Effects of breaking vibrational energy equipartition on measurements of temperature in macroscopic oscillators subject to heat flux

May 22, 2013
15 pages
Published in:
  • J.Stat.Mech. 1312 (2013) 12, P12003
e-Print:

Citations per year

2014201520162017201810
Abstract: (arXiv)
When the energy content of a resonant mode of a crystalline solid in thermodynamic equilibrium is directly measured, assuming that quantum effects can be neglected it coincides with temperature except for a proportionality factor. This is due to the principle of energy equipartition and the equilibrium hypothesis. However, most natural systems found in nature are not in thermodynamic equilibrium and thus the principle cannot be granted. We measured the extent to which the low-frequency modes of vibration of a solid can defy energy equipartition, in presence of a steady state heat flux, even close to equilibrium. We found, experimentally and numerically, that the energy separately associated with low frequency normal modes strongly depends on the heat flux, and decouples sensibly from temperature. A 4% in the relative temperature difference across the object around room temperature suffices to excite two modes of a macroscopic oscillator, as if they were at equilibrium, respectively, at temperatures about 20% and a factor 3.5 higher. We interpret the result in terms of new flux-mediated correlations between modes in the nonequilibrium state, which are absent at equilibrium.
Note:
  • Second version. 15 pages and 7 figures of main text, plus 15 pages, 5 figures and 2 tables of supplementary material. Previous version dated 15 March 2013 and was uploaded 22 May 2013
  • [1]
    1979 The Principles of Statistical Mechanics (Oxford Press. Reissued New York:
    • Tolman R. C
  • [2]
    Understanding Non-equilibrium Thermodynamics. Foundations, Applications, Frontiers Berlin)
    • Lebon G
      ,
    • Jou D
      ,
    • Casas-Vázquez J
  • [3]
    Statistical mechanics of nonequilibrium Liquids 2nd ed (Cambridge Univ. Press, Cambridge)
    • Evans D. J
      ,
    • Morriss G. P
  • [4]
    • Kirkpatrick T. R
      ,
    • Cohen E.G. D
      ,
    • Dorfman J. R
      • Phys.Rev.A 26 (1982) 995-1014
  • [5]
    • Ronis D
      ,
    • Procaccia I
      • Phys.Rev.A 26 (1982) 1812-1825
  • [6]
    Ortiz Hydrodynamic fluctuations in Fluids and Fluid Mixtures B. V., Amsterdam)
    • de Zárate J M
      ,
    • Sengers J. V
  • [7]
    • Law B. M
      ,
    • Segrè P. N
      ,
    • Gammon R. W
      ,
    • Sengers J. V
      • Phys.Rev.A 41 (1990) 816-824
  • [8]
    Li W B
    • Segrè P. N
      ,
    • Gammon R. W
      ,
    • Sengers J. V
      • Physica A 204 (1994) 399-436
  • [9]
    • Dorfman J. R
      ,
    • Kirkpatrick J. R
      ,
    • Sengers J. V
      • Ann.Rev.Phys.Chem. 45 (1994) 213-239
  • [10]
    Li W B and Ortiz de Zárate J M
    • Zhang K. J
      ,
    • Sengers J. V
      ,
    • Gammon R. W
      • Phys.Rev.Lett. 81 (1998) 5580-5583
  • [11]
    J. Phys.:
    • Vailati A
      ,
    • Cerbino R
      ,
    • Mazzoni S
      ,
    • Giglio M
      ,
    • Takacs C. J
    et al.
      • COND-MAT 24 (2012) 284134
  • [12]
    • Bertini L
      ,
    • Gabrielli D
      ,
    • Jona-Lasinio G
      ,
    • Landim C
      • J.Statist.Phys. 149 (2012) 773802
  • [13]
    • Searles D. J
      ,
    • Rondoni L
      ,
    • Evans D. J
      • J.Statist.Phys. 128 (2007) 1337
  • [14]
    Extended Irreversible Thermodynamics 2nd ed Berlin)
    • Jou D
      ,
    • Casas-Vázquez J
      ,
    • Lebon G
  • [15]
    • Casas-Vázquez J
      ,
    • Jou D
      • Rept.Prog.Phys. 33 (2003) 19372023
  • [17]
    Non-Equilibrium Nano-Physics (Lecture Notes in Physics vol 809)
    • Fransson J
  • [18]
    Effects of breaking vibrational energy equipartition on measurements of temperature in macroscopic oscillator
    • Lepri S
      ,
    • Livi R
      ,
    • Politi A
      • Phys.Rept. 377 (2003) 1
  • [19]
    • Dhar A
      • Adv.Phys. 57 (2008) 457
  • [20]
    • Miller B. N
      ,
    • Larson P. M
      • Phys.Rev.A 20 (1979) 1717-1727
  • [21]
    • Rieder Z
      ,
    • Lebowitz J. L
      ,
    • Lieb E
      • J.Math.Phys. 8 (1967) 1073
  • [22]
    • Kato A
      ,
    • Jou D
      • Phys.Rev.E 64 (2001) 052201
  • [23]
    • Kannan V
      ,
    • Dhar A
      ,
    • Lebowitz J. L
      • Phys.Rev.E 85 (2012) 041118
  • [24]
    Harmonic Oscillator in Modern Physics: From Atoms to Quarks (Taylor & Francis)
    • Moshinsky M
      ,
    • Smirnov Y. F