Cosmological Simulations of Galaxy Formation
Sep 17, 201925 pages
Published in:
- Nature Rev.Phys. 2 (2020) 1, 42-66
- Published: Jan 8, 2020
e-Print:
- 1909.07976 [astro-ph.GA]
View in:
Citations per year
Abstract: (Springer)
The formation of structures and galaxies in the Universe, which consists of ordinary matter, dark energy and dark matter, involves various physical processes such as gravity, gas cooling, star formation, supernova feedback, supermassive black hole feedback, stellar evolution, radiation, magnetic fields, cosmic rays and more.Cosmological simulations allow detailed studies of the formation and evolution of structures and galaxies in the cosmos, starting from smooth initial conditions constrained through observations of the cosmic microwave background, yielding detailed predictions of the galaxy population at different epochs of the Universe.The dark matter component is typically numerically modelled through the N-body approach. Here, the dark matter phase-space distribution is sampled by an ensemble of phase-space sampling points, resulting in a Monte Carlo scheme, to follow its dynamics, which are governed by the collisionless Boltzmann equation.The gas content of the baryonic matter component is, in its simplest form, described through the Euler equations, discretized with Eulerian, Lagrangian or arbitrary Lagrangian–Eulerian schemes, coupled to other physical processes such as gravity, cooling processes, feedback processes and star formation.Alternative forms of dark matter, dark energy and gravity can also be explored through suitable modified simulation methods to test and constrain such theories in the context of structure and galaxy formation, by comparing to observational data such as galaxy surveys, leading to important insights into the overall cosmological framework of structure formation and cosmological parameters.The formation of structures and galaxies in the Universe, which consists of ordinary matter, dark energy and dark matter, involves various physical processes such as gravity, gas cooling, star formation, supernova feedback, supermassive black hole feedback, stellar evolution, radiation, magnetic fields, cosmic rays and more.Cosmological simulations allow detailed studies of the formation and evolution of structures and galaxies in the cosmos, starting from smooth initial conditions constrained through observations of the cosmic microwave background, yielding detailed predictions of the galaxy population at different epochs of the Universe.The dark matter component is typically numerically modelled through the N-body approach. Here, the dark matter phase-space distribution is sampled by an ensemble of phase-space sampling points, resulting in a Monte Carlo scheme, to follow its dynamics, which are governed by the collisionless Boltzmann equation.The gas content of the baryonic matter component is, in its simplest form, described through the Euler equations, discretized with Eulerian, Lagrangian or arbitrary Lagrangian–Eulerian schemes, coupled to other physical processes such as gravity, cooling processes, feedback processes and star formation.Alternative forms of dark matter, dark energy and gravity can also be explored through suitable modified simulation methods to test and constrain such theories in the context of structure and galaxy formation, by comparing to observational data such as galaxy surveys, leading to important insights into the overall cosmological framework of structure formation and cosmological parameters.Note:
- To appear in Nature Reviews Physics. 34 pages, 2 figures, 2 tables
References(463)
Figures(2)