South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy

Collaboration
2013
12 pages
Published in:
  • J.Glaciol. 59 (2013) 218, 1117-1128
  • Published: Jul 10, 2017
Experiments:

Citations per year

2015201720192021202301234567
Abstract: (Cambridge University Press)
The IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore >100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use manual and algorithmic matching to synthesize our South Pole measurements with ice-core and logging data from Dome C, East Antarctica. We derive impurity concentration, precision chronology, annual-layer thickness, local spatial variability, and identify several widespread volcanic ash depositions useful for dating. We also examine the interval around ∼74 ka recently isolated with radiometric dating to bracket the Toba (Sumatra) supereruption.
0 References