Decoherence predictions in a superconducting quantum processor using the steepest-entropy-ascent quantum thermodynamics framework

Mar 15, 2022
11 pages
Published in:
  • Phys.Rev.A 106 (2022) 3, 032426
  • Published: Sep 22, 2022
e-Print:
DOI:

Citations per year

202320242025321
Abstract: (APS)
The current stage of quantum computing technology, called noisy intermediate-scale quantum technology, is characterized by large errors that prohibit it from being used for real applications. In these devices, decoherence, one of the main sources of error, is generally modeled by Markovian master equations such as the Lindblad master equation. In this paper, the decoherence phenomena are addressed from the perspective of the steepest-entropy-ascent quantum thermodynamics framework in which the noise is in part seen as internal to the system. The framework is as well used to describe changes in the energy associated with environmental interactions. Three scenarios, an inversion recovery demonstration, a Ramsey demonstration, and a two-qubit entanglement-disentanglement demonstration, are used to demonstrate the applicability of this framework, which provides good results relative to the demonstrations and the Lindblad equation; it does so, however, from a different perspective as to the cause of the decoherence. These demonstrations are conducted on the IBM superconducting quantum device ibmq_bogota.
Note:
  • 11 pages, 8 figures
  • computer: quantum
  • decoherence
  • thermodynamics
  • noise
  • superconductivity
  • master equation
  • [1]

      • Commun.Math.Phys. 48 (1976) 119,
      • Commun.Math.Phys.48 (1976) 119-130 and Stockholm Royal Tech Inst - TRITA-TFY-75-1 (75,REC.MAR) 34p
  • [2]

    Quantum master equations for composite systems: Is Born-Markov approximation really valid?

    • M. Nakatani
      ,
    • T. Ogawa
  • [4]

    Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs

    • Q.A. Turchette
      ,
    • C.J. Myatt
      ,
    • B.E. King
      ,
    • C.A. Sackett
      ,
    • D. Kielpinski
    et al.
  • [5]

    Rotational Alignment Decay and Decoherence of Molecular Superrotors

    • B.A. Stickler
      ,
    • F.T. Ghahramani
      ,
    • K. Hornberger
  • [6]

    Nonperturbative Master Equation Solution of Central Spin Dephasing Dynamics

    • E. Barnes
      ,
    • Ł. Cywiński
      ,
    • S. Das Sarma
  • [7]

    A unified quantum theory of mechanics and thermodynamics. Part III. Irreducible quantal dispersions

    • G.N. Hatsopoulos
      ,
    • E.P. Gyftopoulos
  • [8]

    A unified quantum theory of mechanics and thermodynamics. Part IIb. Stable equilibrium states

    • G.N. Hatsopoulos
      ,
    • E.P. Gyftopoulos
  • [9]

    A unified quantum theory of mechanics and thermodynamics. Part IIa. Available energy

    • G.N. Hatsopoulos
      ,
    • E.P. Gyftopoulos
  • [10]

    A unified quantum theory of mechanics and thermodynamics. Part I. Postulates

    • G.N. Hatsopoulos
      ,
    • E.P. Gyftopoulos
  • [11]

    Quantum thermodynamics. A new equation of motion for a single constituent of matter

    • G.P. Beretta
      ,
    • J. Park
      ,
    • G.N. Hatsopoulos
  • [12]

    Nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution

    • G.P. Beretta
  • [13]

    Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    • G.P. Beretta
  • [14]

    Nonlinear quantum evolution equations to model irreversible adiabatic relaxation with maximal entropy production and other nonunitary processes

    • G.P. Beretta
  • [15]

    Maximum entropy production rate in quantum thermodynamics

    • G.P. Beretta
  • [16]

    Some trends in quantum thermodynamics

    • M.R. von Spakovsky
      ,
    • J. Gemmer
  • [17]

    Essential equivalence of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium thermodynamics

    • A. Montefusco
      ,
    • F. Consonni
      ,
    • G.P. Beretta
  • [18]

    Steepest-entropy-ascent quantum thermodynamic modeling of decoherence in two different microscopic composite systems

    • S. Cano-Andrade
      ,
    • G.P. Beretta
      ,
    • M.R. von Spakovsky
  • [19]

    Loss-of-entanglement prediction of a controlled-PHASE gate in the framework of steepest-entropy-ascent quantum thermodynamics

    • J.A. Montanez-Barrera
      ,
    • C.E. Damian-ascencio
      ,
    • M.R. von Spakovsky
      ,
    • S. Cano-andrade
  • [20]

    Steepest entropy ascent quantum thermodynamic model of electron and phonon transport

    • G. Li
      ,
    • M.R. von Spakovsky
      ,
    • C. Hin
  • [21]

    Multiscale Transient and Steady-State Study of the Influence of Microstructure Degradation and Chromium Oxide Poisoning on Solid Oxide Fuel Cell Cathode Performance

    • G. Li
      ,
    • M.R. von Spakovsky
      ,
    • F. Shen
      ,
    • K. Lu
  • [22]

    Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state

    • G. Li
      ,
    • M.R. von Spakovsky
  • [23]
    Study of the transient behavior and microstructure degradation of a SOFC cathode using an oxygen reduction model based on steepest-entropy-ascent quantum thermodynamics, in Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, Vol. 6B Energy (, Houston, Texas, USA, )
    • G. Li
      ,
    • M.R. von Spakovsky
  • [24]

    Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    • G. Li
      ,
    • O. Al-Abbasi
      ,
    • M.R. von Spakovsky
  • [25]

    Modeling the non-equilibrium process of the chemical adsorption of ammonia on GaN(0001) reconstructed surfaces based on steepest-entropy-ascent quantum thermodynamics

    • A. Kusaba
      ,
    • G. Li
      ,
    • M.R. von Spakovsky
      ,
    • Y. Kangawa
      ,
    • K. Kakimoto