Muon-Induced Single-Event Upsets in 20-nm SRAMs: Comparative Characterization With Neutrons and Alpha Particles

May 21, 2021
9 pages
Published in:
  • IEEE Trans.Nucl.Sci. 68 (2021) 7, 1436-1444
  • Published: May 21, 2021

Citations per year

202220232024202521
Abstract: (IEEE)
Negative and positive muon-induced single-event upsets (SEUs) are studied in 20-nm bulk planar SRAMs. Muon irradiation is performed using a mono-energetic source with varying the muon energy. The energy dependence of the cross sections (CSs) of SEUs and multiple-cell upsets (MCUs) shows the significant contribution of muon capture reactions for the negative muon, as reported in previous studies. Interestingly, MCU events are found for the positive muon, in contrast to the previous studies. The CSs for the negative and positive muons are compared with that for the other terrestrial radiations: high-energy neutrons, thermal neutrons, and alpha particles. The voltage dependence of the SEU CS, together with the empirical model for charge collection, demonstrates the difference in the contributing secondary ions among the negative muon, the high-energy neutron, and the thermal neutron. The MCU events are thoroughly analyzed in terms of their ratio to the total events and their fail bit patterns. The results reveal that the MCU characteristics for the negative muon are different from that for the other terrestrial radiations due to the muon capture reactions, where parasitic bipolar effects and the isotropic emission of secondary ions are important factors.
  • Mesons
  • Neutrons
  • Radiation effects
  • Alpha particles
  • Random access memory
  • Cascading style sheets
  • Particle beams
  • Alpha particle
  • CMOS
  • high-energy neutron
  • [1]

    Terrestrial cosmic rays

    • J.F. Ziegler
      • IBM J.Res.Dev. 40 (1996) 19-40
  • [2]

    Impact of scaling on the soft error sensitivity of bulk FDSOI and FinFET technologies due to atmospheric radiation

    • G. Hubert
      ,
    • L. Artola
      ,
    • D. Regis
  • [4]

    Measurement and mechanism investigation of negative and positive muon-induced upsets in 65-nm bulk SRAMs

    • W. Liao
      • IEEE Trans.Nucl.Sci. 65 (2018) 1734-1741
  • [5]

    Negative and positive muon-induced single event upsets in 65-nm UTBB SOI SRAMs

    • S. Manabe
      • IEEE Trans.Nucl.Sci. 65 (2018) 1742-1749
  • [6]

    Negative and positive muon-induced SEU cross sections in 28-nm and 65-nm planar bulk CMOS SRAMs

    • W. Liao
  • [7]

    Irradiation test of 65-nm bulk SRAMs with DC muon beam at RCNP-MuSIC facility

    • T. Mahara
      • IEEE Trans.Nucl.Sci. 67 (2020) 1555-1559
  • [8]

    SRAM immunity to cosmic-ray-induced multierrors based on analysis of an induced parasitic bipolar effect

    • K. Osada
      ,
    • K. Yamaguchi
      ,
    • Y. Saitoh
      ,
    • T. Kawahara
      • IEEE J.Solid State Circuits 39 (2004) 827-833
  • [9]

    Multiple cell upsets as the key contribution to the total SER of 65 nm CMOS SRAMs and its dependence on well engineering

    • G. Gasiot
      ,
    • D. Giot
      ,
    • P. Roche
      • IEEE Trans.Nucl.Sci. 54 (2007) 2468-2473
  • [10]

    Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices

  • [11]

    Neutron-induced boron fission as a major source of soft errors in deep submicron SRAM devices

    • R.C. Baumann
      ,
    • E.B. Smith
  • [12]

    Thermal neutron soft error rate for SRAMs in the 90nm-45nm technology range

    • S.-J. Wen
      ,
    • R. Wong
      ,
    • M. Romain
      ,
    • N. Tam
  • [13]

    B10 finding and correlation to thermal neutron soft error rate sensitivity for SRAMs in the sub-micron technology

    • S.-J. Wen
      ,
    • S.Y. Pai
      ,
    • R. Wong
      ,
    • M. Romain
      ,
    • N. Tam
  • [14]

    Thermal neutron-induced soft errors in advanced memory and logic devices

    • Y.-P. Fang
      ,
    • A.S. Oates
  • [15]

    Susceptibility of planar and 3D tri-gate technologies to muon-induced single event upsets

    • N. Seifert
      ,
    • S. Jahinuzzaman
      ,
    • J. Velamala
      ,
    • N. Patel
  • [16]

    Muons and thermal neutrons SEU characterization of 28nm UTBB FD-SOI and bulk eSRAMs

    • G. Gasiot
      ,
    • D. Soussan
      ,
    • J.-L. Autran
      ,
    • V. Malherbe
      ,
    • P. Roche
  • [17]

    Estimation of muon-induced SEU rates for 65-nm bulk and UTBB-SOI SRAMs

    • S. Manabe
      ,
    • Y. Watanabe
      ,
    • W. Liao
      ,
    • M. Hashimoto
      ,
    • S.-I. Abe
      • IEEE Trans.Nucl.Sci. 66 (2019) 1398-1403
  • [18]

    Similarity analysis on Neutron- and negative muon-induced MCUs in 65-nm bulk SRAM

    • W. Liao
      ,
    • M. Hashimoto
      ,
    • S. Manabe
      ,
    • S.-I. Abe
      ,
    • Y. Watanabe
      • IEEE Trans.Nucl.Sci. 66 (2019) 1390-1397
  • [19]

    J-PARC muon facility MUSE

    • Y. Miyake
  • [21]

    Evaluation of the white neutron beam spectrum for single-event effects testing at the RCNP cyclotron facility

    • Y. Iwamoto
  • [22]

    Neutron-induced multiple-cell upsets in 20-nm bulk SRAM: Angular sensitivity and impact of multiwell potential perturbation

    • T. Kato
      ,
    • T. Yamazaki
      ,
    • N. Saito
      ,
    • H. Matsuyama
      • IEEE Trans.Nucl.Sci. 66 (2019) 1381-1389
  • [23]

    Characteristics of the KUR heavy water neutron irradiation facility as a neutron irradiation field with variable energy spectra

    • Y. Sakurai
      ,
    • T. Kobayashi
  • [25]

    Charge collection and charge sharing in a 130 nm CMOS technology

    • O.A. Amusan
      • IEEE Trans.Nucl.Sci. 53 (2006) 3253-3258