Higher-derivative operators and effective field theory for general scalar-tensor theories
Sep 27, 2017Citations per year
Abstract: (arXiv)
We discuss the extent to which it is necessary to include higher-derivative operators in the effective field theory of general scalar-tensor theories. We explore the circumstances under which it is correct to restrict to second-order operators only, and demonstrate this using several different techniques, such as reduction of order and explicit field redefinitions. These methods are applied, in particular, to the much-studied Horndeski theories. The goal is to clarify the application of effective field theory techniques in the context of popular cosmological models, and to explicitly demonstrate how and when higher-derivative operators can be cast into lower-derivative forms suitable for numerical solution techniques.Note:
- 37+3 pages. v2: version published in JCAP
- derivative: high
- effective field theory
- scalar tensor
- numerical calculations
- cosmological model
- U(1)
- gravitation
- higher-dimensional
References(53)
Figures(0)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [19]
- [20]
- [21]
- [22]
- [23]