Dissipative quantum many-body dynamics in (1+1)D quantum cellular automata and quantum neural networks

Apr 21, 2023
17 pages
Published in:
  • New J.Phys. 25 (2023) 9, 093020
  • Published: Sep 8, 2023
e-Print:

Citations per year

20222023202402
Abstract: (IOP)
Classical artificial neural networks, built from elementary units, possess enormous expressive power. Here we investigate a quantum neural network (QNN) architecture, which follows a similar paradigm. It is structurally equivalent to so-called (1+1)D quantum cellular automata, which are two-dimensional quantum lattice systems on which dynamics takes place in discrete time. Information transfer between consecutive time slices—or adjacent network layers—is governed by local quantum gates, which can be regarded as the quantum counterpart of the classical elementary units. Along the time-direction an effective dissipative evolution emerges on the level of the reduced state, and the nature of this dynamics is dictated by the structure of the elementary gates. We show how to construct the local unitary gates to yield a desired many-body dynamics, which in certain parameter regimes is governed by a Lindblad master equation. We study this for small system sizes through numerical simulations and demonstrate how collective effects within the quantum cellular automaton can be controlled parametrically. Our study constitutes a step towards the utilization of large-scale emergent phenomena in large QNNs for machine learning purposes.
Note:
  • 17 pages, 3 figures
  • open quantum systems
  • quantum cellular automata
  • quantum neural networks
  • neural network: quantum
  • cellular automaton: quantum
  • time: discrete
  • gate: quantum
  • dimension: 2
  • many-body problem
  • network