Superconformal Group and Curved Fermionic Twistor Space
Jul, 197820 pages
Published in:
- J.Math.Phys. 21 (1980) 561
DOI:
Report number:
- IC/78/82
Citations per year
Abstract: (AIP)
It is shown that the superconformal transformations describe the isometry group of curved fermionic twistor space, with suitably generalized Fubini–Study Hermitian metric. Further, such a geometry is applied to derive a two-dimensional supersymmetric quark–twistor string model, described by the fermionic nonlinear SU(2,2;1) -invariant σ-model.- ALGEBRA: SUPERSYMMETRY
- ALGEBRA: CONFORMAL
- TRANSFORMATION: CONFORMAL
- GROUP THEORY: O(3,1)
- GROUP THEORY: SP(4)
- GROUP THEORY: U(2,2)
- group: de Sitter
- FIELD THEORY: TWO-DIMENSIONAL
- FIELD THEORY: SUPERSYMMETRY
- FIELD THEORY: FERMION
References(40)
Figures(0)