Minimal geometric deformation decoupling in 2+1 dimensional space–times
May 26, 20185 pages
Published in:
- Eur.Phys.J.C 78 (2018) 7, 558
- Published: Jul 7, 2018
e-Print:
- 1805.10565 [gr-qc]
View in:
Citations per year
Abstract: (Springer)
We study the minimal geometric deformation decoupling in 2+1 dimensional space–times and implement it as a tool for obtaining anisotropic solutions from isotropic geometries. Interestingly, both the isotropic and the anisotropic sector fulfill Einstein field equations in contrast to the cases studied in 3+1 dimensions. In particular, new anisotropic solutions are obtained from the well known static BTZ solution.Note:
- Figure and some comments added. Accepted in EPJC
- deformation: geometrical
- anisotropy
- deformation
- decoupling
- Einstein equation
- geometry
- BTZ
References(30)
Figures(1)
- •
- Mod.Phys.Lett.A 23 (2008) 3247-3263
- e-Print:•
- •
- Phys.Rev.Lett. 83 (1999) 3370-3373
- e-Print:•
- •
- Phys.Rev.Lett. 83 (1999) 4690-4693
- e-Print:•
- •
- Int.J.Mod.Phys.D 18 (2009) 837-852
- e-Print:•
- •
- Mod.Phys.Lett.A 25 (2010) 3323-3334
- e-Print:•
- •
- Phys.Lett.B 715 (2012) 251-255
- e-Print:•
- •
- Phys.Rev.D 88 (2013) 10, 104026
- e-Print:•
- ,
- ,
- ,
- •
- Class.Quant.Grav. 30 (2013) 175019
- e-Print:•
- ,
- ,
- ,
- •
- Class.Quant.Grav. 30 (2013) 175019
- e-Print:•
- ,
- ,
- •
- Class.Quant.Grav. 32 (2015) 21, 215020
- e-Print:•
- J. Ovalle()
- ICTP, Trieste and
- Simon Bolivar U. and
- Bologna U.
- •
- Int.J.Mod.Phys.Conf.Ser. 41 (2016) 1660132
- e-Print:•
- ,
- ,
- •
- Class.Quant.Grav. 32 (2015) 045015
- e-Print:•
- ,
- ,
- •
- EPL 110 (2015) 4, 40003
- e-Print:•
- ,
- ,
- •
- Class.Quant.Grav. 33 (2016) 21, 215007
- e-Print:•
- ,
- •
- Phys.Lett.B 763 (2016) 434-438
- e-Print:•
- •
- Phys.Rev.D 95 (2017) 10, 104019
- e-Print:•
- •
- Phys.Rev.D 95 (2017) 12, 124017
- e-Print:•
- •
- Eur.Phys.J.C 77 (2017) 5, 355
- e-Print:•
- ,
- ,
- •
- Class.Quant.Grav. 35 (2018) 18, 185001
- e-Print:•
- ,
- ,
- ,
- •
- Eur.Phys.J.C 78 (2018) 2, 122
- e-Print:•
- •
- Eur.Phys.J.Plus 133 (2018) 11, 453
- e-Print:•
- •
- Eur.Phys.J.C 78 (2018) 11, 960
- e-Print:•
- •
- Fortsch.Phys. 66 (2018) 7, 1800036
- e-Print:•
- ,
- ,
- •
- Eur.Phys.J.C 78 (2018) 5, 370
- e-Print:•
- •
- Eur.Phys.J.C 78 (2018) 5, 410
- e-Print:•