Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability
Oct 23, 2015Citations per year
Abstract: (IOP)
Theories with higher order time derivatives generically suffer from ghost-like instabilities, known as Ostrogradski instabilities. This fate can be avoided by considering ``degenerate'' Lagrangians, whose kinetic matrix cannot be inverted, thus leading to constraints between canonical variables and a reduced number of physical degrees of freedom. In this work, we derive in a systematic way the degeneracy conditions for scalar-tensor theories that depend quadratically on second order derivatives of a scalar field. We thus obtain a classification of all degenerate theories within this class of scalar-tensor theories. The quartic Horndeski Lagrangian and its extension beyond Horndeski belong to these degenerate cases. We also identify new families of scalar-tensor theories with the property that they are degenerate despite the nondegeneracy of the purely scalar part of their Lagrangian.Note:
- 19 pages, no figure
- derivative: high
- scalar tensor
- gravitation: higher-order
- stability
- ghost
- time dependence
- kinetic
References(32)
Figures(0)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [7]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]