Regularized, Continuum {Yang-Mills} Process and {Feynman-Kac} Functional Integral

Jun, 1980
24 pages
Published in:
  • Commun.Math.Phys. 80 (1981) 43
Report number:
  • PAR LPTHE 80/22

Citations per year

198019912002201320240123456
Abstract: (Springer)
Giving an ultraviolet regularization and volume cut off we construct a nuclear Riemannian structure on the Hilbert manifoldM\mathfrak{M} of gauge orbits. This permits us to define a regularized Laplace-Beltrami operator δ onM\mathfrak{M} and an associated global diffusion inM\mathfrak{M} governed by δ. This enables us to define, via a Feynman-Kac integral, a Euclidean, continuum regularized Yang-Mills process corresponding to a suitable regularization (of the kinetic term) of the classical Yang-Mills Lagrangian onTM\mathfrak{M}.
  • GAUGE FIELD THEORY: YANG-MILLS
  • RENORMALIZATION: REGULARIZATION
  • FUNCTIONAL ANALYSIS
  • FIELD THEORY: OPERATOR ALGEBRA