Bounding the Space of Holographic CFTs with Chaos
Feb 26, 2016Citations per year
Abstract: (Springer)
Thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ ≤ 2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ = 2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge and a set of higher spin currents of bounded spin, this implies the inconsistency of weakly coupled AdS higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W [λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ = 0. Independently, we show that such theories violate unitarity for |λ| > 2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.Note:
- 50+18 pages. v3: Section 3 clarified and reorganized, related improvements
- AdS-CFT Correspondence
- Conformal and W Symmetry
- Higher Spin Gravity
- field theory: conformal
- spin: high
- gravitation: higher-dimensional
- n-point function: 4
- duality: holography
- operator product expansion
- Lyapunov exponent
References(140)
Figures(8)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]