Form factor and model dependence in neutrino-nucleus cross section predictions
Oct 5, 2022
e-Print:
- 2210.02455 [hep-ph]
Report number:
- FERMILAB-PUB-22-745-T
Citations per year
Abstract: (arXiv)
To achieve its design goals, the next generation of neutrino-oscillation accelerator experiments requires percent-level predictions of neutrino-nucleus cross sections supplemented by robust estimates of the theoretical uncertainties involved. The latter arise from both approximations in solving the nuclear many-body problem and in the determination of the single- and few-nucleon quantities taken as input by many-body methods. To quantify both types of uncertainty, we compute flux-averaged double-differential cross sections using the Green's function Monte Carlo and spectral function methods as well as different parameterizations of the nucleon axial form factors based on either deuterium bubble-chamber data or lattice quantum chromodynamics calculations. The cross-section results are compared with available experimental data from the MiniBooNE and T2K collaborations. We also discuss the uncertainties associated with transition form factors that enter the two-body current operator. We quantify the relations between neutrino-nucleus cross section and nucleon form factor uncertainties. These relations enable us to determine the form factor precision targets required to achieve a given cross-section precision.Note:
- Minor changes to text and figure labels
- current: operator
- bubble chamber: deuterium
- form factor: axial
- form factor: transition
- nucleon: form factor
- nucleus: many-body problem
- neutrino nucleus
- Monte Carlo
- accelerator
- lattice field theory
References(131)
Figures(9)
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]