Controlling laser driven protons acceleration using a deformable mirror at a high repetition rate

Mar 1, 2018
5 pages
Published in:
  • Nucl.Instrum.Meth.A 883 (2018) 191-195
  • Published: Mar 1, 2018

Citations per year

202020212022104
Abstract: (Elsevier)
We present results from a proof-of-principle experiment to optimize laser driven protons acceleration by directly feeding back its spectral information to a deformable mirror (DM) controlled by evolutionary algorithms (EAs). By irradiating a stable high-repetition rate tape driven target with ultra-intense pulses of intensities ∼ 10 20 W/ cm2 , we optimize the maximum energy of the accelerated protons with a stability of less than ∼ 5% fluctuations near optimum value. Moreover, due to spatio-temporal development of the sheath field, modulations in the spectrum are also observed. Particularly, a prominent narrow peak is observed with a spread of ∼ 15% (FWHM) at low energy part of the spectrum. These results are helpful to develop high repetition rate optimization techniques required for laser-driven ion accelerators.
  • Laser driven protons
  • TNSA
  • Deformable mirror
  • Evolutionary algorithm
  • High rep. rate
  • [1]

    Ion acceleration by superintense laser-plasma interaction

    • A. Macchi
      ,
    • M. Borghesi
      ,
    • M. Passoni
      • Rev.Mod.Phys. 85 (2013) 751
  • [2]

    Phase rotation scheme of laser-produced ions for reduction of the energy spread

    • A. Noda
      ,
    • S. Nakamura
      ,
    • Y. Iwashita
      ,
    • S. Sakabe
      ,
    • M. Hashida
    et al.
  • [3]

    Manipulation of the spatial distribution of laser-accelerated proton beams by varying the laser intensity distribution

    • B. Aurand
      ,
    • L. Senje
      ,
    • K. Svensson
      ,
    • M. Hansson
      ,
    • A. Higginson
    et al.
  • [4]

    Optimization of laser-target interaction for proton acceleration

    • E. d'Humières
      ,
    • A. Brantov
      ,
    • V.Y. Bychenkov
      ,
    • V.T. Tikhonchuk
  • [5]

    Production of a MeV proton with 30 mJ laser energy by optimizing the focusing spot using a deformable mirror

    • T. Nayuki
      ,
    • T. Fujii
      ,
    • Y. Oishi
      ,
    • K. Takano
      ,
    • X. Wang
    et al.
  • [6]

    Laser-driven ion acceleration with hollow laser beams

    • C. Brabetz
      ,
    • S. Busold
      ,
    • T. Cowan
      ,
    • O. Deppert
      ,
    • D. Jahn
    et al.
  • [7]

    Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    • S.S. Bulanov
      ,
    • C.B. Schroeder
      ,
    • E. Esarey
      ,
    • W.P. Leemans
  • [9]

    Spectral control in proton acceleration with multiple laser pulses

    • A.P.L. Robinson
      ,
    • D. Neely
      ,
    • P. McKenna
      ,
    • R.G. Evans
      • Plasma Phys.Control.Fusion 49 (2007) 373
  • [10]

    Control of energy spread and dark current in proton and ion beams generated in high-contrast laser solid interactions

    • F. Dollar
      ,
    • T. Matsuoka
      ,
    • G. Petrov
      ,
    • A. Thomas
      ,
    • S. Bulanov
    et al.
  • [11]

    Ion acceleration: TNSA

    • P. McKenna
      ,
    • D. Neely
      ,
    • R. Bingham
      ,
    • D. Jaroszynski
      ,
    • M. Roth
    et al.
  • [12]

    Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams

    • P. Bolton
      ,
    • M. Borghesi
      ,
    • C. Brenner
      ,
    • D. Carroll
      ,
    • C.D. Martinis
    et al.
  • [13]

    ICAN: The next laser powerhouse

    • T. Tajima
      ,
    • W. Brocklesby
      ,
    • G. Mourou
  • [14]

    Coherent control of plasma dynamics

    • Z.-H. He
      ,
    • B. Hou
      ,
    • V. Lebailly
      ,
    • J.A. Nees
      ,
    • K. Krushelnick
    et al.
      • Nature Commun. 6 (2015) 7156
  • [15]

    Real-time characterization of the spatio-temporal dynamics of deformable mirrors

    • J. Kilpatrick
      ,
    • A. Apostol
      ,
    • A. Khizhnya
      ,
    • V. Markov
      ,
    • L. Beresnev
  • [17]

    Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets

    • M. Nishiuchi
      ,
    • I. Daito
      ,
    • M. Ikegami
      ,
    • H. Daido
      ,
    • M. Mori
    et al.
  • [18]

    Development and characterization of very dense submillimetric gas jets for laser-plasma interaction

    • F. Sylla
      ,
    • M. Veltcheva
      ,
    • S. Kahaly
      ,
    • A. Flacco
      ,
    • V. Malka
  • [20]

    Plasma physics

    • T. Sokollik
  • [21]

    Wave-front correction of high-intensity fs laser beams by using closed-loop adaptive optics system

    • Z. Wang
      ,
    • Z. Jin
      ,
    • J. Zheng
      ,
    • P. Wang
      ,
    • Z. Wei
    et al.
  • [22]

    Genetic-algorithm-based method to optimize spatial profile utilizing characteristics of electrostatic actuator deformable mirror

    • F. Matsui
      ,
    • S. Goriki
      ,
    • Y. Shimizu
      ,
    • H. Tomizawa
      ,
    • S. Kawato
    et al.
  • [23]

    Coherent control of plasma dynamics by feedback-optimized wavefront manipulationa)

    • Z.-H. He
      ,
    • B. Hou
      ,
    • G. Gao
      ,
    • V. Lebailly
      ,
    • J.A. Nees
    et al.
  • [25]
    Modeling of a micro-electronic-mechanical systems (MEMS) deformable mirror for simulation and characterization naval postgraduate, Tech. rep., Naval postgraduate school monterey ca monterey United States
    • C. Mark