Coproduct for Yangians of affine Kac–Moody algebras

Jan 18, 2017
47 pages
Published in:
  • Adv.Math. 338 (2018) 865-911
  • Published: Nov 7, 2018
e-Print:

Citations per year

20172019202120232025024681012
Abstract: (Elsevier)
Given an affine Kac–Moody algebra, we explain how to construct a coproduct on its associated Yangian. In order to prove that this coproduct is an algebra homomorphism, we obtain, in the first half of this paper, a minimalistic presentation of the Yangian when the Kac–Moody algebra is, more generally, symmetrizable.
Note:
  • 38 pages
  • primary
  • 17B37
  • secondary
  • 17B67
  • Yangians
  • Kac–Moody algebras
  • Affine Lie algebras
  • Coproduct
  • Completions
  • [1]

    A presentation of the deformed W1+∞ algebra

    • N. Arbesfeld
      ,
    • O. Schiffmann
      • Springer Proc.Math.Stat. 40 (2013) 1
  • [2]

    Homomorphisms between different quantum toroidal and affine Yangian algebras

    • M. Bershtein
      ,
    • A. Tsymbaliuk
  • [4]

    On the Harish-Chandra homomorphism for infinite-dimensional Lie algebras

    • V. Chari
      ,
    • S. Ilangovan
      • J.Algebra 90 (1984) 476
  • [5]

    A Guide to Quantum Groups

    • V. Chari
      ,
    • A. Pressley
  • [6]

    Isomorphism of two realizations of quantum affine algebra Uq(gl(n)ˆ)

    • J.T. Ding
      ,
    • I.B. Frenkel
      • Commun.Math.Phys. 156 (1993) 277
  • [7]

    Weyl group extension of quantized current algebras

    • J. Ding
      ,
    • S. Khoroshkin
      • Transform.Groups 5 (2000) 35
  • [8]

    Hopf algebras and the quantum Yang–Baxter equation

    • V.G. Drinfel'd
      • Dokl.Akad.Nauk SSSR 283 (1985) 1060
  • [9]

    A new realization of Yangians and of quantum affine algebras

    • V.G. Drinfel'd
      • Dokl.Akad.Nauk SSSR 296 (1987) 13
  • [10]

    Quasi-Hopf algebras associated with semisimple Lie algebras and complex curves

    • B. Enriquez
      • Selecta Math. 9 (2003) 1
  • [11]

    A construction of Hopf algebra cocycles for the Yangian double DY(sl2)

    • B. Enriquez
      ,
    • G. Felder
      • J.Phys.A 31 (1998) 2401
  • [12]

    Weight functions and Drinfeld currents

    • B. Enriquez
      ,
    • S. Khoroshkin
      ,
    • S. Pakuliak
      • Commun.Math.Phys. 276 (2007) 691
  • [13]

    Quantum continuous gl∞ : semiinfinite construction of representations

    • B. Feigin
      ,
    • E. Feigin
      ,
    • M. Jimbo
      ,
    • T. Miwa
      ,
    • E. Mukhin
      • J.Math.(Kyoto) 51 (2011) 337
  • [14]

    Quantum continuous gl∞ : tensor products of Fock modules and Wn -characters

    • B. Feigin
      ,
    • E. Feigin
      ,
    • M. Jimbo
      ,
    • T. Miwa
      ,
    • E. Mukhin
      • J.Math.(Kyoto) 51 (2011) 365
  • [15]

    Representations of quantum toroidal gln

    • B. Feigin
      ,
    • M. Jimbo
      ,
    • T. Miwa
      ,
    • E. Mukhin
      • J.Algebra 380 (2013) 78
  • [16]

    Comultiplication for shifted Yangians and quantum open Toda lattice

    • M. Finkelberg
      ,
    • J. Kamnitzer
      ,
    • K. Pham
      ,
    • L. Rybnikov
      ,
    • A. Weekes
      • Adv.Math. 327 (2018) 349
  • [17]

    Yangians and quantum loop algebras

    • S. Gautam
      ,
    • V. Toledano Laredo
      • Selecta Math. 19 (2013) 271
  • [19]

    Meromorphic tensor equivalence for Yangians and quantum loop algebras

    • S. Gautam
      ,
    • V. Toledano Laredo
      • Publ.Math.Inst.Hautes Études Sci. 125 (2017) 267
  • [20]

    Cherednik algebras and Yangians

    • N. Guay
  • [21]

    Affine Yangians and deformed double current algebras in type A

    • N. Guay
      • Adv.Math. 211 (2007) 436
  • [22]

    Quantum algebras and quivers

    • N. Guay
      • Selecta Math. 14 (2009) 667
  • [23]

    From quantum loop algebras to Yangians

    • N. Guay
      ,
    • X. Ma
      • J.Lond.Math.Soc.(2) 86 (2012) 683
  • [25]

    On deformed double current algebras for simple Lie algebras

    • N. Guay
      ,
    • Y. Yang
      • Math.Res.Lett. 24 (2017) 1307