A Schrödinger approach to Newton-Cartan and Hořava-Lifshitz gravities
Dec 19, 2015
Citations per year
Abstract: (Springer)
We define a ‘non-relativistic conformal method’, based on a Schrödinger algebra with critical exponent z = 2, as the non-relativistic version of the relativistic conformal method. An important ingredient of this method is the occurrence of a complex compensating scalar field that transforms under both scale and central charge transformations. We apply this non-relativistic method to derive the curved space Newton-Cartan gravity equations of motion with twistless torsion. Moreover, we reproduce z = 2 Hořava-Lifshitz gravity by classifying all possible Schrödinger invariant scalar field theories of a complex scalar up to second order in time derivatives.Note:
- 35 pages + appendices
- Classical Theories of Gravity
- Gauge Symmetry
- field equations: gravitation
- nonrelativistic
- conformal
- critical phenomena
- central charge
- torsion
- Horava-Lifshitz
References(70)
Figures(0)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]