Stringy EE-functions of Pfaffian-Grassmannian double mirrors

Feb 12, 2015
32 pages
e-Print:

Citations per year

20152016201710
Abstract: (arXiv)
We establish the equality of stringy EE-functions for double mirror Calabi-Yau complete intersections in the varieties of skew forms of rank at most 2k2k and at most n12kn-1-2k on a vector space of odd dimension nn.
Note:
  • 32 pages
  • [1]
    Torification and Factorization of Birational Maps, J Amer. Math. Soc. (15), no. 3, 531-572
    • D. Abramovich
      ,
    • K. Karu
      ,
    • K. Matsuki
      ,
    • J. Wlodarsczyk
  • [2]
    Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto,), 1-32, World Sci. Publishing, River Edge, NJ, 1998
    • V.V. Batyrev
  • [3]
    Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, Mirror AMS/IP Stud. Adv. Math., 1, Amer. Math. Soc., Providence, RI
    • V. Batyrev
      ,
    • L. Borisov
      • Symmetry 2 (1997) 71-86
  • [4]
    Mirror Symmetry and Toric Degenerations of Partial Flag Manifolds, Acta Mathematica, 184(1) , 1-39
    • V. Batyrev
      ,
    • I. Ciocan-Fontanine
      ,
    • B. Kim
      ,
    • D. van Straten
  • [5]
    An application of a log version of the Kodaira vanishing theorem to embedded projective varieties, preprint
    • A. Bertram
  • [6]
    Class of the affine line is a zero divisor in the Grothendieck ring, preprint
    • L. Borisov
  • [7]
    String cohomology of a toroidal singularity. J. Algebraic Geom 9 , no. 2, 289-300
    • L. Borisov
  • [8]
    The Pfaffian-Grassmannian derived equivalence. J. Algebraic Geom 18 , no. 2, 201-222
    • L. Borisov
      ,
    • A. Cˇaldˇararu
  • [9]
    Elliptic genera of singular varieties
    • L. Borisov
      ,
    • A. Libgober
      • Duke Math.J. 116 (2003) 319-351
  • [10]
    Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3
    • D. Buchsbaum
      ,
    • D. Eisenbud
      • Am.J.Math. 99 (1977) 447-485
  • [11]
    Higher-dimensional complex geometry. Astérisque No. 166 , 144 pp
    • H. Clemens
      ,
    • J. Kollár
      ,
    • S. Mori
  • [12]
    On the string-theoretic Euler numbers of 3-dimensional A-D-E singularities
    • D. Dais
      ,
    • M. Roczen
      • Adv.Geom. 1 (2001) 373-426
  • [13]
    Newton polyhedra and an algorithm for computing Hodge-Deligne numbers
    • V. Danilov
      ,
    • A. Khovanskii
      • Bull.Am.Math.Soc. 30 (1994) 62-69
  • [14]
    Basic hypergeometric series. With a foreword by Richard Askey. Second edition. Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press, Cambridge
    • G. Gasper
      ,
    • M. Rahman
  • [16]
    Algebraic geometry. Graduate Texts in Mathematics, No. 52 -Verlag, New York-Heidelberg,. xvi+496 pp
    • R. Hartshorne
  • [17]
    Fano manifolds of CalabiYau Hodge type
    • A. Iliev
      ,
    • L. Manivel
      • J.Pure Appl.Algebra 219 (2015) 2225-2244
  • [18]
    Some transformations of basic hypergeometric functions. II
    • V.K. Jain
      • SIAM J.Math.Anal. 12 (1981) 957-961
  • [19]
    Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices. Young tableaux and Schur functors in algebra and geometry (Toru,), pp. 109-189, Astérisque, 87-88, Soc. Math. France, Paris, 1981
    • T. Jozefiak
      ,
    • P. Pragacz
      ,
    • J. Weyman
  • [20]
    Homological projective duality for Grassmannians of lines. preprint arXiv:
    • A. Kuznetsov
  • [21]
    Lefschetz decompositions and categorical resolutions of singularities. Selecta Math. (N.S.) 13 , no. 4, 661-696
    • A. Kuznetsov
  • [22]
    Semiorthogonal decompositions in algebraic geometry. preprint
    • A. Kuznetsov
  • [23]
    The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian G(2,7)
    • E. Rødland
      • Compos.Math. 122 (2000) 135-149
  • [24]
    Complete collineations revisited Department of Mathematics, Rutgers University, Piscataway, NJ 08854 E-mail address: borisov@math.rutgers.edu Department of Mathematics, University of Illinois, Chicago, IL 60607 E-mail address: libgober@math.uic.edu
    • M. Thaddeus
      • Math.Ann. 315 (1999) 469-495