Detection Mechanism in SNSPD: Numerical Results of a Conceptually Simple, Yet Powerful Detection Model

Aug 21, 2014
7 pages
Published in:
  • IEEE Trans.Appl.Supercond. 25 (2015) 1537
e-Print:

Citations per year

201420162018202020221025
Abstract: (arXiv)
In a recent publication we have proposed a numerical model that describes the detection process of optical photons in superconducting nanowire single-photon detectors (SNSPD). Here, we review this model and present a significant improvement that allows us to calculate more accurate current distributions for the inhomogeneous quasi-particle densities occurring after photon absorption. With this new algorithm we explore the detector response in standard NbN SNSPD for photons absorbed off-center and for 2-photon processes. We also discuss the outstanding performance of SNSPD based on WSi. Our numerical results indicate a different detection mechanism in WSi than in NbN or similar materials.
Note:
  • Presented at ASC 2014 (invited) and submitted to IEEE Transaction on Applied Superconductivity (Special Issue)
  • [2]

    Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating

    • K.M. Rosfjord
      • Opt.Express 14 (2006) 527
  • [3]

    Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system.

    • S. Miki
      ,
    • M. Takeda
      ,
    • M. Fujiwara
      ,
    • M. Sasaki
      ,
    • Z. Wang
      • Opt.Express 17 (2009) 23557-23564
  • [4]

    Superconducting nanowire single-photon detectors integrated with optical nano-antennae

    • X. Hu
  • [5]

    High efficiency and rapid response superconducting NbN nanowire single photon detector based on asymmetric split ring metamaterial

    • G. Li
  • [6]

    Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent

    • A.J. Miller
      ,
    • A.E. Lita
      ,
    • B. Calkins
      ,
    • I. Vayshenker
      ,
    • S.M. Gruber
    et al.
      • Opt.Express 19 (2011) 9102-9110
  • [8]

    Electrothermal feedback in superconducting nanowire single-photon detectors

    • A.J. Kerman
      ,
    • J.K.W. Yang
      ,
    • R.J. Molnar
      ,
    • E.A. Dauler
      ,
    • K. Berggren
    • [9]

      Readout of superconducting nanowire single-photon detectors at high count rates

      • A.J. Kerman
        ,
      • D. Rosenberg
        ,
      • R.J. Molnar
        ,
      • E.A. Dauler
    • [10]

      Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits

      • Q. Zhao
        • Opt.Lett. 39 (2014) 1869
    • [11]

      Readout Electronics Using SingleFlux-Quantum Circuit Technology for Superconducting Single-Photon Detector Array

      • H. Terai
        ,
      • S. Miki
        ,
      • Z. Wang
        • IEEE Trans.Appl.Supercond. 19 (2009) 350353
    • [12]

      Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit

      • M. Hofherr
        • Opt.Express 20 (2012) 28683-28697
    • [13]

      Quantum detection by current carrying superconducting film

      • A.D. Semenov
        ,
      • G.N. Gol'tsman
        ,
      • A.A. Korneev
    • [14]

      Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nanostrips

      • A. Semenov
        ,
      • A. Engel
        ,
      • H.-W. Hübers
        ,
      • K. Il'in
        ,
      • M. Siegel
    • [15]

      Vortex-assisted photon counts and their magnetic field dependence in single-photon detectors

      • L.N. Bulaevskii
        ,
      • M.J. Graf
        ,
      • V.G. Kogan
    • [16]

      Photon detection by currentcarrying superconducting film: A time-dependent Ginzburg-Landau approach

      • A.N. Zotova
        ,
      • D.Y. Vodolazov
    • [17]

      Full Numerical Simulations of Dynamical Response in Superconducting Single-Photon Detectors

      • Y. Ota
        ,
      • K. Kobayashi
        ,
      • M. Machida
        ,
      • T. Koyama
        ,
      • F. Nori
        • IEEE Trans.Appl.Supercond. 23 (2013) 2201105
    • [19]
      Matlab and PDE Toolbox, Mathworks Inc., version Rb
    • [20]

      Non-thermal mixing mechanism in a diffusion-cooled hot-electron detector

      • A.D. Semenov
        ,
      • G.N. Gol'tsman
        • J.Appl.Phys. 87 (2000) 502
    • [21]
      Theory of Nonequilibrium Superconductivity, Oxford University Press
      • N. Kopnin
    • [22]

      Geometry-dependent critical currents in superconducting nanocircuits

      • J.R. Clem
        ,
      • K.K. Berggren
    • [23]
      Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia, private communication
      • D.Y. Vodolazov
    • [24]
      Introduction to Superconductivity, 2nd ed USA
      • M. Tinkham
    • [25]

      Critical field for complete vortex expulsion from narrow superconducting strips

      • G. Stan
        ,
      • S.B. Field
        ,
      • J.M. Martinis
        • Phys.Rev.Lett. 92 (2004) 097003