Microscopic Origin of the Entropy of Astrophysical Black Holes
Dec 16, 2022
9 pages
Published in:
- Phys.Rev.Lett. 132 (2024) 14, 141501
- Published: Apr 1, 2024
e-Print:
- 2212.08623 [hep-th]
DOI:
- 10.1103/PhysRevLett.132.141501 (publication)
View in:
Citations per year
Abstract: (APS)
We construct an infinite family of microstates for black holes in Minkowski spacetime which have effective semiclassical descriptions in terms of collapsing dust shells in the black hole interior. Quantum mechanical wormholes cause these states to have exponentially small, but universal, overlaps. We show that these overlaps imply that the microstates span a Hilbert space of log dimension equal to the event horizon area divided by four times the Newton constant, explaining the statistical origin of the Bekenstein-Hawking entropy.Note:
- 9 pages, 4 figures. v3: minor edits, discussion section added
- black hole: entropy
- space-time: Minkowski
- gravitation: fundamental constant
- overlap
- microstate
- collapse
- family
- Hilbert space
- wormhole
- horizon
References(18)
Figures(4)
- [1]
- [2]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]