- [18]