Adaptive Latent Space Tuning for Non-Stationary Distributions
May 7, 2021e-Print:
- 2105.03584 [stat.ML]
View in:
Citations per year
Abstract: (arXiv)
Powerful deep learning tools, such as convolutional neural networks (CNN), are able to learn the input-output relationships of large complicated systems directly from data. Encoder-decoder deep CNNs are able to extract features directly from images, mix them with scalar inputs within a general low-dimensional latent space, and then generate new complex 2D outputs which represent complex physical phenomenon. One important challenge faced by deep learning methods is large non-stationary systems whose characteristics change quickly with time for which re-training is not feasible. In this paper we present a method for adaptive tuning of the low-dimensional latent space of deep encoder-decoder style CNNs based on real-time feedback to quickly compensate for unknown and fast distribution shifts. We demonstrate our approach for predicting the properties of a time-varying charged particle beam in a particle accelerator whose components (accelerating electric fields and focusing magnetic fields) are also quickly changing with time.References(90)
Figures(7)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]