PbTe(111) Sub-Thermionic Photocathode: A Route to High-Quality Electron Pulses

Apr 1, 2017
6 pages
e-Print:

Citations per year

2017201820192020120
Abstract: (arXiv)
The emission properties of PbTe(111) single crystal have been extensively investigated to demonstrate that PbTe(111) is a promising low root mean square transverse momentum ({\Delta}pT_T) and high brightness photocathode. The density functional theory (DFT) based photoemission analysis successfully elucidates that the 'hole-like' {\Lambda}6+^+_6 energy band in the LL valley with low effective mass mm^* results in low {\Delta}pT_T. Especially, as a 300K solid planar photocathode, Te-terminated PbTe(111) single crystal is expected to be a potential 50K electron source.
Note:
  • DFT Calculations, PbTe(111), Photoemission, Photocathodes, Statistical Modeling, Band Structure, Fermi Surface
  • [2]
    • K. Németh
      ,
    • K.C. Harkay
      ,
    • M. van Veenendaal
      ,
    • L. Spentzouris
      ,
    • M. White
    et al.
      • Phys.Rev.Lett. 104 (2010) 046801
  • [3]
    Proceedings of the National Academy of Sciences of the United States of America 102, 7069 +html
    • V.A. Lobastov
      ,
    • R. Srinivasan
      ,
    • A.H. Zewail
  • [4]
    • M.R. Armstrong
      ,
    • B.W. Reed
      ,
    • B.R. Torralva
      ,
    • N.D. Browning
  • [5]
    physica status solidi (a) 60, 451
    • O. Bostanjoglo
      ,
    • R. Liedtke
  • [6]
    Review of Scientific Instruments 74
    • H. Dmer
      ,
    • O. Bostanjoglo
  • [7]
    Applied physics express 1, 045002
    • X. Jin
      ,
    • N. Yamamoto
      ,
    • Y. Nakagawa
      ,
    • A. Mano
      ,
    • T. Kato
    et al.
  • [8]
    • N. Yamamoto
      ,
    • T. Nakanishi
      ,
    • A. Mano
      ,
    • Y. Nakagawa
      ,
    • S. Okumi
    et al.
      • J.Appl.Phys. 103 (2008) 064905
  • [9]
    • K. Németh
      ,
    • K.C. Harkay
      ,
    • M. van Veenendaal
      ,
    • L. Spentzouris
      ,
    • M. White
    et al.
      • Phys.Rev.Lett. 104 (2010) 046801
  • [10]
    • J. Sootsman
      ,
    • D. Chung
      ,
    • M. Kanatzidis
      • Angew.Chem.Int.Ed. 48 (2009) 8616
  • [11]
    • J. Sootsman
      ,
    • H. Kong
      ,
    • C. Uher
      ,
    • J. D'Angelo
      ,
    • C.-I. Wu
    et al.
      • Angew.Chem.Int.Ed. 47 (2008) 8618
  • [12]
    • G.J. Snyder
      ,
    • E.S. Toberer
      • Nature Materials 7 (2008) 105
  • [13]
    • E. Logothetis
      ,
    • H. Holloway
      ,
    • A. Varga
      ,
    • E. Wilkes
      • Appl.Phys.Lett. 19 (1971) 318
  • [14]
    Infrared detectors (CRC Press,)
    • A. Rogalski
  • [15]
    • J.P. Heremans
      ,
    • V. Jovovic
      ,
    • E.S. Toberer
      ,
    • A. Saramat
      ,
    • K. Kurosaki
    et al.
      • Science 321 (2008) 554
  • [16]
    • H. Wang
      ,
    • Y. Pei
      ,
    • A.D. LaLonde
      ,
    • G.J. Snyder
      • Adv.Mater. 23 (2011) 1366
  • [17]
    Physical Review B 81
    • A. Svane
      ,
    • N.E. Christensen
      ,
    • M. Cardona
      ,
    • A.N. Chantis
      ,
    • M. van Schilfgaarde
    et al.
  • [18]
    • J.M. Skelton
      ,
    • S.C. Parker
      ,
    • A. Togo
      ,
    • I. Tanaka
      ,
    • A. Walsh
      • Phys.Rev.B 89 (2014) 205203
  • [19]
    • S. Rabii
      • Phys.Rev. 167 (1968) 801
  • [20]
    • J. Dimmock
      ,
    • G. Wright
      • Phys.Rev. 135 (1964) A821
  • [21]
    Introduction to applied solid state physics: topics in the applications of semiconductors, superconductors, ferromagnetism, and the nonlinear optical properties of solids Press New York,)
    • R. Dalven
  • [22]
    24
    • J.C.I. Weinberg
  • [23]
    • P. Stiles
      ,
    • E. Burstein
      ,
    • D. Langenberg
      • Phys.Rev.Lett. 6 (1961) 667
  • [24]
    • D. Aspnes
      ,
    • M. Cardona
      • Phys.Rev. 173 (1968) 714
  • [25]
    • M. Cardona
      ,
    • D.L. Greenaway
      • Phys.Rev. 133 (1964) A1685