A Reverse Shock in GRB 160509A
Jun 28, 20168 pages
Published in:
- Astrophys.J. 833 (2016) 1, 88
- Published: Dec 8, 2016
e-Print:
- 1606.08873 [astro-ph.HE]
View in:
Citations per year
Abstract: (IOP)
We present the second multi-frequency radio detection of a reverse shock in a γ-ray burst. By combining our extensive radio observations of the Fermi-Large Area Telescope γ-ray burst 160509A at z = 1.17 up to 20 days after the burst with Swift X-ray observations and ground-based optical and near-infrared data, we show that the afterglow emission comprises distinct reverse shock and forward shock contributions: the reverse shock emission dominates in the radio band at ≲10 days, while the forward shock emission dominates in the X-ray, optical, and near-infrared bands. Through multi-wavelength modeling, we determine a circumburst density of , supporting our previous suggestion that a low-density circumburst environment is conducive to the production of long-lasting reverse shock radiation in the radio band. We infer the presence of a large excess X-ray absorption column, N (H) ≈ 1.5 × 10(22) , and a high rest-frame optical extinction, A (V) ≈ 3.4 mag. We identify a jet break in the X-ray light curve at , and thus derive a jet opening angle of , yielding a beaming-corrected kinetic energy and radiated γ-ray energy of erg and erg (1–10(4) keV, rest frame), respectively. Consistency arguments connecting the forward shocks and reverse shocks suggest a deceleration time of s ≈ T (90), a Lorentz factor of , and a reverse-shock-to-forward-shock fractional magnetic energy density ratio of . Our study highlights the power of rapid-response radio observations in the study of the properties and dynamics of γ-ray burst ejecta.Note:
- 8 pages, 2 tables, 4 figures. Submitted to ApJ
- gamma-ray burst: general
- gamma-ray burst: individual
References(66)
Figures(28)