Multiscale Space-Time Ansatz for Correlation Functions of Quantum Systems Based on Quantics Tensor Trains

Oct 24, 2022
28 pages
Published in:
  • Phys.Rev.X 13 (2023) 2, 021015
  • Published: Apr 1, 2023
e-Print:
DOI:

Citations per year

2023202420254122
Abstract: (APS)
The correlation functions of quantum systems—central objects in quantum field theories—are defined in high-dimensional space-time domains. Their numerical treatment thus suffers from the curse of dimensionality, which hinders the application of sophisticated many-body theories to interesting problems. Here, we propose a multiscale space-time ansatz for correlation functions of quantum systems based on quantics tensor trains (QTTs), “qubits” describing exponentially different length scales. The ansatz then assumes a separation of length scales by decomposing the resulting high-dimensional tensors into tensor trains (also known as matrix product states). We numerically verify the ansatz for various equilibrium and nonequilibrium systems and demonstrate compression ratios of several orders of magnitude for challenging cases. Essential building blocks of diagrammatic equations, such as convolutions or Fourier transforms, are formulated in the compressed form. We numerically demonstrate the stability and efficiency of the proposed methods for the Dyson and Bethe-Salpeter equations. The QTT representation provides a unified framework for implementing efficient computations of quantum field theories.
Note:
  • 28 pages, 27 figures
  • [1]
    (, New York, )
    • G.D. Mahan
  • [2]

    Orthogonal Polynomial Representation of Imaginary-Time Green’s Dunctions

    • L. Boehnke
      ,
    • H. Hafermann
      ,
    • M. Ferrero
      ,
    • F. Lechermann
      ,
    • O. Parcollet
  • [3]

    Legendre-Spectral Dyson Equation Solver with Super-Exponential Convergence

    • X. Dong
      ,
    • D. Zgid
      ,
    • E. Gull
      ,
    • H.U.R. Strand
  • [4]

    Chebyshev Polynomial Representation of Imaginary-Time Response Functions

    • E. Gull
      ,
    • S. Iskakov
      ,
    • I. Krivenko
      ,
    • A.A. Rusakov
      ,
    • D. Zgid
  • [5]

    Compressing Green’s Function Using Intermediate Representation between Imaginary-Time and Real-Frequency Domains

    • H. Shinaoka
      ,
    • J. Otsuki
      ,
    • M. Ohzeki
      ,
    • K. Yoshimi
  • [6]

    Sparse Modeling Approach to Analytical Continuation of Imaginary-Time Quantum Monte Carlo Data

    • J. Otsuki
      ,
    • M. Ohzeki
      ,
    • H. Shinaoka
      ,
    • K. Yoshimi
  • [7]

    Sparse Sampling Approach to Efficient

    • J. Li
      ,
    • M. Wallerberger
      ,
    • N. Chikano
      ,
    • C.-N. Yeh
      ,
    • E. Gull
    et al.
  • [8]

    Efficient

    • H. Shinaoka
      ,
    • N. Chikano
      ,
    • E. Gull
      ,
    • J. Li
      ,
    • T. Nomoto
    et al.
  • [9]

    Minimax Isometry Method: A Compressive Sensing Approach for Matsubara Summation in Many-Body Perturbation Theory

    • M. Kaltak
      ,
    • G. Kresse
  • [10]

    Discrete Lehmann Representation of Imaginary Time Green’s Functions

    • J. Kaye
      ,
    • K. Chen
      ,
    • O. Parcollet
  • [11]

    Efficient Fluctuation-Exchange Approach to Low-Temperature Spin Fluctuations and Superconductivity: From the Hubbard Model to

    • N. Witt
      ,
    • E.G.C.P. van Loon
      ,
    • T. Nomoto
      ,
    • R. Arita
      ,
    • T.O. Wehling
  • [12]

    Efficient

    • T. Wang
      ,
    • T. Nomoto
      ,
    • Y. Nomura
      ,
    • H. Shinaoka
      ,
    • J. Otsuki
    et al.
  • [13]

    Formation Mechanism of the Helical

    • T. Nomoto
      ,
    • T. Koretsune
      ,
    • R. Arita
  • [14]

    Local Force Method for the

    • T. Nomoto
      ,
    • T. Koretsune
      ,
    • R. Arita
  • [15]

    Magnetic Exchange Coupling in Suprate-Analog

    • Y. Nomura
      ,
    • T. Nomoto
      ,
    • M. Hirayama
      ,
    • R. Arita
  • [16]

    Electron Correlations in the Cubic Paramagnetic Perovskite

    • C.-N. Yeh
      ,
    • S. Iskakov
      ,
    • D. Zgid
      ,
    • E. Gull
  • [17]

    Self-Energy Embedding for the Photoemission Spectra of

    • S. Iskakov
      ,
    • C.-N. Yeh
      ,
    • E. Gull
      ,
    • D. Zgid
  • [19]

    Momentum-Space Cluster Dual-Fermion Method

    • S. Iskakov
      ,
    • H. Terletska
      ,
    • E. Gull
  • [20]

    TRILEX and

    • J. Vučičević
      ,
    • T. Ayral
      ,
    • O. Parcollet
  • [21]

    Strongly Correlated Superconductivity with Long-Range Spatial Fluctuations

    • M. Kitatani
      ,
    • R. Arita
      ,
    • T. Schäfer
      ,
    • K. Held
  • [22]

    Multipoint Correlation Functions: Spectral Representation and Numerical Evaluation

    • F.B. Kugler
      ,
    • Seung-Sup.B. Lee
      ,
    • J. von Delft
  • [23]

    Computing Local Multipoint Correlators Using the Numerical Renormalization Group

    • Seung-Sup B. Lee
      ,
    • F.B. Kugler
      ,
    • J. von Delft
  • [24]

    Overcomplete Compact Representation of Two-Particle Green’s Functions

    • H. Shinaoka
      ,
    • J. Otsuki
      ,
    • K. Haule
      ,
    • M. Wallerberger
      ,
    • E. Gull
    et al.
  • [25]

    Sparse Sampling and Tensor Network Representation of Two-Particle Green’s Functions

    • H. Shinaoka
      ,
    • D. Geffroy
      ,
    • M. Wallerberger
      ,
    • J. Otsuki
      ,
    • K. Yoshimi
    et al.