Understanding and Improving Critical Metrology. Quenching Superradiant Light-Matter Systems Beyond the Critical Point

Oct 8, 2021
19 pages
Published in:
  • Quantum 6 (2022) 700,
  • Quantum 6 (2022) 700
  • Published: Apr 27, 2022
e-Print:

Citations per year

20212022202320242025024681012
Abstract: (Verein zur Foerderung des Open Access Publizierens in den Quantenwissenschaften)
We carefully examine critical metrology and present an improved critical quantum metrology protocol which relies on quenching a system exhibiting a superradiant quantum phase transition beyond its critical point. We show that this approach can lead to an exponential increase of the quantum Fisher information in time with respect to existing critical quantum metrology protocols relying on quenching close to the critical point and observing power law behaviour. We demonstrate that the Cramér-Rao bound can be saturated in our protocol through the standard homodyne detection scheme. We explicitly show its advantage using the archetypal setting of the Dicke model and explore a quantum gas coupled to a single-mode cavity field as a potential platform. In this case an additional exponential enhancement of the quantum Fisher information can in practice be observed with the number of atoms NN in the cavity, even in the absence of NN-body coupling terms.
Note:
  • 19 pages, 6 figures