Universal Functionals in Density Functional Theory

Dec 22, 2019
e-Print:
DOI:

Citations per year

202020212022014
Abstract: (arXiv)
In this chapter we first review the Levy-Lieb functional, which gives the lowest kinetic and interaction energy that can be reached with all possible quantum states having a given density. We discuss two possible convex generalizations of this functional, corresponding to using mixed canonical and grand-canonical states, respectively. We present some recent works about the local density approximation, in which the functionals get replaced by purely local functionals constructed using the uniform electron gas energy per unit volume. We then review the known upper and lower bounds on the Levy-Lieb functionals. We start with the kinetic energy alone, then turn to the classical interaction alone, before we are able to put everything together. An appendix is devoted to the Hohenberg-Kohn theorem and the role of many-body unique continuation in its proof.
Note:
  • Final version of a chapter to appear in the book "Density Functional Theory - Modeling, Mathematical Analysis, Computational Methods, and Applications", edited by Eric Cancès and Gero Friesecke, Springer
  • [1]
    On the classical two-dimensional one-component Coulomb plasma
    • A. Alastuey
      ,
    • B. Jancovici
      • J.Phys.(France) 42 (1981) 1-12
  • [2]
    The Pauli principle revisited
    • M. Altunbulak
      ,
    • A. Klyachko
      • Commun.Math.Phys. 282 (2008) 287-322
  • [3]
    Low-density phase diagram of the threedimensional electron gas
    • S. Azadi
      ,
    • N.D. Drummond
  • [4]
    Error bound for the Hartree-Fock energy of atoms and molecules
    • V. Bach
      • Commun.Math.Phys. 147 (1992) 527-548
  • [5]
    On some open problems in many-electron theory, in Many-Electron Approaches in Physics, Chemistry and Mathematics, V. Bach and L. Delle Site (eds.)
    • V. Bach
      ,
    • L. Delle Site
  • [6]
    Generalized Hartree-Fock theory and the Hubbard model
    • V. Bach
      ,
    • E.H. Lieb
      ,
    • J.P. Solovej
      • J.Statist.Phys. 76 (1994) 3-89
  • [7]
    A new estimate on the indirect Coulomb energy
    • R.D. Benguria
      ,
    • G.A. Bley
      ,
    • M. Loss
      • Int.J.Quant.Chem. 112 (2012) 1579-1584
  • [8]
    Optimal transport with Coulomb cost and the semiclassical limit of density functional theory, J. Ec
    • U. Bindini
      ,
    • L. De Pascale
  • [10]
    The crystallization conjecture: A review, EMS Surv
    • X. Blanc
      ,
    • M. Lewin
      • Math.Sci. 2 (2015) 255-306
  • [11]
    and B. Grébert, A decomposition theorem for wave functions in molecular quantum chemistry
    • O. Bokanowski
      • Math.Models Methods Appl.Sci. 6 (1996) 437-466
  • [12]
    B. Grébert, and N. J. Mauser, Local density approximations for the energy of a periodic Coulomb model
    • O. Bokanowski
      • Math.Models Methods Appl.Sci. 13 (2003) 1185-1217
  • [13]
    The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six
    • R. Borland
      ,
    • K. Dennis
      • J.Phys.B 5 (1972) 7-15
  • [14]
    Analysis of certain lattice sums
    • D. Borwein
      ,
    • J.M. Borwein
      ,
    • R. Shail
      • J.Math.Anal.Appl. 143 (1989) 126-137
  • [15]
    Energy of static electron lattices
    • D. Borwein
      ,
    • J.M. Borwein
      ,
    • R. Shail
      ,
    • I.J. Zucker
      • J.Phys.A 21 (1988) 1519-1531
  • [16]
    On lattice sums and Wigner limits
    • D. Borwein
      ,
    • J.M. Borwein
      ,
    • A. Straub
      • J.Math.Anal.Appl. 414 (2014) 489-513
  • [17]
    Lattice sums then and now, vol. 150 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge,. With a foreword by Helaman Ferguson and Claire Ferguson
    • J.M. Borwein
      ,
    • M.L. Glasser
      ,
    • R.C. McPhedran
      ,
    • J.G. Wan
      ,
    • I.J. Zucker
  • [18]
    Operator Algebras and Quantum Statistical Mechanics. 1: C∗ - and W ∗ -Algebras. Symmetry Groups. Decomposition of States, Texts and Monographs in Physics
    • O. Bratelli
      ,
    • D.W. Robinson
  • [19]
    Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States. Models in Quantum Statistical Mechanics, Texts and Monographs in Physics
  • [20]
    Monte Carlo study of a one-component plasma. i
    • S.G. Brush
      ,
    • H.L. Sahlin
      ,
    • E. Teller
      • J.Chem.Phys. 45 (1966) 2102-2118
  • [21]
    Lieb’s most useful contribution to density functional theory? In: The Physics and Mathematics of Elliott Lieb. The 90th Anniversary Volume I, R.L. Frank, A. Laptev, M. Lewin and R. Seiringer (eds.)
    • K. Burke
  • [22]
    Continuity and estimates for multimarginal optimal transportation problems with singular costs
    • G. Buttazzo
      ,
    • T. Champion
      ,
    • L. De Pascale
      • Appl.Math.Optim. 78 (2018) 185-200
  • [23]
    On a problem of Rankin about the Epstein zeta-function
    • J.W.S. Cassels
      • Proc.Glasgow Math.Assoc. 4 (1959) 73-80
  • [25]
    Universal optimality of the E8 and Leech lattices and interpolation formulas, Ann. of Math., . to appear
    • H. Cohn
      ,
    • A. Kumar
      ,
    • S.D. Miller
      ,
    • D. Radchenko
      ,
    • M. Viazovska