Effective Potential for Local Composite Operators and the Problem of Factorization of Multifield Condensates

Sep 1, 1989
32 pages
Published in:
  • Z.Phys.C 47 (1990) 565-576
Report number:
  • TUTP-89/24

Citations per year

19911999200720152022210
Abstract: (Springer)
A new formulation of effective potential for local composite operators is given. The two-fermion condensateΨˉΨ\langle \bar \Psi \Psi \rangle and four-fermion condensateΨˉΨΨˉΨ\langle \bar \Psi \Psi \bar \Psi \Psi \rangle are calculated simultaneously in the Gross-Neveu model up to next-to-the-leading order in 1/N expansion. It is shown that factorizationΨˉΨΨˉΨ=C1ΨˉΨ2\langle \bar \Psi \Psi \bar \Psi \Psi \rangle= C_1 \langle \bar \Psi \Psi \rangle ^2 holds only in theN→∞ limit and the non-factorized part ofΨˉΨΨˉΨ\langle \bar \Psi \Psi \bar \Psi \Psi \rangle contributed by the order-1/N terms is comparable toC1ΨˉΨ2C_1 \langle \bar \Psi \Psi \rangle ^2 when takingN=3.
  • Gross-Neveu model
  • dimension: 2
  • path integral
  • symmetry: U(N)
  • expansion 1/N
  • fermion: condensation
  • factorization
  • effective potential
  • perturbation theory: higher-order
  • operator: composite