Riemannian submersions for q-entropies

Aug 10, 2021
17 pages
Published in:
  • Int.J.Geom.Meth.Mod.Phys. 18 (2021) 14, 2150229
  • Published: Sep 25, 2021
e-Print:

Citations per year

0 Citations
Abstract: (WSP)
In an attempt to find the dynamical foundations for q-entropies, we examine the special case of Lagrangian/Hamiltonian systems of many degrees of freedom whose statistical behavior is conjecturally described by the q-entropic functionals. We follow the spirit of the canonical ensemble approach. We consider the system under study as embedded in a far larger total system. We explore some of the consequences that such an embedding has, if it is modeled by a Riemannian submersion. We point out the significance in such a description of the finite-dimensional Bakry–Émery Ricci tensor, as a local mesoscopic invariant, for understanding the collective dynamical behavior of systems described by the q-entropies.
Note:
  • 17 pages. No figures, Standard LaTeX2e
  • q-entropy
  • complexity
  • submersions
  • metric-measure spaces
  • Bakry–Émery Ricci tensor
  • tensor: Ricci
  • entropy
  • collective
  • embedding
  • statistical
  • [1]
    Gibbs and Boltzmann entropy in classical and quantum mechanics, preprint
    • S. Goldstein
      ,
    • J.L. Lebowitz
      ,
    • R. Tumulka
      ,
    • N. Zangh
  • [3]
    An overview of generalized entropic forms
    • V.M. Ili
      ,
    • J. Korbel
      ,
    • S. Gupta
      ,
    • A.M. Scarfone
  • [4]
    Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World
    • C. Tsallis
  • [5]
    On the geometry of metric measure spaces. I
    • K.-T. Sturm
  • [6]
    On the geometry of metric measure spaces. II
    • K.-T. Sturm
  • [7]
    Ricci curvature for metric-measure spaces via optimal transport
    • J. Lott
      ,
    • C. Villani
  • [8]
    On the curvature and heat flow of hamiltonian systems, Anal. Geom. Metr. Spaces 2 81-114
    • S. Ohta
  • [9]
    Calculus, heat flow and curvature-dimension bounds in metric measure spaces, in Proc. Int. Congr. Mathematicians (ICM 2018), Vol. 1, B. SirakovP (eds.)
    • L. Ambrosio
  • [10]
    Basic types of coarse-graining, in Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, A. N. GorbanN (eds.)
    • A.N. Gorban
  • [12]

  • [13]
    Curvature and mechanics
    • O.C. Pin
  • [14]
    On fibred Riemannian manifolds, Sci. Papers College Gen. Ed. Univ. Tokyo 10 17-27
    • T. Nagano
  • [15]
    The fundamental equations of a submersion
    • B. O'Neill
      • Michigan Math.J. 13 (1966) 459-469
  • [16]
    Submersions and geodesics
    • B. O'Neill
      • Duke Math.J. 34 (1967) 363-373
  • [17]
    Pseudo-Riemannian almost product manifolds and submersions
    • A. Gray
      • J.Math.Mech. 16 (1967) 715-737
  • [18]
    Einstein Manifolds
    • A.L. Besse
  • [19]
    Spinors, spectral geometry and Riemannian submersions, available at emis.de/monographs/GLP/index.html
    • P.B. Gilkey
      ,
    • J.V. Leahy
      ,
    • J. Park
    • [20]

      Riemannian submersions and related topics

      • M. Falcitelli
        ,
      • S. Ianus
        ,
      • A.M. Pastore
    • [21]
      Metric Foliations and Curvature, Progress in Mathematics, Vol. 268 (Birkhäuser-Verlag, Basel,)
      • D. Gromoll
        ,
      • G. Walschap
    • [22]
      A sufficient condition that a mapping of Riemannian manifolds be a fiber bundle
      • R. Hermann
    • [23]
      Submetries of three-dimensional forms of nonnegative curvature, Sibirsk. Mat. Zh. 28(4) 44-56
      • V.N. Berestovskii
    • [23]
      English translation in
        • Sib.Math.J. 28 (1987) 552-562
    • [24]
      On Riemannian submersions, preprint
      • L. Lempert