Equivalence of contextuality and Wigner function negativity in continuous-variable quantum optics

Dec 29, 2021
9 pages
e-Print:

Citations per year

202120222023202432
Abstract: (arXiv)
One of the central foundational questions of physics is to identify what makes a system quantum as opposed to classical. One seminal notion of classicality of a quantum system is the existence of a non-contextual hidden variable model as introduced in the early work by Bell, Kochen and Specker. In quantum optics, the non-negativity of the Wigner function is a ubiquitous notion of classicality. In this work we establish an equivalence between these two concepts. In particular, we show that any non-contextual hidden variable model for Gaussian quantum optics has an alternative non-negative Wigner function description. Conversely, it was known that the Wigner representation provides a non-negative non-contextual description of Gaussian quantum optics. It follows that contextuality and Wigner negativity are equivalent notions of non-classicality and equivalent resources for this quantum subtheory. In particular, both contextuality and Wigner negativity are necessary for a computational speed-up of quantum Gaussian optics. At the technical level, our result holds true for any subfamily of Gaussian measurements that include homodyne measurements, i.e., measurements of standard quadrature observables.
Note:
  • 9 pages, no figues