Equivalence between Fermion-to-Qubit Mappings in two Spatial Dimensions
Jan 13, 2022
18 pages
Published in:
- PRX Quantum 4 (2023) 1, 010326
- Published: Mar 1, 2023
e-Print:
- 2201.05153 [quant-ph]
DOI:
- 10.1103/PRXQuantum.4.010326 (publication)
View in:
Citations per year
Abstract: (APS)
We argue that all locality-preserving mappings between fermionic observables and Pauli matrices on a two-dimensional lattice can be generated from the exact bosonization in Chen et al. [Ann. Phys. (N. Y) 393, 234 (2018)], whose gauge constraints project onto the subspace of the toric code with emergent fermions. Starting from the exact bosonization and applying Clifford finite-depth generalized local unitary transformation, we can achieve all possible fermion-to-qubit mappings (up to the re-pairing of Majorana fermions). In particular, we discover a new supercompact encoding using 1.25 qubits per fermion on the square lattice. We prove the existence of finite-depth quantum circuits to obtain fermion-to-qubit mappings with qubit-fermion ratios for positive integers , utilizing the trivialness of quantum cellular automata in two spatial dimensions. Also, we provide direct constructions of fermion-to-qubit mappings with ratios arbitrarily close to 1. When the ratio reaches 1, the fermion-to-qubit mapping reduces to the one-dimensional Jordan-Wigner transformation along a certain path in the two-dimensional lattice. Finally, we explicitly demonstrate that the Bravyi-Kitaev superfast simulation, the Verstraete-Cirac auxiliary method, Kitaev’s exactly solved model, the Majorana loop stabilizer codes, and the compact fermion-to-qubit mapping can all be obtained from the exact bosonization.Note:
- 18 pages, 25 figures
References(31)
Figures(30)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]