Tinkertoys for the Twisted E6E_6 Theory

Jan 2, 2015
52 pages
e-Print:
Report number:
  • ICTP–SAIFR/2015–001

Citations per year

201520182021202420250246810
Abstract: (arXiv)
We study 4D4DN=2\mathcal{N}=2 superconformal field theories that arise as the compactification of the six-dimensional (2,0)(2,0) theory of type E6E_6 on a punctured Riemann surface in the presence of Z2\mathbb{Z}_2 outer-automorphism twists. We explicitly carry out the classification of these theories in terms of three-punctured spheres and cylinders, and provide tables of properties of the Z2\mathbb{Z}_2-twisted punctures. An expression is given for the superconformal index of a fixture with twisted punctures of type E6E_6, which we use to check our identifications. Several of our fixtures have Higgs branches which are isomorphic to instanton moduli spaces, and we find that S-dualities involving these fixtures imply interesting isomorphisms between hyperKähler quotients of these spaces. Additionally, we find families of fixtures for which the Sommers-Achar group, which was previously a Coulomb branch concept, acts non-trivially on the Higgs branch operators.
Note:
  • 52 pages, 56 figures
  • instanton: moduli space
  • field theory: conformal
  • dimension: 6
  • twist
  • compactification
  • Riemann surface
  • S-duality
  • Coulomb