Stringy E-functions of Pfaffian-Grassmannian double mirrors
Feb 12, 2015Citations per year
Abstract: (arXiv)
We establish the equality of stringy E-functions for double mirror Calabi-Yau complete intersections in the varieties of skew forms of rank at most 2k and at most n−1−2k on a vector space of odd dimension n.Note:
- 32 pages
References(24)
Figures(0)
- [1]Torification and Factorization of Birational Maps, J Amer. Math. Soc. (15), no. 3, 531-572
- D. Abramovich,
- K. Karu,
- K. Matsuki,
- J. Wlodarsczyk
- [2]Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto,), 1-32, World Sci. Publishing, River Edge, NJ, 1998
- V.V. Batyrev
- [3]Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, Mirror AMS/IP Stud. Adv. Math., 1, Amer. Math. Soc., Providence, RI
- V. Batyrev,
- L. Borisov
- Symmetry 2 (1997) 71-86
- [4]Mirror Symmetry and Toric Degenerations of Partial Flag Manifolds, Acta Mathematica, 184(1) , 1-39
- V. Batyrev,
- I. Ciocan-Fontanine,
- B. Kim,
- D. van Straten
- [5]An application of a log version of the Kodaira vanishing theorem to embedded projective varieties, preprint
- A. Bertram
- e-Print:
- [6]Class of the affine line is a zero divisor in the Grothendieck ring, preprint
- L. Borisov
- e-Print:
- [7]String cohomology of a toroidal singularity. J. Algebraic Geom 9 , no. 2, 289-300
- L. Borisov
- [8]The Pfaffian-Grassmannian derived equivalence. J. Algebraic Geom 18 , no. 2, 201-222
- L. Borisov,
- A. Cˇaldˇararu
- [9]Elliptic genera of singular varieties
- L. Borisov,
- A. Libgober
- Duke Math.J. 116 (2003) 319-351
- [10]Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3
- D. Buchsbaum,
- D. Eisenbud
- Am.J.Math. 99 (1977) 447-485
- [11]Higher-dimensional complex geometry. Astérisque No. 166 , 144 pp
- H. Clemens,
- J. Kollár,
- S. Mori
- [12]On the string-theoretic Euler numbers of 3-dimensional A-D-E singularities
- D. Dais,
- M. Roczen
- Adv.Geom. 1 (2001) 373-426
- [13]Newton polyhedra and an algorithm for computing Hodge-Deligne numbers
- V. Danilov,
- A. Khovanskii
- Bull.Am.Math.Soc. 30 (1994) 62-69
- [14]Basic hypergeometric series. With a foreword by Richard Askey. Second edition. Encyclopedia of Mathematics and its Applications, 96. Cambridge University Press, Cambridge
- G. Gasper,
- M. Rahman
- [15]
- •
- JHEP 05 (2007) 079
- e-Print:•
- [16]Algebraic geometry. Graduate Texts in Mathematics, No. 52 -Verlag, New York-Heidelberg,. xvi+496 pp
- R. Hartshorne
- [17]Fano manifolds of CalabiYau Hodge type
- A. Iliev,
- L. Manivel
- J.Pure Appl.Algebra 219 (2015) 2225-2244
- [18]Some transformations of basic hypergeometric functions. II
- V.K. Jain
- SIAM J.Math.Anal. 12 (1981) 957-961
- [19]Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices. Young tableaux and Schur functors in algebra and geometry (Toru,), pp. 109-189, Astérisque, 87-88, Soc. Math. France, Paris, 1981
- T. Jozefiak,
- P. Pragacz,
- J. Weyman
- [20]Homological projective duality for Grassmannians of lines. preprint arXiv:
- A. Kuznetsov
- e-Print:
- [21]Lefschetz decompositions and categorical resolutions of singularities. Selecta Math. (N.S.) 13 , no. 4, 661-696
- A. Kuznetsov
- [23]The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian G(2,7)
- E. Rødland
- Compos.Math. 122 (2000) 135-149
- [24]Complete collineations revisited Department of Mathematics, Rutgers University, Piscataway, NJ 08854 E-mail address: borisov@math.rutgers.edu Department of Mathematics, University of Illinois, Chicago, IL 60607 E-mail address: libgober@math.uic.edu
- M. Thaddeus
- Math.Ann. 315 (1999) 469-495