Essential core of the Hawking–Ellis types

Feb 2, 2018
12 pages
Published in:
  • Class.Quant.Grav. 35 (2018) 12, 125003
  • Published: May 17, 2018
e-Print:

Citations per year

201820202022202420243286
Abstract: (IOP)
The Hawking–Ellis (Segre–Plebański) classification of possible stress–energy tensors is an essential tool in analyzing the implications of the Einstein field equations in a more-or-less model-independent manner. In the current article the basic idea is to simplify the Hawking–Ellis type I, II, III, and IV classification by isolating the ‘essential core’ of the type II, type III, and type IV stress–energy tensors; this being done by subtracting (special cases of) type I to simplify the (Lorentz invariant) eigenvalue structure as much as possible without disturbing the eigenvector structure. We will denote these ‘simplified cores’ type II0, type III0, and type IV0. These ‘simplified cores’ have very nice and simple algebraic properties. Furthermore, types I and II0 have very simple classical interpretations, while type IV0 is known to arise semi-classically (in renormalized expectation values of standard stress–energy tensors). In contrast type III0 stands out in that it has neither a simple classical interpretation, nor even a simple semi-classical interpretation. We will also consider the robustness of this classification considering the stability of the different Hawking–Ellis types under perturbations. We argue that types II and III are definitively unstable, whereas types I and IV are stable.
Note:
  • V1: 18 pages; V2: reformatted, now 14 pages; some clarifications added; no significant physics changes. This version accepted for publication in Classical and Quantum Gravity
  • stress–energy classification
  • energy conditions
  • Hawking-Ellis
  • tensor: energy-momentum
  • invariance: Lorentz
  • stability
  • Einstein equation
  • perturbation
  • algebra
  • type I: Under a Lorentz transformation we can set
    • \begin{align} \newcommand{\e}{{\rm e}} \displaystyle T^{\mu\nu} \sim_{\rm L} \left[\begin{array}{@{}c|ccc@{}} \rho&0 &0 &0\nonumber \\ \hline 0 &p_1& 0 &0\nonumber \\ 0&0& p_2 & 0\nonumber \\0&0&0&p_3\nonumber \end{array}\right]
      • \qquad T^\mu{}_\nu \sim_{\rm L}\left[\begin{array}{@{}c|ccc@{}} -\rho&0 &0 &0\nonumber \\ \hline 0 &p_1& 0 &0\nonumber \\ 0&0& p_2 & 0\nonumber \\0&0&0&p_3\nonumber \end{array}\right]. \nonumber \end{align} \tag{ 3 } As in this case the stress-energy tensor is fully diagonalizable, one obtains the same matrix by expressing this tensor in the orthonormal basis formed by its eigenvectors
        • \begin{align} \newcommand{\e}{{\rm e}} \displaystyle T^\mu{}_\nu \sim\left[\begin{array}{@{}c|ccc@{}} -\rho&0 &0 &0\nonumber \\ \hline 0 &p_1& 0 &0\nonumber \\ 0&0& p_2 & 0\nonumber \\0&0&0&p_3\nonumber \end{array}\right]. \nonumber \end{align} \tag{ 4 } The eigenvalues are \{-\rho, p_1, p_2, p_3\}. This is as simple as type I gets. In (3+1) dimensions type I is invariantly characterized by the existence of a unique timelike eigenvector, implying the existence of three spacelike eigenvectors. (In Euclidean signature, since \newcommand{\e}{{\rm e}} \eta^{ab} \to \delta^{ab}, all stress-energy tensors are type I.)
          • type II: Under a Lorentz transformation we can set
            • \begin{align} \newcommand{\e}{{\rm e}} \displaystyle T^{\mu\nu} \sim_{\rm L} \left[\begin{array}{@{}cc|cc@{}} \mu+f&f &0 &0\nonumber \\ f &-\mu+f& 0 &0\nonumber \\ \hline 0&0& p_2 & 0\nonumber \\0&0&0&p_3\nonumber \end{array}\right]
              • \quad T^\mu{}_\nu \sim_{\rm L} \left[\begin{array}{@{}cc|cc@{}} -\mu-f&f &0 &0\nonumber \\ -f &-\mu+f& 0 &0\nonumber \\ \hline 0&0& p_2 & 0\nonumber \\0&0&0&p_3\nonumber \end{array}\right]
                • \nonumber \end{align} \tag{ 5 } while under a generic non-singular similarity transformation we can set
                  • \begin{align} \newcommand{\e}{{\rm e}} \displaystyle T^\mu{}_\nu \sim\left[\begin{array}{@{}cc|cc@{}} -\mu&1 &0 &0\nonumber \\ 0 &-\mu& 0 &0\nonumber \\ \hline 0&0& p_2 & 0\nonumber \\0&0&0&p_3\nonumber \end{array}\right]. \nonumber \end{align} \tag{ 6 } The eigenvalues are \{-\mu, -\mu, p_2, p_3\}. The non-trivial structure of the Jordan form is due to the null eigenvector associated to the double eigenvalue. That is, it is not expressed in a basis with a timelike eigenvector, though there are two spacelike eigenvectors associated to the pi eigenvalues. As a matrix, type II is defective, there are only three eigenvectors, not four. Now from type II subtract out as much of type I as possible
                    • and call what is left type II0. (Make the eigenvalues as simple as possible
                      • but do not disturb the eigenvectors.)Consider this:
                        • \begin{align} \newcommand{\e}{{\rm e}} \displaystyle (T^{\mu\nu})_{\rm II_0} \sim_{\rm L} \left[\begin{array}{@{}cc|cc@{}} f&f &0 &0\nonumber \\ f &f& 0 &0\nonumber \\ \hline 0&0&0 & 0\nonumber \\0&0&0&0\nonumber \end{array}\right]
                          • \quad (T^\mu{}_\nu)_{\rm II_0}\sim_{\rm L} \left[\begin{array}{@{}cc|cc@{}} -f&f &0 &0\nonumber \\ -f &f& 0 &0\nonumber \\ \hline 0&0&0 & 0\nonumber \\0&0&0&0\nonumber \end{array}\right]
                            • \nonumber \end{align} \tag{ 7 } and
                              • \begin{align} \newcommand{\e}{{\rm e}} \displaystyle (T^\mu{}_\nu)_{\rm II_0} \sim\left[\begin{array}{@{}cc|cc@{}} 0&1 &0 &0\nonumber \\ 0 &0& 0 &0\nonumber \\ \hline 0&0& 0& 0\nonumber \\0&0&0&0\nonumber \end{array}\right]. \nonumber \end{align} \tag{ 8 } The eigenvalues are now as simple as possible, \{0, 0, 0, 0\}, and there is still one null and two spacelike eigenvectors. Observe that type II0 can be invariantly characterized by the equation [(T^a{}_b)_{\rm II_0}]^2 = 0. (So it is nilpotent of order 2.) We can also write \newcommand{\e}{{\rm e}} (T^{ab})_{\rm II_0} = f \ell^a \ell^b where \newcommand{\e}{{\rm e}} \ell is a null vector with unit time component. On the other hand, type II0 tensors have a generalized timelike eigenvector, such that \newcommand{\e}{{\rm e}} [(T^a{}_b)_{\rm II_0}]t^b=f\ell^a, implying [(T^a{}_b)_{\rm II_0}]^2 t^b = 0. The minimum dimensionality for a type II0 stress-energy tensor is (1+1)
                                • type III: Under a Lorentz transformation we can set
                                  • \begin{align} \newcommand{\e}{{\rm e}} \displaystyle T^{\mu\nu} \sim_{\rm L} \left[\begin{array}{@{}ccc|c@{}} \rho&f &0&0\nonumber \\ f &-\rho& f &0\nonumber \\ 0&f& -\rho & 0\nonumber \\ \hline 0&0&0&p_3\nonumber \end{array}\right]
                                    • \quad T^\mu{}_\nu \sim_{\rm L} \left[\begin{array}{@{}ccc|c@{}} -\rho&f &0&0\nonumber \\ -f &-\rho& f &0\nonumber \\ 0&f& -\rho & 0\nonumber \\ \hline 0&0&0&p_3\nonumber \end{array}\right]
                                      • \nonumber \end{align} \tag{ 9 } where the parameter f is unnecessarily set to 1 in reference [, 1: #cqgaac147bib001]. The Jordan normal form of this tensor is
                                        • \begin{align} \newcommand{\e}{{\rm e}} \displaystyle T^\mu{}_\nu \sim\left[\begin{array}{@{}ccc|c@{}} -\rho&1 &0 &0\nonumber \\ 0 &-\rho& 1 &0\nonumber \\ 0&0& -\rho & 0\nonumber \\ \hline 0&0&0&p_3\nonumber \end{array}\right]. \nonumber \end{align} \tag{ 10 } The eigenvalues are \{-\rho, -\rho, -\rho, p_3\}, and there is a single null eigenvector associated to the triple eigenvalue, plus a single spacelike eigenvector associated to the eigenvalue p3. As a matrix type III is defective, there are only two eigenvectors, not four.Now from type III subtract out as much of type I as possible
                                          • call what is left type III0. (Make the eigenvalues as simple as possible
                                            • but do not disturb the eigenvectors.) Consider this:
                                              • \begin{align} \newcommand{\e}{{\rm e}} \displaystyle (T^{\mu\nu})_{\rm III_0} \sim_{\rm L} \left[\begin{array}{@{}ccc|c@{}} 0&f &0&0\nonumber \\ f &0& f &0\nonumber \\ 0&f&0& 0\nonumber \\ \hline 0&0&0&0\nonumber \end{array}\right]
                                                • \quad (T^\mu{}_\nu)_{\rm III_0} \sim_{\rm L} \left[\begin{array}{@{}ccc|c@{}} 0&f &0&0\nonumber \\ -f &0& f &0\nonumber \\ 0&f&0& 0\nonumber \\ \hline 0&0&0&0\nonumber \end{array}\right]
                                                  • \nonumber \end{align} \tag{ 11 } with Jordan form