Detecting rich-club ordering in complex networks

Feb 20, 2006
6 pages
Published in:
  • Nature Phys. 2 (2006) 110-115
e-Print:

Citations per year

20162018202020222022201
Abstract: (arXiv)
Uncovering the hidden regularities and organizational principles of networks arising in physical systems ranging from the molecular level to the scale of large communication infrastructures is the key issue for the understanding of their fabric and dynamical properties [1-5]. The ``rich-club'' phenomenon refers to the tendency of nodes with high centrality, the dominant elements of the system, to form tightly interconnected communities and it is one of the crucial properties accounting for the formation of dominant communities in both computer and social sciences [4-8]. Here we provide the analytical expression and the correct null models which allow for a quantitative discussion of the rich-club phenomenon. The presented analysis enables the measurement of the rich-club ordering and its relation with the function and dynamics of networks in examples drawn from the biological, social and technological domains.
Note:
  • 1 table, 3 figures
  • [2]
    The Structure and Function of Complex Networks
    • M.E.J. Newman
      • SIAM Rev. 45 (2003) 167-256
  • [3]
    Evolution of networks: From Biological nets to the Internet and WWW, Oxford Univ. Press, Oxford
    • S.N. Dorogovtsev
      ,
    • J.F.F. Mendes
  • [4]
    Evolution and Structure of the Internet: A statistical physics approach, Cambridge Univ. Press, Cambridge
    • R. Pastor-Satorras
      ,
    • A. Vespignani
  • [5]
    Social Network Analysis, Cambridge Univ. Press, Cambridge
    • S. Wasserman
      ,
    • K. Faust
  • [6]
    de Solla, Little Science, Big Science and Beyond. New York: Columbia University Press
    • D.J. Price
  • [7]
    The Rich-Club Phenomenon in the Internet Topology Comm. Lett. 8, 180-182
    • S. Zhou
      ,
    • R.J. Mondragon
  • [8]
    Team assembly mechanisms determine collaboration network structure and team performance
    • R. Guimera
      ,
    • B. Uzzi
      ,
    • J. Spiro
      ,
    • L.A.N. Amaral
      • Science 308 (2005) 697-702
  • [9]
    Complex Networks, augmenting the framework for the study of complex systems
    • L.A.N Amaral
      ,
    • J.M. Ottino
      • Eur.Phys.J.B 38 (2004) 147-162
  • [10]
    Dynamical and Correlation Properties of the Internet
    • R. Pastor-Satorras
      ,
    • A. Vázquez
      ,
    • A. Vespignani
      • Phys.Rev.Lett. 87 (2001) 258701
  • [11]
    Assortative Mixing in Networks
    • M.E.J. Newman
      • Phys.Rev.Lett. 89 (2002) 208701
  • [12]
    Specificity and Stability in Topology of Protein Networks
    • S. Maslov
      ,
    • K. Sneppen
      • Science 296 (2002) 910-913
  • [13]
    Characterization and modeling of protein-protein interaction networks. Phys. A 352, 1-27
    • V. Colizza
      ,
    • A. Flammini
      ,
    • A. Maritan
      ,
    • A. Vespignani
  • [15]
    Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality
    • M.E.J. Newman
      • Phys.Rev.E 64 (2001) 016132
  • [16]
    The architecture of complex weighted networks
    • A. Barrat
      ,
    • M. Barthélemy
      ,
    • R. Pastor-Satorras
      ,
    • A. Vespignani
      • Proc.Nat.Acad.Sci. 101 (2004) 3747-3752
  • [17]
    The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles
    • R. Guimerà
      ,
    • S. Mossa
      ,
    • A. Turtschi
      ,
    • L.A.N Amaral
      • Proc.Nat.Acad.Sci. 102 (2005) 7794-7799
  • [18]
    & Faloutsos, C On power-law relationship of the Internet topology
    • M. Faloutsos
      ,
    • P. Faloutsos
      • Comput.Commun.Rev. 29 (1999) 251-263
  • [19]
    Large-scale topological and dynamical properties of the Internet
    • A. Vázquez
      ,
    • R. Pastor-Satorras
      ,
    • A. Vespignani
      • Phys.Rev.E 65 (2002) 066130
  • [20]
    The origin of power laws in Internet topology revisited, in Proceedings of INFOCOM, New York Piscataway, NJ), Vol. 2, p. 608-617
    • C. Qian
      ,
    • H. Chang
      ,
    • R. Govindan
      ,
    • S. Jamin
      ,
    • S. Shenker
    et al.
  • [21]
    Cut-offs and finite size effects in scalefree networks
    • M. Boguñá
      ,
    • R. Pastor-Satorras
      ,
    • A. Vespignani
      • Eur.Phys.J.B 38 (2004) 205-210
  • [22]
    On random graphs. Publicationes Mathematicae 6, 290-297
    • P. Erdös
      ,
    • A. Rényi
  • [23]
    A critical point for random graphs with a given degree sequence. Random Structures
    • M. Molloy
      ,
    • B. Reed
      • Algorithms 6 (1995) 161-179
  • [25]
    Extremum statistics in scale-free network models
    • A.A. Moreira
      ,
    • J.S. Andrade
      ,
    • L.A.N. Amaral
      • Phys.Rev.Lett. 89 (2002) 268703