Transformation brackets for harmonic oscillator functions

1959
13 pages
Published in:
  • Nucl.Phys. 13 (1959) 1, 104-116

Citations per year

1964197919942009202402468101214
Abstract: (submitter)
We define the transformation brackets connecting the wave functions for two particles in an harmonic oscillator common potential with the wave functions given in terms of the relative and centre of mass coordinates of the two particles. With the help of these brackets we show that all matrix elements for the interaction potentials in nuclear shell theory can be given directly in terms of Talmi integrals. We obtain recurrence relations and explicit algebraic expressions for the transformation brackets that will permit their numerical evaluation.
  • [1]
    The nuclear shell model, in Handbuch der Physik, Vol. 39 / -Verlag, Berlin-Gottingen-Heidelberg,) pp. 241-410
    • J.P. Elliot
      ,
    • A.M. Lane
  • [2]
    • I. Talrni
      • Helv.Phys.Acta 25 (1952) 185
  • [3]
    Nuclear Physics 2 (/57) 533
    • R. Thieberger
  • [4]
    Nuclear Physics 9 (/59) 218
    • K.W. Ford
      ,
    • E.J. Konopinski
  • [6]
    Special functions of mathematical physics Publishing Company, New York)pp. 84, 85
    • W. Magnus
      ,
    • F. Oberhettinger
  • [7]
    • M. Moshinsky
      • Nucl.Phys. 8 (1958) 19
  • [8]
    Additional pubnote: Phys.Rev.,63,367 / 9) G. Racah
    • H. Matsunobu
      ,
    • H. Takebe
      • Prog.Theor.Phys. 14 (1955) 589
  • [8]
    Additional pubnote: Phys.Rev.,93,318 / Additional pubnote: Rev.Mod.Phys.,24,249 / 10) Erdelyi et al / Higher transcendental functions, Vol. 2 / New York, 195&) pp. 188-192 11) M. Mosbinsky and E. Salz / (to be published) 12) M. E. Rose / Elementary theory of angular momentum (John Vifiley and Sons, New York, 1957) p. 61 13) H. A. Jahn and J. Hope / 14) Biedenharn, Blatt and Rose / 15) J. P. Elliot and A. M. Lane / loc. cit. p. 251
    • C. Schwartz
      ,
    • A. de Shalit
      • Phys.Rev. 94 (1954) 1257