Citations per year

1981199220032014202502468
Abstract: (Elsevier)
We quantize area-preserving maps M of the phase plane q , p by devising a unitary operator U transforming states | φ n 〉 into | φ n +1 〉. The result is a system with one degree of freedom q on which to study the quantum implications of generic classical motion, including stochasticity. We derive exact expressions for the equation iterating wavefunctions ψ n ( q ), the propagator for Wigner functions W n ( q , p ), the eigenstates of the discrete analog of the quantum harmonic oscillator, and general complex Gaussian wave packets iterated by a U derived from a linear M . For | ψ n 〉 associated with curves L n in q , p , we derive a semiclassical theory for evolving states and stationary states, analogous to the familiar WKB method. This theory breaks down when L n gets so complicated as to develop convolutions of area ħ or smaller. Such complication is generic; its principal morphotologies are“whorls” and “tendrils,” associated respectively with elliptic and hyperbolic fixed points of M . Under U , ψ n(q) eventually transforms into a new sort of wave that no longer perceives the details of L n . For all regimes, however, the smoothed | ψ n ( q )| 2 appears semiclassically appears to be given accurately by the smoothed projection of L n onto the q axis, both smoothings being over a de Broglie wavelength. The classical, quantum, and semiclassical theory is illustrated by computations on the discrete quartic oscillator map. We display for the first time stochastic wavefunctions, dominated by dense clusters of caustics and characterized by multiple scales of oscillation.
  • QUANTUM MECHANICS
  • APPROXIMATION: semiclassical
  • QUANTIZATION
  • MODEL: OSCILLATOR
  • [1]
    • V.I. Arnol'd
      • Usp.Mat.Nauk 18 (1963) 13
  • [1]
    • V.I. Arnol'd
      • Usp.Mat.Nauk 18 (1963) 91
  • [1]
    English translations in
    • V.I. Arnol'd
      • Russ.Math.Surveys 18 (1963) 9
  • [1]

    Ergodic Problems of Classical Mechanics

    • V.I. Arnol'd
      ,
    • A. Avez
  • [2]
    Mem.Am.Math.Soc.,81
    • J. Moser
  • [3]

    Fundamental Problems in Statistical Mechanics III

    • E.G. Cohen
      ,
    • J. Ford
  • [4]
    Chap. 2
    • M.V. Berry
  • [5]
    • A. Einstein
      • Verh.Devt.Phys.Ges. 19 (1917) 82
  • [6]
    • J.B. Keller
      • Annals Phys. 4 (1958) 180
  • [7]

    Theorie des Perturbations et des Methodes Asymptotiques

    • V.P. Maslov
  • [8]
    • A. Voros
      • Ann.Inst.H.Poincare Phys.Theor.A 24 (1976) 31
  • [9]
    • I.C. Percival
      • Adv.Chem.Phys. 36 (1977) 1
  • [10]
    in press
    • M.C. Gutzwiller
  • [11]
    • I.C. Percival
      • J.Phys.B 6 (1973) L229
  • [12]
    • A. Voros
      • Ann.Inst.H.Poincare Phys.Theor.A 26 (1977) 343
  • [*]

    Stochastic Behaviour in Classical and Quantum Hamiltonian Systems

    • G. Casati
      ,
    • J. Ford
    • [14]
      • K.S.J. Nordholm
        ,
      • S.A. Rice
        • J.Chem.Phys. 61 (1974) 203
    • [14]
      • K.S.J. Nordholm
        ,
      • S.A. Rice
        • J.Chem.Phys. 61 (1974) 768
    • [15 (a]
      • I.C. Percival
        ,
      • N. Pomphrey
        • Mol.Phys. 31 (1976) 97
    • [15 (b]
      • N. Pomphrey
        • J.Phys.B 7 (1974) 1909
    • [16]

      Faraday Disc.

      • N.C. Handy
        ,
      • S.M. Colwell
        ,
      • W.H. Miller
    • [17]
      • D.W. Noid
        ,
      • R.A. Marcus
        • J.Chem.Phys. 62 (1975) 2119