A low-scale flavon model with a symmetry
Nov 20, 201948 pages
Published in:
- JHEP 03 (2020) 129
- Published: Mar 23, 2020
e-Print:
- 1911.09127 [hep-ph]
DOI:
- 10.1007/JHEP03(2020)129 (publication)
View in:
Citations per year
Abstract: (Springer)
We propose a model that explains the fermion mass hierarchy by the Froggatt-Nielsen mechanism with a discrete symmetry. As a concrete model, we study a super-symmetric model with a single flavon coupled to the minimal supersymmetric Standard Model. Flavon develops a TeV scale vacuum expectation value for realizing flavor hierarchy, an appropriate μ-term and the electroweak scale, hence the model has a low cutoff scale. We demonstrate how the flavon is successfully stabilized together with the Higgs bosons in the model. The discrete flavor symmetry controls not only the Standard Model fermion masses, but also the Higgs potential and a mass of the Higgsino which is a good candidate for dark matter. The hierarchy in the Higgs-flavon sector is determined in order to make the model anomaly-free and realize a stable electroweak vacuum. We show that this model can explain the fermion mass hierarchy, realistic Higgs-flavon potential and thermally produced dark matter at the same time. We discuss flavor violating processes induced by the light flavon which would be detected in future experiments.Note:
- 47 pages, 6 figures and 4 tables; v2: version published in JHEP
- Beyond Standard Model
- Higgs Physics
- Quark Masses and SM Parameters
- Supersymmetric Standard Model
- new physics
- symmetry: Z(N)
- symmetry: flavor
- supersymmetry: flavor
- flavor: hierarchy
- flavor: violation
References(179)
Figures(6)
- [1]
- [2]
- [3]
- [5]
- [7]
- [8]
- [9]
- [10]
- [12]
- [14]
- [15]
- [16]
- [17]
- [19]
- [21]
- [23]
- [24]
- [25]